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Extra charged gauge bosons 𝑊′± are predicted in 
many extensions of the standard model like,  

𝑆𝑈! 2 × 𝑆𝑈" 2
Pati-Salam PRD10 (1975)
Mohapatra, Senjanovic PRL44 (1980)
………..
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(4,11) gives, for example, 
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Thus must suppress by having Re(o;2o31 ) very small. 
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inspired by the extension of the Higgs sector rather than the
introduction of new symmetries, like little Higgs models
[18–20] and twin Higgs models [21,22]. All these SM
extensions have a common feature: the prediction of new
W0 and Z0 gauge bosons [23] in analogy with the W and Z
gauge bosons of the SM. In the current paper, we will focus
on W0 boson phenomenology, giving an overview of the
models that can foresee its introduction and focusing on
deriving measurable predictions on a specific one, named
top-flavor (TF) model.
The paper is organized as follows: Sec. II serves as a

brief overview on the most commonW0 models. In Sec. III
we will introduce the general properties of the TF model
studied in this work. In Sec. IV we report the phenom-
enological implications for collider searches with a com-
parison with the sequential Standard Model (SSM) case,
and in Sec. V we draw quantitative predictions for LHC
searches. In Sec. VI we report our conclusions.

II. W 0 MODEL OVERVIEW

The couplings of W0 with SM particles, fermions,
scalars, and vectors, depend on the specific gauge model.
The new gauge boson interactions with fermions can be
written in a general way as

Leff ¼
Vfifj

2
ffiffiffi
2

p gwf̄iγμ½α
fifj
R ð1 þ γ5Þ

þ α
fifj
L ð1 − γ5Þ&W0μfj þ H:c:; ð1Þ

where Vfifj is the analog of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix if fi and fj represent quarks,
while for leptons Vfifj ¼ δij and gw is the coupling with the
W0 [24].
The parameters α

fifj
R and α

fifj
L are free in a model-

independent analysis, while specificW0 models correspond
to specific choices.
The SSM described in Ref. [25] is defined to have the

same couplings to fermions as the SMW boson, leading to
gw ¼ e= sin θW , α

fifj
L ¼ 1, and α

fifj
R ¼ 0 for i, j ¼ 1, 2, 3.1

It is worth mentioning that the SSM is not expected in the
context of any gauge theory unless new scalars and
fermions are assumed to extend the SM beside the W0

boson [23]. Indeed the inclusion of a new W0 boson
requires one to extend the gauge group with, for instance,
an extra SUnewð2Þ group. In order to couple to the W0

boson, the SM fermions, both quarks and leptons, must
transform under the new SUnewð2Þ. The minimal extension
of the weak gauge group by means of a new Uð1Þ provides
no W0 boson but gives a Z0 one. Another feature of these

models is that they require new scalar fields, since it is
necessary to reproduce the SM with a spontaneous sym-
metry breaking (SSB) of the new symmetry group.
L-R gauge models provide a possible example of such an

extension, based on the SUð2ÞL × SUð2ÞR ×Uð1Þ gauge
group [11,12], and give α

fifj
R ¼ αR and α

fifj
L ¼ αL, where

αL;R are arbitrary parameters.
Another possible extension is the class of models based

on a (3, 3, 1) gauge symmetry. In this case, the α
fifj
R and

α
fifj
L assignment depends on the details of the model. In

fact, within the (3, 3, 1) model there is some arbitrariness in
the assignment of the matter field in order to complete the
irreducible representation of SUð3ÞL, namely the antitriplet
3̄. However most of (3, 3, 1) models provide αfifjL ≠ 0 and
α
fifj
R ¼ 0 in analogy with the SSM. For instance, the

Lagrangian of the model presented in Ref. [13] contains

L ⊃ −
gffiffiffi
2

p ðl̄c
Lγ

μνlLW0þ
μ þ J̄1LγμuLW0þ

μ

− q̄ iLγμJiLW0þ
μ þ H:c:Þ; ð2Þ

where g ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3 sin2 θ

p
= sin θ, tan2 θ ≈ 11=6, i ¼ 2, 3,

and J1;2;3 are new quarks with exotic charges. It is
important to notice that the quarks in the Lagrangian of
Eq. (2) are not the mass eigenstates.
In conclusion, the effective Lagrangian reported in

Eq. (1) is the most general one that parametrizes the
coupling of a W0 boson with fermions. Nevertheless it is
not satisfactory from a theoretical point of view in its most
general form. To compute phenomenological, observable
predictions, one must often reduce to a subset of parameters
compatible with the conditions listed above.
In particular, for what concerns couplings to fermions,

experimental searches often focus on two benchmark cases:

W0
L∶ α

fifj
L ¼ 1; α

fifj
R ¼ 0;

W0
R∶ α

fifj
L ¼ 0; α

fifj
R ¼ 1; ð3Þ

where both of them have gw ¼ e= sin θW . While the first
case is exactly the SSM introduced in Ref. [25], the second
one is its right-handed version that is a special case of the
L-R model. The two cases in Eq. (3) do not cover the full
extent of possible models that could actually appear in
nature. Other combinations of parameters could be allowed,
motivated by different theoretical models or assumptions,
resulting in a wider parameter space to explore at the LHC
or future colliders.
In this work, we will explore the phenomenological

implications of a third class of W0 models, denoted as top-
flavor model [26,27], whose key assumptions are signifi-
cantly different with respect to the ones leading to Eq. (3).
In particular, we will show how a vast portion of the
parameter space available to this model is not yet excluded

1Note that in this model this holds true also for the Z0 boson,
and it holds true both for the vertex with fermions and the ones
involving other vector bosons and the Higgs, namely W0ff̄,
Z0ff0, W0' W∓Z, and Z0Wþ W−.
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note

↵
fifj
R = aR�ij ↵

fifj
L = aL�ij

Li`3R�
1

⇤
Li`1,2R �⌃

gSM (eL ⌫eL + µL ⌫µL + ⌧L ⌫⌧L)W

gSM tan ✓0 (eL ⌫eL + µL ⌫µL)W
0 + gSM cot ✓0 ⌧L ⌫⌧L W 0

V 0
CKM = VCKM ·G+ cot2 ✓0 VCKM ·R

1

note

↵
fifj
R = aR�ij ↵

fifj
L = aL�ij

Li`3R�
1

⇤
Li`1,2R �⌃

gSM (eL ⌫eL + µL ⌫µL + ⌧L ⌫⌧L)W

gSM tan ✓0 (eL ⌫eL + µL ⌫µL)W
0 + gSM cot ✓0 ⌧L ⌫⌧L W 0

V 0
CKM = VCKM ·G+ cot2 ✓0 VCKM ·R

1

Modelling W’ coupling

In general 18 free parameters !

flavor blind

𝑊!
+ ∶ 𝑎! = 1; 𝑎" = 0

𝑊"
+ ∶ 𝑎! = 0; 𝑎" = 1

Two benchmark cases @ LHC

typically only 2 free parameters
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𝑊!
+ ∶ 𝑎! = 1; 𝑎" = 0

𝑊"
+ ∶ 𝑎! = 0; 𝑎" = 1 particular case of left-right

𝑆𝑈! 2 × 𝑆𝑈"(2)

( The sequential standard model )

CERNTH.5323/89 

SEARCHING FOR NEW 
HEAVY VECTOR BOSONS 

IN pp COLLIDERS 
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ABSTRACT 

Product.ion and ddection of new Yedor bosons is studied at. present. 

(or near future) p p r.ollider experiments. Application t.o CERN and Tcvatron 

experiments is considered in detail, but some results for t.he UNK p p collidcr, at 

..jS = 6 TeV, are also presented. ll.athcr than considering a. number of detailed 

models, we prefer to discuss some general, alt.lwugh necessarily schematic, classes 

of new vector bosons ranging from strongly int.cra.ct.ing Higgs sector models t.n 

extended gauge nwdels. 'Ve study in particular signals and backgrounds in the 

ffjj channels, where e are leptons and j arc lmdronjet.s. 
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from

Z0

W ±
V ±
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‹

b

b

Discovery W boson
UA1 Collaboration 83’

𝑊±⟶𝑒±𝜈



The sequential model (as proposed by Altarelli et al.) 
can not derive from any extended gauge model

While the couplings to fermions are the same of Standard Model 
𝑊′± → 𝑊±𝑍 𝑖𝑠 𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑖𝑓 𝑊′ 𝑎𝑛𝑑 𝑊 𝑎𝑟𝑖𝑠𝑒 𝑓𝑟𝑜𝑚 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑔𝑎𝑢𝑔𝑒 𝑔𝑟𝑜𝑢𝑝𝑠

i.e.  𝑊 ∈ 𝑆𝑈 2 𝑋 𝑈 1 ,  W’∈ 𝑆𝑈′(2)

𝑊′± → 𝑊±𝑍 comes from mixing after symmetry breaking 𝑂(-!
"

-!#
" )

ATLAS & CMS

𝑊# → 𝑡𝑏
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𝑊′ → ℓ𝜐 𝑊′ → 𝑊𝑍

The paper aim was
mostly explorative
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W’ detection: @LHC the most promising channel is 𝑊+ → 𝑡𝑏 (single top)
• small QCD background comparing to light-jets
• less model dependent:

𝑊′!," → ℓ 𝜐!,"
Kinematically suppressed if

𝑀/" > 𝑀0"

Standard Model single top production

Dominant for 𝑀0 ≪ 𝑀0+



Remarks on experimental searches

q

q

b

t

q

q

b

tW’ W
𝜎(
𝑝𝑝

→
𝑊
′→

𝑡𝑏
)

+

𝑊!
$ ∶ 𝑎! = 1; 𝑎" = 0𝑊"

$ ∶ 𝑎! = 0; 𝑎" = 1

Boos,Bunichev,Dudko,Perfilov, PLB655(2007) 
Interference between W’ and W in single-top quark production processes,



CMS vs ATLAS
and mW 0 is estimated at NLO using the ZTOP generator. In addition, specific signal samples are used in
order to take into account the e�ect on the acceptance and on kinematical distributions of the increased
signal width (compared with the nominal samples) for values of g0/g > 1. Figure 7 shows the excluded
parameter space as a function of the W 0

R resonance mass, wherein the e�ect of increasing W 0
R width for

coupling values of g0/g > 1 is included for signal acceptance and di�erential distributions. The lowest
observed (expected) limit on g0/g, obtained for a W 0

R boson mass of 0.75 TeV, is 0.13 (0.13).

