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Some puzzles for physics beyond the Standard Model

Neutrino masses
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Leptogenesis mechanisms

Sakharov conditions

4 [Fukugita/Yanagida '86]

thermal
leptogenesis

1010 4= [Davidson/Ibarra '02]

)

VI 109 GeV
[Liu/Segre 93..]
[Pilaftsis '97]

106 =pfPilaftsis/Underwood '04;'05]

102

My [GeV]

resonant
leptogenesis

[Asaka/Shaposhnikov '05]
leptogenesis via oscillations

1.

Baryon number violation

sphaleron processes

2. Cand CP violation

RHN decays and oscillations

3. Deviation from thermal equilibrium

[Akhmedov/Rubakov/Smirnov '98]

freeze-in and freeze-out of RHN
e
Sy

(e}

S i

< N

N (N}

Wi @

AN &

z

Q

o

/5y

& s

Y o

o w

TIME

for hierarchical RHN M7 > 109 GeV

~

leptogenesis works in a wide range of RHN masses



Leptogenesis mechanisms

Sakharov conditions

1. Baryon number violation
4 [Fukugita/Yanagida '86]

thermal sphaleron processes
leptogenesis

2. Cand CP violation

1010 == [Davidson/Ibarra '02] RHN decays and oscillations
V1 > 10° GeV 3. Deviation from thermal equilibrium
[Liu/Segre 93..] ) o
[Pilaftsis '97] freeze-in and freeze-out of RHN
106 =HPilaftsis/Underwood '04;'05] eqoilibriomy 5
resonant S \ o
. @ NN
leptogenesis & (037 —(\&\ng
| <« ‘:ID\L._
44
102 =+ 25
[Akhmedov/Rubakov/Smirnov '98] /5 o
[Asaka/Shaposhnikov '05] © %\
leptogenesis via oscillations M DI
TIME
- for hierarchical RHN My > 10° GeV
M [GeV]

leptogenesis works in a wide range of RHN masses



Leptogenesis mechanisms

Sakharov conditions

1. Baryon number violation
4 [Fukugita/Yanagida '86] hal

e — sphaleron processes
leptogenesis

2. Cand CP violation

1010 == [Davidson/Ibarra '02] RHN decays and oscillations
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leptogenesis works in a wide range of RHN masses

how are the low-scale mechanisms connected?



Resonant leptogenesis
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- the BAU is mainly produced in RHN decays N N
- The lepton asymmetries follow the equation w‘é‘, &
(‘)Z

dYy r s C%

ba _ LN _yedy ,{90 fre

Tt = —ca (Y = YR = WYy, ]

./

TIME
The key quantity determining the BAU is the decay asymmetry
Uno, —Tnog, 1 Im(FYF)2, MiM;
Pnoi, + Ty 8m (FiF)n M2 — M3

Becomes enhanced if My — Mj [(baryogenesis) Kuzmin '70] [(leptogenesis:)
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Liu/Segré/Flanz/Paschos/Sarkar/Weiss/Covi/Roulet/Vissani/Pilaftsis/Underwood/Buchmiiller/Plumacher...]

This enhancement is known as resonant leptogenesis.

- divergent when My = M;?



Resonant leptogenesis

A
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- the BAU is mainly produced in RHN decays N N
- The lepton asymmetries follow the equation w‘é‘, éj
(‘)Z

ayy r ?%

la _ . -N _Veay _ e

Tt = —ca (Y = YR = WYy, 2

./

TIME
The key quantity determining the BAU is the decay asymmetry

Inoi, —Tnog, 1 Im(FTF)%, M1 M,
Inoi, + Ty 8w (FTF);n M2E— M2+ A2

Becomes enhanced if My — Mj [(baryogenesis) Kuzmin '70] [(leptogenesis:)

€aq

Liu/Segré/Flanz/Paschos/Sarkar/Weiss/Covi/Roulet/Vissani/Pilaftsis/Underwood/Buchmiiller/Plumacher...]
This enhancement is known as resonant leptogenesis.
- divergent when My = M;?

- divergence is unphysical — it needs to be regulated!
- this process can instead be described with density matrix equations



Leptogenesis via oscillations
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Quantum Kinetic Equations (QKEs)

System of QKEs

dna, Ha 3k - coupled system of
i— = —2i— 3 Tr[Cal fv (1= fN) . . . .
dt T (27) integro-differential equations
i for the lepton flavor
+1 / @ Tr [fa (PN — PN)] : asymmetries na, and the
. ) helicity-dependent HNL density
s 2o _ [Hy, pn] — = {F PN — PoF matrices and p
dt N> PN 2 ' PN N PN PN
i _ Lo - HNL oscillations described by
- = Fa [2— 1- ) . . .
2 Z [ T It fN)} the effective hamiltonian H
, 4PN _ R i {r I - equilibration described by
ac | CNPNIT o PN T PN helicity and flavor-dependent

i - e matrices I
= Fo e = d )
+ 3 E |:2 T fn (1 fN):|



Quantum Kinetic Equations (QKEs)

System of QKEs

;4 — gl I = for) - coupled system of
B (27r)3 Faldy N integro-differential equations
for the lepton flavor
+i / W Tr [Fa (PN — PN)] : asymmetries ,and the
p . i helicity-dependent HNL density
i% :[HN-,PN]*E{FJ’N*P;? matrices py and pn
i - - HNL oscillations described by
— o |2— = s . . .
2 Z [ T ot fN)} the effective hamiltonian H
oy _ ol i {r L, - equilibration described by
ac | CNPNIT o PN T PN helicity and flavor-dependent
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Quantum Kinetic Equations (QKEs)

System of QKEs

dna, Ha d3k - coupled system of
f— = —2i—— Tr [T 1— . . . .
dt T (2m)3 Bl sy (8= a7 integro-differential equations
B for the lepton flavor
+i / a3 [~a (on = )] : asymmetries na,, and the
p . i helicity-dependent HNL density
i—= =I[Hy.pN] =5 {F, =@ matrices and
i _ Lo - HNL oscillations described by
— o |2— = s . . .
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Quantum Kinetic Equations (QKEs)

System of QKEs

[4raa __ be d3k T [Ca] fa (1 — fx) - coupled system of
dt T (2m)3 integro-differential equations
Fn i for the lepton flavor
+1 / @3 Tr [Fa (AN — PN)] , asymmetries na, and the
. ) helicity-dependent HNL density
id;—tN = »PN]*é{FvPN*P;? matrices py and pn
i _ Lo - HNL oscillations described by
T2 ZFQ [2?fN S fN)} ' the effective hamiltonian
dpn ° B i . . - equilibration described by
i — WHN.ANI- 3 {F‘pN — PN helicity and flavor-dependent

i _ To matrices I
- FOC — o ’
+ 3 E |:2 = fn (1 fN):|



Quantum Kinetic Equations (QKEs)

System of QKEs

dnag, Ba d3k - coupled system of
i = —2i— 3 Tr[Ca]l fv (1= fn) . . . )
dt T (27) integro-differential equations
i for the lepton flavor
+ / @)’ Tr [ (AN — PN)] , asymmetries na, and the
. ) helicity-dependent HNL density
N (aty, o] — 2 {1 o — 0 tr dp
2 = Hnenl= o qTen = ey matrices pn and py
i Lo - HNL oscillations described by
== 2= i (1 - ; , o
2 Z [ T It fN)} the effective hamiltonian H
Jdn e ] = i { o Eq} - equilibration described by
ac | N PNIT o PN T PN helicity and flavor-dependent

i To matrices
‘s Z [27fN (- fN)} :



Quantum Kinetic Equations (QKEs)

System of QKEs

dnp, s A3k
f— = —2

T
dt T (2m)3

+i./(ng];3Tr [fa(ﬁN*PN)],

Tr o] fv (1 = fN)

dpn i e
i ——— = [Hy, - = {F, — p3d
7 Hy.pN] = o PN — Py
7 - I
ad- E Lo [2%fN (1 - fN):| )
@
dpN i e
i =—[Hn,p 77{1",* —pd
= [Hn,PN] = 2 PN — PN

‘s Zfa [z%"m (1- fN)} :

- similar sets of equations

derived using different
strategies for both regimes

- for resonant leptogenesis

relativistic corrections were
typically negligible

helicity effects could be
neglected pny =~ pn*

- leptogenesis via oscillations

assumed ultra-relativistic HNLs
non-relativistic corrections found to be
important in recent years

[Hambye/Teresi "16; Laine/Ghiglieri "17;
Eijima/Shaposhnikov '17]

- gradual convergence towards

the same set of equations



The low-scale leptogenesis mechanisms

Resonant leptogenesis Leptogenesis via oscillations

- often sufficient to use decay - initial conditions are crucial, all
asymmetries eq BAU is generated during RHN

- conceptual issues arise when equilibration (freeze-in)
My — M, - important to distinguish the

- relativistic effects can typically helicities of the RHN
be neglected - the decay of the RHN

- heavy neutrino decays require equilibrium distribution can
M > T, not clear what happens typically be neglected Y3 ~ 0

for M < 130 GeV

- both can be described by the same density-matrix
equations



The parameter space of low-scale leptogenesis

Resonant leptogenesis Leptogene5|s via oscillations

early estimates lead to successful leptogenesis for Mp; > Myy new channels open up
for ©(200) GeV [Pilaftsis/Underwood '05]
large equilibration rates for both FNV and FNC
Higgs decay leptogenesis mechanism proposed processes
in [Hambye/Teresi "16; '17] . i
generically we have Iy /H = 30 for

T ~ 150 GeV, M ~ 80 GeV

early estimate
[Blondel/Graverini/Serra/Shaposhnikov 2014]

Normal hierarchy

Nﬁev
PS191

10gs0 My/GeV.