 [TeV]
RW'm
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b t
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→
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210 ATLAS
-1 = 13 TeV,  36.1 fbs

νlb b→ b t→ RW'

Observed
Expected

1 s.d.±Expected 
2 s.d.±Expected 

 (ZTOP)RNLO W'

Figure 6: Upper limits at the 95% CL on the W 0
R production cross section times the W 0

R ! t b̄ branching fraction
as a function of resonance mass, assuming g0/g = 1. The solid curve corresponds to the observed limit, while the
dashed curve and shaded bands correspond to the limit expected in the absence of signal and the regions enclosing
one/two standard deviation (s.d.) fluctuations of the expected limit. The prediction made by the benchmark model
generator ZTOP [30], and its width that correspond to variations due to scale and PDF uncertainty, are also shown.

The ATLAS experiment has recently searched for W 0
R ! t b̄ in the fully hadronic final state [27] using

36.1 fb�1, corresponding to the same data collection period as the analysis presented here. As these two
searches are complementary and use mutually orthogonal event selections, a more general and powerful
search for W 0

R ! t b̄ production can be obtained via their statistical combination. The signal simulation
was produced in the same manner for both searches, and the simulation of shared background sources is
obtained with identical or similar tools. The fully hadronic search has a background dominated by QCD
multijet production, which is estimated via data-driven methods. The smaller contribution from tt̄ and
singly produced top quarks is common to the two analyses, and thus all systematic uncertainties related to
shared reconstruction or selection methods are treated as fully correlated.

The result of the combination of the cross section times branching fraction limits of the leptonic and fully
hadronic analyses is shown in Figure 8. The individual limits and their combination are shown in Figure 9.
The expected limits produced by the two searches are similar above a resonance mass of 2 TeV, below
which the fully hadronic search su�ers due to ine�ciency from dijet trigger thresholds causing it not to
contribute for resonance masses below 1 TeV. Thus, the expected limits on the production cross section
multiplied by the branching fraction improve by approximately 35% above 1 TeV and the combined result
raises the lower limit on the W 0

R mass to 3.25 TeV. On the other hand, the gain from combining the
observed cross section times branching fraction limits is rather modest, compared with the result of the

17

Is this the end of the story? 
What if we consider a flavor unblind bechmark case? 
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by the LHC. We will evaluate the production rate of pp →
W0 → τν and pp → W0 → tbprocesses, showing that it can
range down to approximately a fifth of the one of the SSM.

III. TOP-FLAVOR MODEL

The most general realization of TF model is based on the
gauge group [28]:

SUð3ÞC × SUð2Þ1 × SUð2Þ2 × SUð2Þ3 ×Uð1ÞY; ð4Þ

where the ith flavor generation transforms as a doublet
under SUð2Þi and as a singlet under the other SUð2Þj with
i, j in Eqs. (1)–(3), and i ≠ j. The presence of three
separate gauge groups for each family leaves considerable
freedom in the realization of the TF model. In this work, we
consider the one given in Refs. [26,28–32], where the first
two generations transform under the same SUð2Þ12 and the
third family, the heaviest one, transforms under SUð2Þ3.
Under such assumption, the gauge group reported in Eq. (4)
reduces to

SUð3ÞC × SUð2Þ12 × SUð2Þ3 ×Uð1ÞY: ð5Þ

Such a group can be obtained from the more general one in
Eq. (4) by a SSB mechanism [28]. The model also requires
one to extend the scalar sector with two new fields: Φ, that
transforms as a doublet under SUð2Þ12, and Σ, that is a
bidoublet under SUð2Þ12 × SUð2Þ3. We can write the
bidoublet scalar fields as

Σ ¼
!

σ þ iπ3 iπ1 þ π2
iπ1 − π2 σ − iπ3

"
; ð6Þ

where πi and σ are real fields, and the doublet scalar field as

Φ ¼
!Φþ

Φ0

"
: ð7Þ

The transformation rules of these fields are

Σ → g12Σg†3;
Φ → g12gYΦ; ð8Þ

where g12 ∈ SUð2Þ12, g3 ∈ SUð2Þ3, and gY ∈ Uð1ÞY .
Similarly to the SM, the degrees of freedom of all the real

fields present in the scalar sector, except for ReðΦ0Þ and σ,
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fields are2

hΣi ¼
!
u 0

0 u

"
; hΦi ¼

!
0

v

"
; ð9Þ

where both v and u are real numbers. The field Φ plays the
same role as the Higgs field in the SM, with the difference
that it couples to the third generation only.
The pattern of the SSB from the full symmetry group of

Eq. (5) proceeds as follows: in the first step the field Σ
acquires its VEV (u ≫ v), leading to the SSB:

SUð2Þ12 × SUð2Þ3!
Σ
SUð2ÞL; ð10Þ

in the second step, the field Φ acquires its VEV causing the
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SUð2ÞL ×Uð1ÞY!
Φ
Uð1ÞEM; ð11Þ

which is the same breaking as in the SM.
The first two generations of leptons L1;2 transform as

(2,1) under SUð2Þ12 × SUð2Þ3 while L3 transforms as
(1,2). On the other hand, right-handed leptons are singlets
under SUð2Þ12 × SUð2Þ3. Similar assignments are given for
quarks.
The model also contains seven gauge bosons, corre-

sponding to the four SM gauge bosons and the newW0 and
Z0 bosons.
The matter content of the model is summarized in

Table I.
Since the strong interaction sector does not change, we

will omit its description.
The complete Lagrangian of the model is given for

instance in Ref. [33] and is summarized here as

L ¼ LB þ LF þ LY; ð12Þ

where LF contains the fermion components and LB
contains the boson and scalar components, while LY
contains the Yukawa interaction and is not reported here
since it is model dependent and does not influence the
phenomenological searches of W0 at accelerators. LF and
LB expressions are reported in the following:
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classes of model this is could not be possible (for example see
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quarks.
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where LF contains the fermion components and LB
contains the boson and scalar components, while LY
contains the Yukawa interaction and is not reported here
since it is model dependent and does not influence the
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where both v and u are real numbers. The field Φ plays the
same role as the Higgs field in the SM, with the difference
that it couples to the third generation only.
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The first two generations of leptons L1;2 transform as

(2,1) under SUð2Þ12 × SUð2Þ3 while L3 transforms as
(1,2). On the other hand, right-handed leptons are singlets
under SUð2Þ12 × SUð2Þ3. Similar assignments are given for
quarks.
The model also contains seven gauge bosons, corre-

sponding to the four SM gauge bosons and the newW0 and
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Since the strong interaction sector does not change, we
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where LF contains the fermion components and LB
contains the boson and scalar components, while LY
contains the Yukawa interaction and is not reported here
since it is model dependent and does not influence the
phenomenological searches of W0 at accelerators. LF and
LB expressions are reported in the following:
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The model also contains seven gauge bosons, corre-

sponding to the four SM gauge bosons and the newW0 and
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Since the strong interaction sector does not change, we
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where LF contains the fermion components and LB
contains the boson and scalar components, while LY
contains the Yukawa interaction and is not reported here
since it is model dependent and does not influence the
phenomenological searches of W0 at accelerators. LF and
LB expressions are reported in the following:
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contains the boson and scalar components, while LY
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since it is model dependent and does not influence the
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one to extend the scalar sector with two new fields: Φ, that
transforms as a doublet under SUð2Þ12, and Σ, that is a
bidoublet under SUð2Þ12 × SUð2Þ3. We can write the
bidoublet scalar fields as

Σ ¼
!

σ þ iπ3 iπ1 þ π2
iπ1 − π2 σ − iπ3

"
; ð6Þ

where πi and σ are real fields, and the doublet scalar field as

Φ ¼
!Φþ

Φ0

"
: ð7Þ

The transformation rules of these fields are

Σ → g12Σg†3;
Φ → g12gYΦ; ð8Þ

where g12 ∈ SUð2Þ12, g3 ∈ SUð2Þ3, and gY ∈ Uð1ÞY .
Similarly to the SM, the degrees of freedom of all the real

fields present in the scalar sector, except for ReðΦ0Þ and σ,
are converted into the longitudinal component of the gauge
bosons. The vacuum expectation values (VEVs) of these
fields are2

hΣi ¼
!
u 0

0 u

"
; hΦi ¼

!
0

v

"
; ð9Þ

where both v and u are real numbers. The field Φ plays the
same role as the Higgs field in the SM, with the difference
that it couples to the third generation only.
The pattern of the SSB from the full symmetry group of

Eq. (5) proceeds as follows: in the first step the field Σ
acquires its VEV (u ≫ v), leading to the SSB:

SUð2Þ12 × SUð2Þ3!
Σ
SUð2ÞL; ð10Þ

in the second step, the field Φ acquires its VEV causing the
SSB:

SUð2ÞL ×Uð1ÞY!
Φ
Uð1ÞEM; ð11Þ

which is the same breaking as in the SM.
The first two generations of leptons L1;2 transform as

(2,1) under SUð2Þ12 × SUð2Þ3 while L3 transforms as
(1,2). On the other hand, right-handed leptons are singlets
under SUð2Þ12 × SUð2Þ3. Similar assignments are given for
quarks.
The model also contains seven gauge bosons, corre-

sponding to the four SM gauge bosons and the newW0 and
Z0 bosons.
The matter content of the model is summarized in

Table I.
Since the strong interaction sector does not change, we

will omit its description.
The complete Lagrangian of the model is given for

instance in Ref. [33] and is summarized here as

L ¼ LB þ LF þ LY; ð12Þ

where LF contains the fermion components and LB
contains the boson and scalar components, while LY
contains the Yukawa interaction and is not reported here
since it is model dependent and does not influence the
phenomenological searches of W0 at accelerators. LF and
LB expressions are reported in the following:

TABLE I. Matter content of the top-flavor model.

SUð2Þ12 SUð2Þ3 Uð1ÞY
L3 1 2 −1=2
L1;2 2 1 −1=2
Q3 1 2 1=6
Q1;2 2 1 1=6
u 1;2;3R

1 1 2=3

d1;2;3R
1 1 −1=3

l1;2;3
R

1 1 −1
Σ 2 2 0
Φ 1 2 1=2

2Both expectation values u and v can be taken real after a
suitable gauge transformation as in Eq. (8). For more general
classes of model this is could not be possible (for example see
L-R model).
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by the LHC. We will evaluate the production rate of pp →
W0 → τν and pp → W0 → tbprocesses, showing that it can
range down to approximately a fifth of the one of the SSM.
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(1,2). On the other hand, right-handed leptons are singlets
under SUð2Þ12 × SUð2Þ3. Similar assignments are given for
quarks.
The model also contains seven gauge bosons, corre-

sponding to the four SM gauge bosons and the newW0 and
Z0 bosons.
The matter content of the model is summarized in
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Since the strong interaction sector does not change, we

will omit its description.
The complete Lagrangian of the model is given for

instance in Ref. [33] and is summarized here as

L ¼ LB þ LF þ LY; ð12Þ

where LF contains the fermion components and LB
contains the boson and scalar components, while LY
contains the Yukawa interaction and is not reported here
since it is model dependent and does not influence the
phenomenological searches of W0 at accelerators. LF and
LB expressions are reported in the following:
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L3 1 2 −1=2
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inspired by the extension of the Higgs sector rather than the
introduction of new symmetries, like little Higgs models
[18–20] and twin Higgs models [21,22]. All these SM
extensions have a common feature: the prediction of new
W0 and Z0 gauge bosons [23] in analogy with the W and Z
gauge bosons of the SM. In the current paper, we will focus
on W0 boson phenomenology, giving an overview of the
models that can foresee its introduction and focusing on
deriving measurable predictions on a specific one, named
top-flavor (TF) model.
The paper is organized as follows: Sec. II serves as a

brief overview on the most commonW0 models. In Sec. III
we will introduce the general properties of the TF model
studied in this work. In Sec. IV we report the phenom-
enological implications for collider searches with a com-
parison with the sequential Standard Model (SSM) case,
and in Sec. V we draw quantitative predictions for LHC
searches. In Sec. VI we report our conclusions.

II. W 0 MODEL OVERVIEW

The couplings of W0 with SM particles, fermions,
scalars, and vectors, depend on the specific gauge model.
The new gauge boson interactions with fermions can be
written in a general way as

Leff ¼
Vfifj

2
ffiffiffi
2

p gwf̄iγμ½α
fifj
R ð1 þ γ5Þ

þ α
fifj
L ð1 − γ5Þ&W0μfj þ H:c:; ð1Þ

where Vfifj is the analog of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix if fi and fj represent quarks,
while for leptons Vfifj ¼ δij and gw is the coupling with the
W0 [24].
The parameters α

fifj
R and α

fifj
L are free in a model-

independent analysis, while specificW0 models correspond
to specific choices.
The SSM described in Ref. [25] is defined to have the

same couplings to fermions as the SMW boson, leading to
gw ¼ e= sin θW , α

fifj
L ¼ 1, and α

fifj
R ¼ 0 for i, j ¼ 1, 2, 3.1

It is worth mentioning that the SSM is not expected in the
context of any gauge theory unless new scalars and
fermions are assumed to extend the SM beside the W0

boson [23]. Indeed the inclusion of a new W0 boson
requires one to extend the gauge group with, for instance,
an extra SUnewð2Þ group. In order to couple to the W0

boson, the SM fermions, both quarks and leptons, must
transform under the new SUnewð2Þ. The minimal extension
of the weak gauge group by means of a new Uð1Þ provides
no W0 boson but gives a Z0 one. Another feature of these

models is that they require new scalar fields, since it is
necessary to reproduce the SM with a spontaneous sym-
metry breaking (SSB) of the new symmetry group.
L-R gauge models provide a possible example of such an

extension, based on the SUð2ÞL × SUð2ÞR ×Uð1Þ gauge
group [11,12], and give α

fifj
R ¼ αR and α

fifj
L ¼ αL, where

αL;R are arbitrary parameters.
Another possible extension is the class of models based

on a (3, 3, 1) gauge symmetry. In this case, the α
fifj
R and

α
fifj
L assignment depends on the details of the model. In

fact, within the (3, 3, 1) model there is some arbitrariness in
the assignment of the matter field in order to complete the
irreducible representation of SUð3ÞL, namely the antitriplet
3̄. However most of (3, 3, 1) models provide αfifjL ≠ 0 and
α
fifj
R ¼ 0 in analogy with the SSM. For instance, the

Lagrangian of the model presented in Ref. [13] contains

L ⊃ −
gffiffiffi
2

p ðl̄c
Lγ

μνlLW0þ
μ þ J̄1LγμuLW0þ

μ

− q̄ iLγμJiLW0þ
μ þ H:c:Þ; ð2Þ

where g ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3 sin2 θ

p
= sin θ, tan2 θ ≈ 11=6, i ¼ 2, 3,

and J1;2;3 are new quarks with exotic charges. It is
important to notice that the quarks in the Lagrangian of
Eq. (2) are not the mass eigenstates.
In conclusion, the effective Lagrangian reported in

Eq. (1) is the most general one that parametrizes the
coupling of a W0 boson with fermions. Nevertheless it is
not satisfactory from a theoretical point of view in its most
general form. To compute phenomenological, observable
predictions, one must often reduce to a subset of parameters
compatible with the conditions listed above.
In particular, for what concerns couplings to fermions,

experimental searches often focus on two benchmark cases:

W0
L∶ α

fifj
L ¼ 1; α

fifj
R ¼ 0;

W0
R∶ α

fifj
L ¼ 0; α

fifj
R ¼ 1; ð3Þ

where both of them have gw ¼ e= sin θW . While the first
case is exactly the SSM introduced in Ref. [25], the second
one is its right-handed version that is a special case of the
L-R model. The two cases in Eq. (3) do not cover the full
extent of possible models that could actually appear in
nature. Other combinations of parameters could be allowed,
motivated by different theoretical models or assumptions,
resulting in a wider parameter space to explore at the LHC
or future colliders.
In this work, we will explore the phenomenological

implications of a third class of W0 models, denoted as top-
flavor model [26,27], whose key assumptions are signifi-
cantly different with respect to the ones leading to Eq. (3).
In particular, we will show how a vast portion of the
parameter space available to this model is not yet excluded

1Note that in this model this holds true also for the Z0 boson,
and it holds true both for the vertex with fermions and the ones
involving other vector bosons and the Higgs, namely W0ff̄,
Z0ff0, W0' W∓Z, and Z0Wþ W−.
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LF ¼ iΨ̄γμDμΨ

¼ iL̄j
Lγμ

!
∂μ þ i

g12
2

σiWiμ
12 − i

g0
2
Bμ

"
Lj
L þ iQ̄j

Lγμ

!
∂μ þ i

g12
2

σiWiμ
12 þ i

g0
6
Bμ

"
Qj

L

þ iL̄3
Lγμ

!
∂μ þ i

g3
2
σiWiμ

3 − i
g0
2
Bμ

"
L3
L þ iQ̄3

Lγμ

!
∂μ þ i

g3
2
σiWiμ

3 þ g0
6
Bμ

"
Q3

L þ iū αRγμ

!
∂μ þ 2g0

3
Bμ

"
u jR

þ id̄αRγμ

!
∂μ − i

g0
3
Bμ

"
djR þ iēαRγμð∂μ − ig0BμÞejR; ð13Þ

LB ¼ 1

2
DμΦ†DμΦþ 1

4
TrðDμΣ†DμΣÞ − VðΣ;ΦÞ − 1

4
Wa

12μνW
aμν
12 −

1

4
Wa

3μνW
aμν
3 −

1

4
BμνBμν; ð14Þ

where i ¼ 1, 2, α ¼ 1, 2, 3, and the covariant derivative is
defined as Dμ ¼ ∂μ þ ig12T⃗ · W⃗μ

12 þ ig3T⃗
0 · W⃗μ

3 þ ig0YBμ.
Here W1;2;3

3 , W1;2;3
12 , and B are the gauge boson fields. As

usual these can be written in terms of charged and neutral
bosonsW%

3 ,W
%
12,W

0
3,W

0
12, and B. We also observe that the

model has five free parameters, that are u , v, g12, g3, and g0.
The mass matrix of the charged bosons in the basis W%

12

and W%
3 is given by [30]

M1 ¼
 g212ðu

2þv2Þ
4 − g12g3u 2

4

− g12g3u 2
4

g23u
2

4

!
: ð15Þ

On the other hand, the neutral bosons mass matrix in the
basis B, W0

12, and W0
3 is given by

M2 ¼

0

BB@

g20v
2

4 − g12g0v2

4 0

− g12g0v2

4

g212ðv
2þu 2Þ
4 − g12g3u 2

4

0 − g12g3u 2

4

g23u
2

4

1

CCA : ð16Þ

As expected, the matrix in Eq. (16) admits one massless
eigenvalue, corresponding to the photon state. The diag-
onalization of the matrix in Eq. (15) leads to a mixing
between the charged bosons: the mixing angle between
W%

12 and W%
3 will be denoted by θ0 in the following.3

Similarly, the diagonalization of the matrix in Eq. (16)
leads to a mixing between the neutral bosons: the mixing
angle between B and W0

12 will be denoted by θ. The
requirement that the coupling between the photon and
the charged leptons is equal to the electric charge leads to
the following relations in the limit u 2 ≫ v2:

g0 ¼
e

cos θ
;

g12 ¼
e

sin θ cos θ0
;

g3 ¼
e

sin θ sin θ0
; ð17Þ

where e is the electric charge. The three couplings are
therefore not linearly independent: we can rather use as free
independent parameters the quantities θ, θ0, u , and v. The
eigenvalues of the charged and neutral gauge mass matrices
are the physical masses of the bosons, which in the limit
u 2 ≫ v2 are

M2
W ≃

v2

4

e2

sin2 θ

!
1 − sin4 θ0

v2

u 2

"
;

M2
Z ≃

v2

4

e2

sin2 θ cos2 θ

!
1 − sin4 θ0

v2

u 2

"
;

M2
Z0 ≃M2

W0

≃
e2v2

4 sin2 θ

!
tan2 θ0 þ u 2

v2 sin2 θ0 cos2 θ0

"
: ð18Þ

We require that the masses of the W and Z bosons agree
with the experimental values, namely MW ¼ 80.379 %
0.012 GeV and MW=MZ ¼ 0.88147 % 0.00013 [34]. This
requirement leads to

sin2 θ≃sin2 θW ¼ 0.23;

v≃vSM ≃246 GeV; ð19Þ

where θW is the Weinberg angle and vSM is the VEVof the
SM. These relations impose two new constraints on the four
free parameters θ, θ0, u and v: in the end we are left with
two free parameters, namely u and θ0.
Since our aim is to discuss the production of tb and τντ

via virtual W0 boson decay, we give the interaction term
between the leptons and the charged bosons as

3There is a slight difference (∼v2=u 2) between the mixing
angles θ0 and ϕ, the latter being the mixing angle between W0

12
and W0

3.
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1

A ↵
fifj
R = 0

↵
fifj
R = aR�ij ↵

fifj
L = aL�ij

L3`iR�
1

⇤
L1,2`iR�⌃

gSM (eL ⌫eL + µL ⌫µL + ⌧L ⌫⌧L)W

gSM tan ✓0 (eL ⌫eL + µL ⌫µL)W
0 + gSM cot ✓0 ⌧L ⌫⌧L W 0

V 0
CKM = VCKM ·G+ cot2 ✓0 VCKM ·R

1

Flavor dependent: lepton universality broken

j=1,2
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by the LHC. We will evaluate the production rate of pp →
W0 → τν and pp → W0 → tbprocesses, showing that it can
range down to approximately a fifth of the one of the SSM.