Seesaw
L I

1091 My/GeV

10
HNL mass (GeV)

Baryogenesis window closes ¢
logso iV My ~ 80 GeV?

A quantitative study is necessary!



How to navigate the parameter space

- we use a single set of equations for both leptogeneses
- for M > T we recover resonant leptogenesis
- for M < T we recover leptogenesis via oscillations
- we separate the freeze-in and freeze-out regimes
- for thermal initial conditions freeze-out is the only source
of BAU: “resonant” leptogenesis dominates
- for vanishing initial conditions with Y3? — 0 freeze-in is
the only source of BAU: LG via oscillations dominates
- biggest challenge: rates!
- so far estimates of the rates only exist for M < T'and M > T
- we combine the two by extrapolating the relativistic rate and adding it to
the non-relativistic decays

- we perform a comprehensive numerical scan over the
parameters between 100 MeV < My, < 10 TeV



Results: The minimal model with 2 RHNs
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in resonant leptogenesis freeze-out (HNL decays) dominates,
we can start with thermal initial conditions Y (0) = Y\

leptogenesis via oscillations is freeze-in dominated,
Y (0) = 0, we set the “source” term to dY?/dz — 0 by hand

+ success Is not guaranteed:

for different phases the overlap can be much smaller
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Results: The minimal model with 2 RHNs
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Results: The minimal model with 2 RHNs

104 T T
5 — BAU limits
1y -+ freeze-in 13 -
10° ~ freeze-out ] - the baryogenesis window remains
107 102 open!
108
109 o - two main contributions to the BAU,
1010 from freeze-in and freeze-out
10"
101t . . .
1012 i - there is significant overlap of the
107" .
w1y ] two regimes
101 L L L ‘2 u 107
10 10 10 10 10 AM/M

M, GeV

in resonant leptogenesis freeze-out (HNL decays) dominates,
we can start with thermal initial conditions Y (0) = Y3

leptogenesis via oscillations is freeze-in dominated,
Yn (0) = 0, we set the “source” term to dY*/dz — 0 by hand

success is not guaranteed:
for different phases the overlap can be much smaller

10



Results: Leptogenesis with 3 RHNs

1074

10°°

10-10

Low-scale Leptogenesis
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1079 —— 3 HNLs, vanishing W
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M [GeV]

[ Snowmass White Paper 2203.08039]

leptogenesis lines from [ Drewes/Georis/JK 2106.16226]

for experimentally accessible heavy neutrino masses, all U? are allowed
both freeze-in and freeze-out leptogeneses already testable at existing experiments
the maximal value of U2 depends on m1

n



Results: Leptogenesis with 3 RHNs
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Results: Leptogenesis with 3 RHNs

Low-scale Leptogenesis
----- 3 HNLs, thermal, m; = 0.1 eV
1071 . 3 HNLs, vanishing, m; =0.1 eV
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M [GeV]

[ Snowmass White Paper 2203.08039]

leptogenesis lines from [ Drewes/Georis/JK 2106.16226]

for experimentally accessible heavy neutrino masses, all U? are allowed
both freeze-in and freeze-out leptogeneses already testable at existing experiments
the maximal value of U2 depends on 1

n



Indirect probes: Charged LFV

i (BV)eil

% (RV)

[Granelli/JK/Petcov 2206.04342]
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10*

parameters space in the TeV region already severly constrained by cLFV observables
future p — e conversion experiments can probe a large part of the N = 3 parameter space
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Indirect probes: Charged LFV
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parameters space in the TeV region already severly constrained by cLFV observables
- future p — e conversion experiments can probe a large part of the N = 3 parameter space
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Allowed ranges of mixing angles U? and mass splittings AM

M =10 GeV
~
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N ~
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= 41 Il, \\ 100/é\ \\\
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I 8 > -
3
S] -7
s —104 g W
g - ;>
E ) )y < LNC
S —124 s
4
’
T 4 T T T
-10 -8 -6 -4 -2
log1oU?