III. TOP-FLAVOR MODEL

The most general realization of TF model is based on the
gauge group [28]:

SUð3ÞC × SUð2Þ1 × SUð2Þ2 × SUð2Þ3 ×Uð1ÞY; ð4Þ

where the ith flavor generation transforms as a doublet
under SUð2Þi and as a singlet under the other SUð2Þj with
i, j in Eqs. (1)–(3), and i ≠ j. The presence of three
separate gauge groups for each family leaves considerable
freedom in the realization of the TF model. In this work, we
consider the one given in Refs. [26,28–32], where the first
two generations transform under the same SUð2Þ12 and the
third family, the heaviest one, transforms under SUð2Þ3.
Under such assumption, the gauge group reported in Eq. (4)
reduces to

SUð3ÞC × SUð2Þ12 × SUð2Þ3 ×Uð1ÞY: ð5Þ

Such a group can be obtained from the more general one in
Eq. (4) by a SSB mechanism [28]. The model also requires
one to extend the scalar sector with two new fields: Φ, that
transforms as a doublet under SUð2Þ12, and Σ, that is a
bidoublet under SUð2Þ12 × SUð2Þ3. We can write the
bidoublet scalar fields as

Σ ¼
!

σ þ iπ3 iπ1 þ π2
iπ1 − π2 σ − iπ3

"
; ð6Þ

where πi and σ are real fields, and the doublet scalar field as

Φ ¼
!Φþ

Φ0

"
: ð7Þ

The transformation rules of these fields are

Σ → g12Σg†3;
Φ → g12gYΦ; ð8Þ

where g12 ∈ SUð2Þ12, g3 ∈ SUð2Þ3, and gY ∈ Uð1ÞY .
Similarly to the SM, the degrees of freedom of all the real

fields present in the scalar sector, except for ReðΦ0Þ and σ,
are converted into the longitudinal component of the gauge
bosons. The vacuum expectation values (VEVs) of these
fields are2

hΣi ¼
!
u 0

0 u

"
; hΦi ¼

!
0

v

"
; ð9Þ

where both v and u are real numbers. The field Φ plays the
same role as the Higgs field in the SM, with the difference
that it couples to the third generation only.
The pattern of the SSB from the full symmetry group of

Eq. (5) proceeds as follows: in the first step the field Σ
acquires its VEV (u ≫ v), leading to the SSB:

SUð2Þ12 × SUð2Þ3!
Σ
SUð2ÞL; ð10Þ

in the second step, the field Φ acquires its VEV causing the
SSB:

SUð2ÞL ×Uð1ÞY!
Φ
Uð1ÞEM; ð11Þ

which is the same breaking as in the SM.
The first two generations of leptons L1;2 transform as

(2,1) under SUð2Þ12 × SUð2Þ3 while L3 transforms as
(1,2). On the other hand, right-handed leptons are singlets
under SUð2Þ12 × SUð2Þ3. Similar assignments are given for
quarks.
The model also contains seven gauge bosons, corre-

sponding to the four SM gauge bosons and the newW0 and
Z0 bosons.
The matter content of the model is summarized in

Table I.
Since the strong interaction sector does not change, we

will omit its description.
The complete Lagrangian of the model is given for

instance in Ref. [33] and is summarized here as

L ¼ LB þ LF þ LY; ð12Þ

where LF contains the fermion components and LB
contains the boson and scalar components, while LY
contains the Yukawa interaction and is not reported here
since it is model dependent and does not influence the
phenomenological searches of W0 at accelerators. LF and
LB expressions are reported in the following:

TABLE I. Matter content of the top-flavor model.

SUð2Þ12 SUð2Þ3 Uð1ÞY
L3 1 2 −1=2
L1;2 2 1 −1=2
Q3 1 2 1=6
Q1;2 2 1 1=6
u 1;2;3R

1 1 2=3

d1;2;3R
1 1 −1=3

l1;2;3
R

1 1 −1
Σ 2 2 0
Φ 1 2 1=2

2Both expectation values u and v can be taken real after a
suitable gauge transformation as in Eq. (8). For more general
classes of model this is could not be possible (for example see
L-R model).
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𝒈𝟏𝟐 𝒈𝟑 𝒈𝟎

𝑊)*
± ,𝑊)*

+ 𝑊,
± ,𝑊,

+ B

u v+

LF ¼ iΨ̄γμDμΨ

¼ iL̄j
Lγμ

!
∂μ þ i

g12
2

σiWiμ
12 − i

g0
2
Bμ

"
Lj
L þ iQ̄j

Lγμ

!
∂μ þ i

g12
2

σiWiμ
12 þ i

g0
6
Bμ

"
Qj

L

þ iL̄3
Lγμ

!
∂μ þ i

g3
2
σiWiμ

3 − i
g0
2
Bμ

"
L3
L þ iQ̄3

Lγμ

!
∂μ þ i

g3
2
σiWiμ

3 þ g0
6
Bμ

"
Q3

L þ iū αRγμ

!
∂μ þ 2g0

3
Bμ

"
u jR

þ id̄αRγμ

!
∂μ − i

g0
3
Bμ

"
djR þ iēαRγμð∂μ − ig0BμÞejR; ð13Þ

LB ¼ 1

2
DμΦ†DμΦþ 1

4
TrðDμΣ†DμΣÞ − VðΣ;ΦÞ − 1

4
Wa

12μνW
aμν
12 −

1

4
Wa

3μνW
aμν
3 −

1

4
BμνBμν; ð14Þ

where i ¼ 1, 2, α ¼ 1, 2, 3, and the covariant derivative is
defined as Dμ ¼ ∂μ þ ig12T⃗ · W⃗μ

12 þ ig3T⃗
0 · W⃗μ

3 þ ig0YBμ.
Here W1;2;3

3 , W1;2;3
12 , and B are the gauge boson fields. As

usual these can be written in terms of charged and neutral
bosonsW%

3 ,W
%
12,W

0
3,W

0
12, and B. We also observe that the

model has five free parameters, that are u , v, g12, g3, and g0.
The mass matrix of the charged bosons in the basis W%

12

and W%
3 is given by [30]

M1 ¼
 g212ðu

2þv2Þ
4 − g12g3u 2

4

− g12g3u 2
4

g23u
2

4

!
: ð15Þ

On the other hand, the neutral bosons mass matrix in the
basis B, W0

12, and W0
3 is given by

M2 ¼

0

BB@

g20v
2

4 − g12g0v2

4 0

− g12g0v2

4

g212ðv
2þu 2Þ
4 − g12g3u 2

4

0 − g12g3u 2

4

g23u
2

4

1

CCA : ð16Þ

As expected, the matrix in Eq. (16) admits one massless
eigenvalue, corresponding to the photon state. The diag-
onalization of the matrix in Eq. (15) leads to a mixing
between the charged bosons: the mixing angle between
W%

12 and W%
3 will be denoted by θ0 in the following.3

Similarly, the diagonalization of the matrix in Eq. (16)
leads to a mixing between the neutral bosons: the mixing
angle between B and W0

12 will be denoted by θ. The
requirement that the coupling between the photon and
the charged leptons is equal to the electric charge leads to
the following relations in the limit u 2 ≫ v2:

g0 ¼
e

cos θ
;

g12 ¼
e

sin θ cos θ0
;

g3 ¼
e

sin θ sin θ0
; ð17Þ

where e is the electric charge. The three couplings are
therefore not linearly independent: we can rather use as free
independent parameters the quantities θ, θ0, u , and v. The
eigenvalues of the charged and neutral gauge mass matrices
are the physical masses of the bosons, which in the limit
u 2 ≫ v2 are

M2
W ≃

v2

4

e2

sin2 θ

!
1 − sin4 θ0

v2

u 2

"
;

M2
Z ≃

v2

4

e2

sin2 θ cos2 θ

!
1 − sin4 θ0

v2

u 2

"
;

M2
Z0 ≃M2

W0

≃
e2v2

4 sin2 θ

!
tan2 θ0 þ u 2

v2 sin2 θ0 cos2 θ0

"
: ð18Þ

We require that the masses of the W and Z bosons agree
with the experimental values, namely MW ¼ 80.379 %
0.012 GeV and MW=MZ ¼ 0.88147 % 0.00013 [34]. This
requirement leads to

sin2 θ≃sin2 θW ¼ 0.23;

v≃vSM ≃246 GeV; ð19Þ

where θW is the Weinberg angle and vSM is the VEVof the
SM. These relations impose two new constraints on the four
free parameters θ, θ0, u and v: in the end we are left with
two free parameters, namely u and θ0.
Since our aim is to discuss the production of tb and τντ

via virtual W0 boson decay, we give the interaction term
between the leptons and the charged bosons as

3There is a slight difference (∼v2=u 2) between the mixing
angles θ0 and ϕ, the latter being the mixing angle between W0

12
and W0

3.
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LF ¼ iΨ̄γμDμΨ

¼ iL̄j
Lγμ

!
∂μ þ i

g12
2

σiWiμ
12 − i

g0
2
Bμ

"
Lj
L þ iQ̄j

Lγμ

!
∂μ þ i

g12
2

σiWiμ
12 þ i

g0
6
Bμ

"
Qj

L

þ iL̄3
Lγμ

!
∂μ þ i

g3
2
σiWiμ

3 − i
g0
2
Bμ

"
L3
L þ iQ̄3

Lγμ

!
∂μ þ i

g3
2
σiWiμ

3 þ g0
6
Bμ

"
Q3

L þ iū αRγμ

!
∂μ þ 2g0

3
Bμ

"
u jR

þ id̄αRγμ

!
∂μ − i

g0
3
Bμ

"
djR þ iēαRγμð∂μ − ig0BμÞejR; ð13Þ

LB ¼ 1

2
DμΦ†DμΦþ 1

4
TrðDμΣ†DμΣÞ − VðΣ;ΦÞ − 1

4
Wa

12μνW
aμν
12 −

1

4
Wa

3μνW
aμν
3 −

1

4
BμνBμν; ð14Þ

where i ¼ 1, 2, α ¼ 1, 2, 3, and the covariant derivative is
defined as Dμ ¼ ∂μ þ ig12T⃗ · W⃗μ

12 þ ig3T⃗
0 · W⃗μ

3 þ ig0YBμ.
Here W1;2;3

3 , W1;2;3
12 , and B are the gauge boson fields. As

usual these can be written in terms of charged and neutral
bosonsW%

3 ,W
%
12,W

0
3,W

0
12, and B. We also observe that the

model has five free parameters, that are u , v, g12, g3, and g0.
The mass matrix of the charged bosons in the basis W%

12

and W%
3 is given by [30]

M1 ¼
 g212ðu

2þv2Þ
4 − g12g3u 2

4

− g12g3u 2
4

g23u
2

4

!
: ð15Þ

On the other hand, the neutral bosons mass matrix in the
basis B, W0

12, and W0
3 is given by

M2 ¼

0

BB@

g20v
2

4 − g12g0v2

4 0

− g12g0v2

4

g212ðv
2þu 2Þ
4 − g12g3u 2

4

0 − g12g3u 2

4

g23u
2

4

1

CCA : ð16Þ

As expected, the matrix in Eq. (16) admits one massless
eigenvalue, corresponding to the photon state. The diag-
onalization of the matrix in Eq. (15) leads to a mixing
between the charged bosons: the mixing angle between
W%

12 and W%
3 will be denoted by θ0 in the following.3

Similarly, the diagonalization of the matrix in Eq. (16)
leads to a mixing between the neutral bosons: the mixing
angle between B and W0

12 will be denoted by θ. The
requirement that the coupling between the photon and
the charged leptons is equal to the electric charge leads to
the following relations in the limit u 2 ≫ v2:

g0 ¼
e

cos θ
;

g12 ¼
e

sin θ cos θ0
;

g3 ¼
e

sin θ sin θ0
; ð17Þ

where e is the electric charge. The three couplings are
therefore not linearly independent: we can rather use as free
independent parameters the quantities θ, θ0, u , and v. The
eigenvalues of the charged and neutral gauge mass matrices
are the physical masses of the bosons, which in the limit
u 2 ≫ v2 are

M2
W ≃

v2

4

e2

sin2 θ

!
1 − sin4 θ0

v2

u 2

"
;

M2
Z ≃

v2

4

e2

sin2 θ cos2 θ

!
1 − sin4 θ0

v2

u 2

"
;

M2
Z0 ≃M2

W0

≃
e2v2

4 sin2 θ

!
tan2 θ0 þ u 2

v2 sin2 θ0 cos2 θ0

"
: ð18Þ

We require that the masses of the W and Z bosons agree
with the experimental values, namely MW ¼ 80.379 %
0.012 GeV and MW=MZ ¼ 0.88147 % 0.00013 [34]. This
requirement leads to

sin2 θ≃sin2 θW ¼ 0.23;

v≃vSM ≃246 GeV; ð19Þ

where θW is the Weinberg angle and vSM is the VEVof the
SM. These relations impose two new constraints on the four
free parameters θ, θ0, u and v: in the end we are left with
two free parameters, namely u and θ0.
Since our aim is to discuss the production of tb and τντ

via virtual W0 boson decay, we give the interaction term
between the leptons and the charged bosons as

3There is a slight difference (∼v2=u 2) between the mixing
angles θ0 and ϕ, the latter being the mixing angle between W0

12
and W0

3.
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by the LHC. We will evaluate the production rate of pp →
W0 → τν and pp → W0 → tbprocesses, showing that it can
range down to approximately a fifth of the one of the SSM.

III. TOP-FLAVOR MODEL

The most general realization of TF model is based on the
gauge group [28]:

SUð3ÞC × SUð2Þ1 × SUð2Þ2 × SUð2Þ3 ×Uð1ÞY; ð4Þ

where the ith flavor generation transforms as a doublet
under SUð2Þi and as a singlet under the other SUð2Þj with
i, j in Eqs. (1)–(3), and i ≠ j. The presence of three
separate gauge groups for each family leaves considerable
freedom in the realization of the TF model. In this work, we
consider the one given in Refs. [26,28–32], where the first
two generations transform under the same SUð2Þ12 and the
third family, the heaviest one, transforms under SUð2Þ3.
Under such assumption, the gauge group reported in Eq. (4)
reduces to

SUð3ÞC × SUð2Þ12 × SUð2Þ3 ×Uð1ÞY: ð5Þ

Such a group can be obtained from the more general one in
Eq. (4) by a SSB mechanism [28]. The model also requires
one to extend the scalar sector with two new fields: Φ, that
transforms as a doublet under SUð2Þ12, and Σ, that is a
bidoublet under SUð2Þ12 × SUð2Þ3. We can write the
bidoublet scalar fields as

Σ ¼
!

σ þ iπ3 iπ1 þ π2
iπ1 − π2 σ − iπ3

"
; ð6Þ

where πi and σ are real fields, and the doublet scalar field as

Φ ¼
!Φþ

Φ0

"
: ð7Þ

The transformation rules of these fields are

Σ → g12Σg†3;
Φ → g12gYΦ; ð8Þ

where g12 ∈ SUð2Þ12, g3 ∈ SUð2Þ3, and gY ∈ Uð1ÞY .
Similarly to the SM, the degrees of freedom of all the real

fields present in the scalar sector, except for ReðΦ0Þ and σ,
are converted into the longitudinal component of the gauge
bosons. The vacuum expectation values (VEVs) of these
fields are2

hΣi ¼
!
u 0

0 u

"
; hΦi ¼

!
0

v

"
; ð9Þ

where both v and u are real numbers. The field Φ plays the
same role as the Higgs field in the SM, with the difference
that it couples to the third generation only.
The pattern of the SSB from the full symmetry group of

Eq. (5) proceeds as follows: in the first step the field Σ
acquires its VEV (u ≫ v), leading to the SSB:

SUð2Þ12 × SUð2Þ3!
Σ
SUð2ÞL; ð10Þ

in the second step, the field Φ acquires its VEV causing the
SSB:

SUð2ÞL ×Uð1ÞY!
Φ
Uð1ÞEM; ð11Þ

which is the same breaking as in the SM.
The first two generations of leptons L1;2 transform as

(2,1) under SUð2Þ12 × SUð2Þ3 while L3 transforms as
(1,2). On the other hand, right-handed leptons are singlets
under SUð2Þ12 × SUð2Þ3. Similar assignments are given for
quarks.
The model also contains seven gauge bosons, corre-

sponding to the four SM gauge bosons and the newW0 and
Z0 bosons.
The matter content of the model is summarized in

Table I.
Since the strong interaction sector does not change, we

will omit its description.
The complete Lagrangian of the model is given for

instance in Ref. [33] and is summarized here as

L ¼ LB þ LF þ LY; ð12Þ

where LF contains the fermion components and LB
contains the boson and scalar components, while LY
contains the Yukawa interaction and is not reported here
since it is model dependent and does not influence the
phenomenological searches of W0 at accelerators. LF and
LB expressions are reported in the following:

TABLE I. Matter content of the top-flavor model.

SUð2Þ12 SUð2Þ3 Uð1ÞY
L3 1 2 −1=2
L1;2 2 1 −1=2
Q3 1 2 1=6
Q1;2 2 1 1=6
u 1;2;3R

1 1 2=3

d1;2;3R
1 1 −1=3

l1;2;3
R

1 1 −1
Σ 2 2 0
Φ 1 2 1=2

2Both expectation values u and v can be taken real after a
suitable gauge transformation as in Eq. (8). For more general
classes of model this is could not be possible (for example see
L-R model).
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We require the correct coupling
between photon and charged leptons

𝜽 𝜽′ u v+

LF ¼ iΨ̄γμDμΨ

¼ iL̄j
Lγμ

!
∂μ þ i

g12
2

σiWiμ
12 − i

g0
2
Bμ

"
Lj
L þ iQ̄j

Lγμ

!
∂μ þ i

g12
2

σiWiμ
12 þ i

g0
6
Bμ

"
Qj

L

þ iL̄3
Lγμ

!
∂μ þ i

g3
2
σiWiμ

3 − i
g0
2
Bμ

"
L3
L þ iQ̄3

Lγμ

!
∂μ þ i

g3
2
σiWiμ

3 þ g0
6
Bμ

"
Q3

L þ iū αRγμ

!
∂μ þ 2g0

3
Bμ

"
u jR

þ id̄αRγμ

!
∂μ − i

g0
3
Bμ

"
djR þ iēαRγμð∂μ − ig0BμÞejR; ð13Þ

LB ¼ 1

2
DμΦ†DμΦþ 1

4
TrðDμΣ†DμΣÞ − VðΣ;ΦÞ − 1

4
Wa

12μνW
aμν
12 −

1

4
Wa

3μνW
aμν
3 −

1

4
BμνBμν; ð14Þ

where i ¼ 1, 2, α ¼ 1, 2, 3, and the covariant derivative is
defined as Dμ ¼ ∂μ þ ig12T⃗ · W⃗μ

12 þ ig3T⃗
0 · W⃗μ

3 þ ig0YBμ.
Here W1;2;3

3 , W1;2;3
12 , and B are the gauge boson fields. As

usual these can be written in terms of charged and neutral
bosonsW%

3 ,W
%
12,W

0
3,W

0
12, and B. We also observe that the

model has five free parameters, that are u , v, g12, g3, and g0.
The mass matrix of the charged bosons in the basis W%

12

and W%
3 is given by [30]

M1 ¼
 g212ðu

2þv2Þ
4 − g12g3u 2

4

− g12g3u 2
4

g23u
2

4

!
: ð15Þ

On the other hand, the neutral bosons mass matrix in the
basis B, W0

12, and W0
3 is given by

M2 ¼

0

BB@

g20v
2

4 − g12g0v2

4 0

− g12g0v2

4

g212ðv
2þu 2Þ
4 − g12g3u 2

4

0 − g12g3u 2

4

g23u
2

4

1

CCA : ð16Þ

As expected, the matrix in Eq. (16) admits one massless
eigenvalue, corresponding to the photon state. The diag-
onalization of the matrix in Eq. (15) leads to a mixing
between the charged bosons: the mixing angle between
W%

12 and W%
3 will be denoted by θ0 in the following.3

Similarly, the diagonalization of the matrix in Eq. (16)
leads to a mixing between the neutral bosons: the mixing
angle between B and W0

12 will be denoted by θ. The
requirement that the coupling between the photon and
the charged leptons is equal to the electric charge leads to
the following relations in the limit u 2 ≫ v2:

g0 ¼
e

cos θ
;

g12 ¼
e

sin θ cos θ0
;

g3 ¼
e

sin θ sin θ0
; ð17Þ

where e is the electric charge. The three couplings are
therefore not linearly independent: we can rather use as free
independent parameters the quantities θ, θ0, u , and v. The
eigenvalues of the charged and neutral gauge mass matrices
are the physical masses of the bosons, which in the limit
u 2 ≫ v2 are