[ Drewes/Georis/JK 220x.xxxx]

- benchmark with fixed

U2, /U2

- upper bound on U? arises

through a combination of
baryogenesis + fine tuning
constraints

- leptogenesis consistent

with both LNV and LNC RHN
decays

- nontrivial LNV/LNC ratios

can further constrain the
RHN parameters

13



Allowed ranges of mixing angles U? and mass splittings AM
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RHN parameters

13



Allowed ranges of mixing angles U? and mass splittings AM
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Allowed ranges of mixing angles U? and mass splittings AM
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through a combination of
baryogenesis + fine tuning
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- leptogenesis consistent

with both LNV and LNC RHN
decays

- nontrivial LNV/LNC ratios

can further constrain the
RHN parameters
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Conclusions

- resonant leptogenesis and leptogenesis through neutrino
oscillations are really two regimes of the same mechanism

- freeze-out is already possible for GeV-scale RHNs

- freeze-in remains important at the TeV-scale and beyond

- leptogenesis is a viable baryogenesis mechanism for all
heavy neutrino masses above the O(100) MeV scale

- leptogenesis is testable at planned future experiments

- synergy between high-energy and high-intensity searches!
- together they can cover a large portion of the low-scale
leptogenesis parameter space

14



Thank you!



Large mixing angles and approximate B-L symmetry

- large U2 require Pseudo-Dirac pairs

cancellations between

different entries of the e = Nl;ﬁNQN - Lﬂm
Yukawa matrices F

- this cancellation can be —
3ssociated with an B-L parametrisation
approximate lepton e o
number symmetry MM—M< o iy 5)

[Shaposhnikov hep-ph/0605047, Kersten Smirnov
0705.3221, Moffat Pascoli Weiland 1712.07611]

1 Fe(1 +ee) iFe(l — ee) Feel,
F = Fu(l+eu) Fu(l—eu) Fue,

- symmetry broken by small T sy e

parameters e, €, u,



- If present, symmetries are manifest to all orders in p.t.

- in the case of a large B-L breaking, radiative corrections
can cause large neutrino masses

- we can use the size of radiative corrections to the light
neutrino masses to quantify tuning

Fine Tuning

2
\Ji(mloop mtree)
loop
=1 mz



Slices of the parameter space

AM/M

101 F
103 |
10~5 L
107 |
109 f
1011 B
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10~15 L
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10-19

M=10.0 GeV

- two characteritic mass

splittings

- mass splitting induced by

the Higgs A My

- mass splitting induced by

RG running 6 Mra



Slices of the parameter space
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- mass splitting induced by

RG running 6 Mra



Slices of the parameter space

AM/M

101 F
103 |
10~5 L
107 |
109 f
1011 F
1013 £
10~15 L

1077 |

10-19

M =1000.0 GeV

- two characteritic mass

splittings

- mass splitting induced by

the Higgs A My

- mass splitting induced by

RG running 6 Mra



Results: Leptogenesis with 3 RHN (Normal Ordering)

[ T T
>

10~

10-¢

.

S 1078
10—10?
= NO
10—127 . Lo - e
10! 1 10
Ml[GEV]
f.t.

10-¢ 10 1072 1

[Abada/Arcadi/Domcke/Drewes/)K/Lucente 1810.12463]



Hierarchy in the washout

- lepton asymmetry can
survive washout if hidden
in a particular flavor

M 10NO
m20NO
30 NO

m10l10
m2010
3010

- washout suppression

L
- T U2
- for 2RHN § > 5 x 103 [Snowmass White Paper 2203.08039]

[Drewes/Garbrecht/Gueter/JK 1609.09069]

- for 3 RHN § « 1 possible

[Caputo/Hernandez/Lopez-Pavon/Salvado 1704.08721]



Hierarchy in the washout

3 RHNs:

- lepton asymmetry can
survive washout if hidden
in a particular flavor

- washout suppression
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—
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[ Drewes/Georis/JK 220x.xxxx]

« for2 RHN § > 5 x 1073
[Chrzaszcz/ Drewes/Gonzalo/Harz/Krishna-

: for 3 RHN f < 1 pOSSible murthy/Weniger 1908.02302]



Hierarchy in the washout

- lepton asymmetry can
survive washout if hidden
in a particular flavor

- washout suppression

Lo Us
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—
I1l

« for2 RHN § > 5 x 1073
- for 3 RHN § <« 1 possible

3 RHNs:

m;=0.03 eV

[ Drewes/Georis/JK 220x.xxxx]
[Chrzaszcz/ Drewes/Gonzalo/Harz/Krishna-

murthy/Weniger 1908.02302]



Enhancement due to level crossing

- inthe B — L symmetric limit two heavy neutrinos form a
pseudo-Dirac pair

- the “3rd” heavy neutrino can be heavier than the
pseudo-Dirac pair

- for T > Tgw, the pseudo-Dirac pair also has a thermal
mass
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Enhancement due to level crossing

Heavy Neutrino Densities Lepton flavour asymmetries
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