M2
W ≃

v2

4

e2

sin2 θ

!
1 − sin4 θ0

v2

u 2

"
;

M2
Z ≃

v2

4

e2

sin2 θ cos2 θ

!
1 − sin4 θ0

v2

u 2

"
;

M2
Z0 ≃M2

W0

≃
e2v2

4 sin2 θ

!
tan2 θ0 þ u 2

v2 sin2 θ0 cos2 θ0

"
: ð18Þ

We require that the masses of the W and Z bosons agree
with the experimental values, namely MW ¼ 80.379 %
0.012 GeV and MW=MZ ¼ 0.88147 % 0.00013 [34]. This
requirement leads to

sin2 θ≃sin2 θW ¼ 0.23;

v≃vSM ≃246 GeV; ð19Þ

where θW is the Weinberg angle and vSM is the VEVof the
SM. These relations impose two new constraints on the four
free parameters θ, θ0, u and v: in the end we are left with
two free parameters, namely u and θ0.
Since our aim is to discuss the production of tb and τντ

via virtual W0 boson decay, we give the interaction term
between the leptons and the charged bosons as

3There is a slight difference (∼v2=u 2) between the mixing
angles θ0 and ϕ, the latter being the mixing angle between W0
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L þ iū αRγμ

!
∂μ þ 2g0

3
Bμ

"
u jR

þ id̄αRγμ

!
∂μ − i

g0
3
Bμ

"
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As expected, the matrix in Eq. (16) admits one massless
eigenvalue, corresponding to the photon state. The diag-
onalization of the matrix in Eq. (15) leads to a mixing
between the charged bosons: the mixing angle between
W%

12 and W%
3 will be denoted by θ0 in the following.3

Similarly, the diagonalization of the matrix in Eq. (16)
leads to a mixing between the neutral bosons: the mixing
angle between B and W0
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We require that the masses of the W and Z bosons agree
with the experimental values, namely MW ¼ 80.379 %
0.012 GeV and MW=MZ ¼ 0.88147 % 0.00013 [34]. This
requirement leads to

sin2 θ≃sin2 θW ¼ 0.23;
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where θW is the Weinberg angle and vSM is the VEVof the
SM. These relations impose two new constraints on the four
free parameters θ, θ0, u and v: in the end we are left with
two free parameters, namely u and θ0.
Since our aim is to discuss the production of tb and τντ

via virtual W0 boson decay, we give the interaction term
between the leptons and the charged bosons as
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where θW is the Weinberg angle and vSM is the VEVof the
SM. These relations impose two new constraints on the four
free parameters θ, θ0, u and v: in the end we are left with
two free parameters, namely u and θ0.
Since our aim is to discuss the production of tb and τντ

via virtual W0 boson decay, we give the interaction term
between the leptons and the charged bosons as

3There is a slight difference (∼v2=u 2) between the mixing
angles θ0 and ϕ, the latter being the mixing angle between W0

12
and W0

3.

ROBERTA CALABRESE et al. PHYS. REV. D 104, 055006 (2021)

055006-4

LF ¼ iΨ̄γμDμΨ

¼ iL̄j
Lγμ

!
∂μ þ i

g12
2

σiWiμ
12 − i

g0
2
Bμ

"
Lj
L þ iQ̄j

Lγμ

!
∂μ þ i

g12
2

σiWiμ
12 þ i

g0
6
Bμ

"
Qj

L

þ iL̄3
Lγμ

!
∂μ þ i

g3
2
σiWiμ

3 − i
g0
2
Bμ

"
L3
L þ iQ̄3

Lγμ

!
∂μ þ i

g3
2
σiWiμ

3 þ g0
6
Bμ

"
Q3

L þ iū αRγμ
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Figure 1: New physics contributions to B ! K(⇤)µ+µ� and B ! D(⇤)⌧⌫ from the tree-level exchange
of massive vector bosons.

A considerable amount of efforts and model building activities have been devoted to these
B-decay anomalies, though mainly focused on models that can accommodate only one of the
anomalies: either R(D(⇤)

) or B ! K(⇤)`+`�. The R(D(⇤)
) anomalies have been explained

with charged scalars [24–31], leptoquarks (or, equivalently, R-parity violating supersymme-
try) [32–39], or a W 0 boson [40]. Effects due to the presence of light sterile neutrinos have
also been explored in Refs. [41, 42]. Models addressing the B ! K(⇤)`+`� anomalies on
the other hand involved mostly a Z 0 boson from an extended gauge group [43–55], lepto-
quarks [56–66], or a massive resonance from a strong dynamics [67–69]. In contrast to these
references, which rely on tree-level universality violation, Ref. [70] systematically explored
renormalizable models that explain RK at the 1-loop level. The MSSM with R-parity was
analysed in Ref. [71], finding that it is difficult to address the b ! sµµ anomalies.

Unified explanations of both sets of anomalies are much more scarce. This is due to
the difficulty of accounting for deviations of similar size in processes that take place in the
SM at different orders: loop level for RK and tree-level for R(D(⇤)

). Nevertheless, among
the proposed models we find those based on leptoquarks [72–78], an extended perturbative
gauge group [4], or strongly-interacting models [79]. An effective field theory approach has
been adopted in Refs. [72, 80–82] and some observations about the relevance of quantum
effects have been given in Ref. [83].

In our model, the massive gauge vector bosons arising from the breaking of the extended
gauge group mediate flavour transitions at tree-level as shown in Figure 1, providing a possi-
ble explanation to the deviations from the SM observed in B-meson decays [4].

The plan of the paper is as follows: in Section 2 we present the model in detail. We
derive the gauge boson and fermion masses and mixings, as well as the required textures in
Section 3. A detailed description of the flavour and electroweak observables included in the
global fit is given in Section 4. Our global fit main results and predictions are presented in
Section 5 and Section 6, respectively. Finally, in Section 7 we provide our conclusions. Details
of the model are provided in the Appendices.
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where hI;II ¼ g12 cos θ0, hIII ¼ g3 sin θ0, h 0I;II ¼ g12 sin θ0,
and h 0III ¼ g3 cos θ0. An analogous expression can be
obtained for the quarks. In the limit u2 ≫ v2, we have
that hI;II ≈hIII ≈gSM [see Eq. (17)].

IV. TOP-FLAVOR MODEL AT COLLIDERS

The search for a W0 boson at colliders is typically done
by looking at the products of its decay after its production
as a real state. More specifically, at LHC, the W0 boson
would be produced in the process pp → W0 with cross
section σðpp → W0Þ. It subsequently would decay into
quarks (W0 → qq0) or leptons (W0 → lν) with branching
ratios denoted as BrðW0 → qq0Þ and BrðW0 → lνÞ, respec-
tively. These channels have been studied by the ATLAS and
CMS Collaborations as benchmark cases [35–44]. A first
set of studies of the phenomenological implications of TF
models at the LHC has been conducted considering proton-
proton collisions at 7 and 8 TeV in [45,46].
As in the case of SM W boson, the couplings of the

quarks with the W0 boson have to take into account the
inequality between the flavor basis and the mass basis for
the quarks. In the SM this leads to the presence of the CKM
matrix. If Vu and Vd are the matrices connecting the mass
and flavor eigenstates for the up-type and down-type
quarks, respectively, the CKM matrix is equal to
VSM
CKM ¼ VuV

†
d. The unitary matrices Vu and Vd are not

separately observable in the SM and we have freedom to
choose as basis the one where Vu ¼ 1 is equal to the
identity matrix, while V†

d ¼ VCKM without loss of general-
ity. In the TF model, this is not anymore true, and Vu and
Vd are arbitrary 3 × 3 matrices. A complete scan of the full
Vu and Vd parameter space is beyond the scope of the
present paper. In this work we assume that Vu ¼ 1, while
V†
d ¼ VCKM. It can be shown that with this choice the CKM

matrix for the W0 boson is

V 0
CKM ¼ G · VSM

CKM þ h 0III
h 0I;II

R · VSM
CKM; ð21Þ

where
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We note that in the limit h 0I;II ¼ h 0III one finds
VSM
CKM ¼ V 0

CKM. Instead, by assuming Vu ¼ VSM
CKM and

Vd ¼ 1 it follows

V 0
CKM ¼ VSM

CKM ·G þ h 0III
h 0I;II

VSM
CKM · R ð23Þ

that is quite different from the one in Eq. (21). However it is
possible to show that the phenomenological implications in
these two extreme cases are similar and for this reason, in
the following we will use the assumption of Eq. (21). This
property does not hold for all the possible choices of Vu
and Vd.
The branching fraction of W0 → tb and W0 → τντ

requires the knowledge of all possible partial decay widths
of theW0 boson in this model. It is possible to show that the
three boson vertexes W0 → WZ and W0 → Wγ have a null
coupling as well as the four boson vertexes W0 → WWW,
W0 → WZZ, W0 → Wγγ and W0 → WZγ. The decay chan-
nels W0 → WH and W0 → WHH are negligible compared
to the ones involving fermions. The dominant partial decay
widths are therefore

ΓðW0 → tqÞ ¼
h 02I;II
16π

jV 0
tqj2
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"
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t
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ΓðW0 → μνμÞ ¼ ΓðW0 → eνeÞ;

ΓðW0 → τντÞ ¼
h 02III
16π

MW0

3
; ð24Þ

where β2 ¼ 1 − m2
t

M2
W0

and q; q0 ≠t in the second line. The

resulting total decay width of the W0 boson is

FIG. 1. Main branching fractions as function of cot θ0.
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þ
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16π
MW0
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8π
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where we used Eq. (21) and the properties of VSM
CKM. Finally

the branching fractions for the tb and τντ decays are

BrðW0 → tbÞ ¼

#
h 02III
16π jV

SM
tb j2 β2

MW0
ðM2

W0 þ m2
t
2 Þ
$

ΓTot
;

BrðW0 → τντÞ ¼
h 02III
16π

MW0

3ΓTot
: ð26Þ

The main branching fractions, i.e., the ones involving
decays to leptons and quarks, are shown as a function of
cot θ0 in Fig. 1.
As is shown, for example, in Ref. [47], if the new particle

was to have a non-negligible decay width with respect to
experimental resolutions, the sensitivity analysis to its
existence could be reduced. In order to calculate the
proton-proton production cross section, we make use of
the MadGraph5_MC@NLO tool in the five-flavor scheme [48].
The model [49,50] uses the Lagrangian as reported in
Eq. (1) with the typical assumptions of the SSM: gw¼
e=sinθW , α

fifj
L ¼ 1, αfifjR ¼ 0 and Vfifj ¼ VCKM. The third

row and column of VSM
CKM are approximated to (0,0,1). To

simulate the parton density functions (PDFs) of protons,
we use the NNPDF3.1 [51] PDF set, derived at leading
order and with αs ¼ 0.118. Table II reports the values
of the cross section and their relative uncertainty for a
center-of-mass energy of

ffiffiffi
s

p
¼ 13 and 14 TeV. The values

in Table II allow us to obtain the cross sections for the
TF model by multiplying them times tan2 θ0 since
h 0I;II ¼ gSM tan θ0.

V. METHOD AND RESULTS

As discussed in the previous sections, the TF model
considered in this work has five free parameters u, v, g12, g3
and g0. The constraints in Eqs. (17) and (18) allow us to
reduce the number of free parameters to two: u and θ0. We
require the correction terms due to the top-flavor model in
Eq. (18) for MW and MZ to be within the experimental
error, thus constraining the allowed values of θ0 as a
function of u. We impose a further constraint on the model,
by considering that the interactions with the gauge bosons
of both SUð2Þ groups can be perturbatively treated. To
accomplish this, we require that g212; g

2
3 < 4π, obtaining

0.18 < tan θ0 < 5.5: ð27Þ

In our analysis, we scan 106 points in the parameter space
ðu; θ0Þ, with θ0 satisfying Eq. (27) and u > 800 GeV. These
conditions ensure that the mass of W0 is larger than 1 TeV.
For each point of the parameter space we obtain the
observable MW0 , ΓTot, BrðW0 → tbÞ, and BrðW0 → τντÞ
from Eqs (18), (25), and (26). We checked the constraints
presented in Refs. [27,52,53] and they do not appear to
modify the results mentioned above in the parameter space
we considered. In Fig. 2 we show all the possible ΓTot=MW0

as a function of MW0 . The value of ΓTot=MW0 depends only
on θ0, which is the reason why we also show the right

TABLE II. Cross section values and their relative uncertainties
obtained with the MadGraph5_ MC@NLO generator for narrow
(1%) and wide (10%, 20%, and 30%) widths W0 boson for
different mass hypotheses for both 13 and 14 TeV.

Cross section (fb)

Mass Width 13 TeV 14 TeV

1000 10 109552 % 407 127176 % 466
100 10939 % 54 12674 % 59
200 5355 % 21 6177 % 23

1400 14 26036 % 123 31207 % 144
140 2712 % 12 3246 % 13
280 1375 % 5 1633 % 6

1800 18 7835 % 42 9717 % 50
180 859 % 4 1052 % 5
360 452 % 2 550 % 3

2000 20 5375 % 29 5748 % 30
200 593 % 3 635 % 3
400 315 % 2 340 % 2

2400 24 2005 % 11 2146 % 13
240 235 % 1 253 % 1
480 131; 7 % 0; 8 142; 0 % 0; 8

2800 28 791 % 4 850 % 5
280 102; 4 % 0; 7 110; 4 % 0; 7
560 59; 9 % 0; 4 65; 1 % 0; 4

3200 32 331 % 2 356 % 2
320 47; 9 % 0; 4 51; 9 % 0; 4
640 30; 0 % 0; 1 32; 6 % 0; 1

3600 36 145 % 1 156 % 1
360 23; 9 % 0; 1 25; 8 % 0; 1
720 16; 20 % 0; 08 17; 51 % 0; 09

4000 40 67; 3 % 0; 6 71; 8 % 0; 7
400 13; 10 % 0; 06 14; 12 % 0; 07
800 9; 43 % 0; 04 10; 25 % 0; 04

4400 44 34; 1 % 0; 1 35; 7 % 0; 1
440 7; 61 % 0; 04 8; 20 % 0; 04
880 5; 76 % 0; 02 6; 24 % 0; 03

4800 48 18; 18 % 0; 03 18; 91 % 0; 03
480 4; 70 % 0; 03 5; 07 % 0; 03
960 3; 77 % 0; 02 4; 09 % 0; 02

5200 52 10; 17 % 0; 03 10; 67 % 0; 02
520 3; 06 % 0; 02 3; 34 % 0; 02

1040 2; 54 % 0; 01 2; 77 % 0; 02
5600 56 5; 91 % 0; 01 6; 40 % 0; 01

560 2; 07 % 0; 01 2; 28 % 0; 01
1120 1; 798 % 0; 007 1; 958 % 0; 007

6000 60 3; 528 % 0; 005 4; 046 % 0; 007
600 1; 49 % 0; 01 1; 63 % 0; 01

1200 1; 304 % 0; 008 1; 428 % 0; 005
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W’ cross section @ LHC

LF ¼ iΨ̄γμDμΨ

¼ iL̄j
Lγμ

!
∂μ þ i

g12
2

σiWiμ
12 − i

g0
2
Bμ

"
Lj
L þ iQ̄j

Lγμ

!
∂μ þ i

g12
2

σiWiμ
12 þ i

g0
6
Bμ

"
Qj

L

þ iL̄3
Lγμ

!
∂μ þ i

g3
2
σiWiμ

3 − i
g0
2
Bμ

"
L3
L þ iQ̄3

Lγμ

!
∂μ þ i

g3
2
σiWiμ

3 þ g0
6
Bμ

"
Q3

L þ iū αRγμ
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LB ¼ 1

2
DμΦ†DμΦþ 1

4
TrðDμΣ†DμΣÞ − VðΣ;ΦÞ − 1

4
Wa

12μνW
aμν
12 −

1

4
Wa

3μνW
aμν
3 −

1

4
BμνBμν; ð14Þ

where i ¼ 1, 2, α ¼ 1, 2, 3, and the covariant derivative is
defined as Dμ ¼ ∂μ þ ig12T⃗ · W⃗μ

12 þ ig3T⃗
0 · W⃗μ

3 þ ig0YBμ.
Here W1;2;3

3 , W1;2;3
12 , and B are the gauge boson fields. As

usual these can be written in terms of charged and neutral
bosonsW%

3 ,W
%
12,W

0
3,W

0
12, and B. We also observe that the

model has five free parameters, that are u , v, g12, g3, and g0.
The mass matrix of the charged bosons in the basis W%

12

and W%
3 is given by [30]

M1 ¼
 g212ðu

2þv2Þ
4 − g12g3u 2

4

− g12g3u 2
4

g23u
2

4

!
: ð15Þ

On the other hand, the neutral bosons mass matrix in the
basis B, W0

12, and W0
3 is given by

M2 ¼

0

BB@

g20v
2

4 − g12g0v2

4 0

− g12g0v2

4

g212ðv
2þu 2Þ
4 − g12g3u 2

4

0 − g12g3u 2

4

g23u
2

4

1

CCA : ð16Þ

As expected, the matrix in Eq. (16) admits one massless
eigenvalue, corresponding to the photon state. The diag-
onalization of the matrix in Eq. (15) leads to a mixing
between the charged bosons: the mixing angle between
W%

12 and W%
3 will be denoted by θ0 in the following.3

Similarly, the diagonalization of the matrix in Eq. (16)
leads to a mixing between the neutral bosons: the mixing
angle between B and W0

12 will be denoted by θ. The
requirement that the coupling between the photon and
the charged leptons is equal to the electric charge leads to
the following relations in the limit u 2 ≫ v2:

g0 ¼
e

cos θ
;

g12 ¼
e

sin θ cos θ0
;

g3 ¼
e

sin θ sin θ0
; ð17Þ

where e is the electric charge. The three couplings are
therefore not linearly independent: we can rather use as free
independent parameters the quantities θ, θ0, u , and v. The
eigenvalues of the charged and neutral gauge mass matrices
are the physical masses of the bosons, which in the limit
u 2 ≫ v2 are

M2
W ≃

v2

4

e2

sin2 θ

!
1 − sin4 θ0

v2

u 2

"
;

M2
Z ≃

v2

4

e2

sin2 θ cos2 θ

!
1 − sin4 θ0

v2

u 2

"
;

M2
Z0 ≃M2

W0

≃
e2v2

4 sin2 θ

!
tan2 θ0 þ u 2

v2 sin2 θ0 cos2 θ0

"
: ð18Þ

We require that the masses of the W and Z bosons agree
with the experimental values, namely MW ¼ 80.379 %
0.012 GeV and MW=MZ ¼ 0.88147 % 0.00013 [34]. This
requirement leads to

sin2 θ≃sin2 θW ¼ 0.23;

v≃vSM ≃246 GeV; ð19Þ

where θW is the Weinberg angle and vSM is the VEVof the
SM. These relations impose two new constraints on the four
free parameters θ, θ0, u and v: in the end we are left with
two free parameters, namely u and θ0.
Since our aim is to discuss the production of tb and τντ

via virtual W0 boson decay, we give the interaction term
between the leptons and the charged bosons as

3There is a slight difference (∼v2=u 2) between the mixing
angles θ0 and ϕ, the latter being the mixing angle between W0

12
and W0

3.
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vertical axis in terms of cos 2θ0. The total width can be up to
40% of the W0 boson mass for sin θ0 ¼ 0.18. On the other
hand, the minimum value of ΓTot=MW0 is obtained for
θ0 ¼ π=4, since for this angle we recover the prediction of
the SSM h 0I;II ¼ h 0III ¼ gSM. We note that the total W0

boson width ΓTot is approximately proportional to the W0

boson mass.
In Fig. 3 we show the cross section times the branching

fractions to the third family fermions:

σðpp → W0ÞBrðW0 → tbÞ;
σðpp → W0ÞBrðW0 → τντÞ; ð28Þ

as a function of MW0 for a center-of-mass energy of
ffiffiffi
s

p
¼

13 and 14 TeV. The cyan band represents the parameter
space allowed by the TF model. The red line stands for the
SSM predicted cross section for ΓTot ¼ 0.01MW0. For
comparison purposes, the predicted cross section for values
of ΓTot equal to 0.1MW0 and 0.2MW0 in both the SSM and
TF assumptions are also shown. From these plots is
possible to notice that the TF model is up to one order
of magnitude smaller than the SSM.
The black lines represent the most recent exclusion limits

obtained by the CMS Collaboration [37,38] in the context
of the W0 boson searches in those two decay channels.
Those plots showcase the portion of the phase space
allowed in the TF model still not excluded by direct
searches. The top-left panel of Fig. 3 in particular shows
that only values of theW0 mass below 1.6 TeVare excluded
in the τν channels for any value of θ0. Larger values of the
mass are possible, with a production cross section times
branching fraction of order of magnitude 1 fb, i.e., below
the data upper limit. For the tbdecay channel, the bottom-
left panel shows that a large portion of the phase space is

FIG. 2. Allowed ranges for ΓTot=MW0 and cos 2θ0 for a fixed
MW0 value.

FIG. 3. Theoretical predictions for σðpp → W0ÞBrðW0 → tbÞ (top panels) and σðpp → W0ÞBrðW0 → τντÞ (bottom panels) as a
function ofMW0 at

ffiffiffi
s

p
¼ 13 TeV (left panels) and

ffiffiffi
s

p
¼ 14 TeV (right panels). The cyan band represents the allowed phase space from

the top-flavor prediction. The dashed violet and orange lines correspond to ΓTot=MW0 ¼ 0.1 and 0.2 in the TF model, respectively. The
red, violet and orange continuous curves are the SSM predictions with αL ¼ 1, αR ¼ 0 for ΓTot=MW0 equal to 0.01, 0.1, and 0.2,
respectively. The black curve was built using the data in Refs. [37,38].
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W’ width

ΓTot ¼
h 02III
16π

β2

MW0

!
M2

W0 þ
m2

t

2

"

þ
ðh 02III þ 2h 02I;IIÞ

16π
MW0

3
þ
h 02I;II
8π

MW0 ; ð25Þ

where we used Eq. (21) and the properties of VSM
CKM. Finally

the branching fractions for the tb and τντ decays are

BrðW0 → tbÞ ¼

#
h 02III
16π jV

SM
tb j2 β2

MW0
ðM2

W0 þ m2
t
2 Þ
$

ΓTot
;

BrðW0 → τντÞ ¼
h 02III
16π

MW0

3ΓTot
: ð26Þ

The main branching fractions, i.e., the ones involving
decays to leptons and quarks, are shown as a function of
cot θ0 in Fig. 1.
As is shown, for example, in Ref. [47], if the new particle

was to have a non-negligible decay width with respect to
experimental resolutions, the sensitivity analysis to its
existence could be reduced. In order to calculate the
proton-proton production cross section, we make use of
the MadGraph5_MC@NLO tool in the five-flavor scheme [48].
The model [49,50] uses the Lagrangian as reported in
Eq. (1) with the typical assumptions of the SSM: gw¼
e=sinθW , α

fifj
L ¼ 1, αfifjR ¼ 0 and Vfifj ¼ VCKM. The third

row and column of VSM
CKM are approximated to (0,0,1). To

simulate the parton density functions (PDFs) of protons,
we use the NNPDF3.1 [51] PDF set, derived at leading
order and with αs ¼ 0.118. Table II reports the values
of the cross section and their relative uncertainty for a
center-of-mass energy of

ffiffiffi
s

p
¼ 13 and 14 TeV. The values

in Table II allow us to obtain the cross sections for the
TF model by multiplying them times tan2 θ0 since
h 0I;II ¼ gSM tan θ0.

V. METHOD AND RESULTS

As discussed in the previous sections, the TF model
considered in this work has five free parameters u, v, g12, g3
and g0. The constraints in Eqs. (17) and (18) allow us to
reduce the number of free parameters to two: u and θ0. We
require the correction terms due to the top-flavor model in
Eq. (18) for MW and MZ to be within the experimental
error, thus constraining the allowed values of θ0 as a
function of u. We impose a further constraint on the model,
by considering that the interactions with the gauge bosons
of both SUð2Þ groups can be perturbatively treated. To
accomplish this, we require that g212; g

2
3 < 4π, obtaining

0.18 < tan θ0 < 5.5: ð27Þ

In our analysis, we scan 106 points in the parameter space
ðu; θ0Þ, with θ0 satisfying Eq. (27) and u > 800 GeV. These
conditions ensure that the mass of W0 is larger than 1 TeV.
For each point of the parameter space we obtain the
observable MW0 , ΓTot, BrðW0 → tbÞ, and BrðW0 → τντÞ
from Eqs (18), (25), and (26). We checked the constraints
presented in Refs. [27,52,53] and they do not appear to
modify the results mentioned above in the parameter space
we considered. In Fig. 2 we show all the possible ΓTot=MW0

as a function of MW0 . The value of ΓTot=MW0 depends only
on θ0, which is the reason why we also show the right

TABLE II. Cross section values and their relative uncertainties
obtained with the MadGraph5_ MC@NLO generator for narrow
(1%) and wide (10%, 20%, and 30%) widths W0 boson for
different mass hypotheses for both 13 and 14 TeV.

Cross section (fb)

Mass Width 13 TeV 14 TeV

1000 10 109552 % 407 127176 % 466
100 10939 % 54 12674 % 59
200 5355 % 21 6177 % 23

1400 14 26036 % 123 31207 % 144
140 2712 % 12 3246 % 13
280 1375 % 5 1633 % 6

1800 18 7835 % 42 9717 % 50
180 859 % 4 1052 % 5
360 452 % 2 550 % 3

2000 20 5375 % 29 5748 % 30
200 593 % 3 635 % 3
400 315 % 2 340 % 2

2400 24 2005 % 11 2146 % 13
240 235 % 1 253 % 1
480 131; 7 % 0; 8 142; 0 % 0; 8

2800 28 791 % 4 850 % 5
280 102; 4 % 0; 7 110; 4 % 0; 7
560 59; 9 % 0; 4 65; 1 % 0; 4

3200 32 331 % 2 356 % 2
320 47; 9 % 0; 4 51; 9 % 0; 4
640 30; 0 % 0; 1 32; 6 % 0; 1

3600 36 145 % 1 156 % 1
360 23; 9 % 0; 1 25; 8 % 0; 1
720 16; 20 % 0; 08 17; 51 % 0; 09

4000 40 67; 3 % 0; 6 71; 8 % 0; 7
400 13; 10 % 0; 06 14; 12 % 0; 07
800 9; 43 % 0; 04 10; 25 % 0; 04

4400 44 34; 1 % 0; 1 35; 7 % 0; 1
440 7; 61 % 0; 04 8; 20 % 0; 04
880 5; 76 % 0; 02 6; 24 % 0; 03

4800 48 18; 18 % 0; 03 18; 91 % 0; 03
480 4; 70 % 0; 03 5; 07 % 0; 03
960 3; 77 % 0; 02 4; 09 % 0; 02

5200 52 10; 17 % 0; 03 10; 67 % 0; 02
520 3; 06 % 0; 02 3; 34 % 0; 02

1040 2; 54 % 0; 01 2; 77 % 0; 02
5600 56 5; 91 % 0; 01 6; 40 % 0; 01

560 2; 07 % 0; 01 2; 28 % 0; 01
1120 1; 798 % 0; 007 1; 958 % 0; 007

6000 60 3; 528 % 0; 005 4; 046 % 0; 007
600 1; 49 % 0; 01 1; 63 % 0; 01

1200 1; 304 % 0; 008 1; 428 % 0; 005
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vertical axis in terms of cos 2θ0. The total width can be up to
40% of the W0 boson mass for sin θ0 ¼ 0.18. On the other
hand, the minimum value of ΓTot=MW0 is obtained for
θ0 ¼ π=4, since for this angle we recover the prediction of
the SSM h 0I;II ¼ h 0III ¼ gSM. We note that the total W0

boson width ΓTot is approximately proportional to the W0

boson mass.
In Fig. 3 we show the cross section times the branching

fractions to the third family fermions:

σðpp → W0ÞBrðW0 → tbÞ;
σðpp → W0ÞBrðW0 → τντÞ; ð28Þ

as a function of MW0 for a center-of-mass energy of
ffiffiffi
s

p
¼

13 and 14 TeV. The cyan band represents the parameter
space allowed by the TF model. The red line stands for the
SSM predicted cross section for ΓTot ¼ 0.01MW0. For
comparison purposes, the predicted cross section for values
of ΓTot equal to 0.1MW0 and 0.2MW0 in both the SSM and
TF assumptions are also shown. From these plots is
possible to notice that the TF model is up to one order
of magnitude smaller than the SSM.
The black lines represent the most recent exclusion limits

obtained by the CMS Collaboration [37,38] in the context
of the W0 boson searches in those two decay channels.
Those plots showcase the portion of the phase space
allowed in the TF model still not excluded by direct
searches. The top-left panel of Fig. 3 in particular shows
that only values of theW0 mass below 1.6 TeVare excluded
in the τν channels for any value of θ0. Larger values of the
mass are possible, with a production cross section times
branching fraction of order of magnitude 1 fb, i.e., below
the data upper limit. For the tbdecay channel, the bottom-
left panel shows that a large portion of the phase space is

FIG. 2. Allowed ranges for ΓTot=MW0 and cos 2θ0 for a fixed
MW0 value.

FIG. 3. Theoretical predictions for σðpp → W0ÞBrðW0 → tbÞ (top panels) and σðpp → W0ÞBrðW0 → τντÞ (bottom panels) as a
function ofMW0 at

ffiffiffi
s

p
¼ 13 TeV (left panels) and

ffiffiffi
s

p
¼ 14 TeV (right panels). The cyan band represents the allowed phase space from

the top-flavor prediction. The dashed violet and orange lines correspond to ΓTot=MW0 ¼ 0.1 and 0.2 in the TF model, respectively. The
red, violet and orange continuous curves are the SSM predictions with αL ¼ 1, αR ¼ 0 for ΓTot=MW0 equal to 0.01, 0.1, and 0.2,
respectively. The black curve was built using the data in Refs. [37,38].
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as a function of MW0 for a center-of-mass energy of
ffiffiffi
s

p
¼

13 and 14 TeV. The cyan band represents the parameter
space allowed by the TF model. The red line stands for the
SSM predicted cross section for ΓTot ¼ 0.01MW0. For
comparison purposes, the predicted cross section for values
of ΓTot equal to 0.1MW0 and 0.2MW0 in both the SSM and
TF assumptions are also shown. From these plots is
possible to notice that the TF model is up to one order
of magnitude smaller than the SSM.
The black lines represent the most recent exclusion limits

obtained by the CMS Collaboration [37,38] in the context
of the W0 boson searches in those two decay channels.
Those plots showcase the portion of the phase space
allowed in the TF model still not excluded by direct
searches. The top-left panel of Fig. 3 in particular shows
that only values of theW0 mass below 1.6 TeVare excluded
in the τν channels for any value of θ0. Larger values of the
mass are possible, with a production cross section times
branching fraction of order of magnitude 1 fb, i.e., below
the data upper limit. For the tbdecay channel, the bottom-
left panel shows that a large portion of the phase space is

FIG. 2. Allowed ranges for ΓTot=MW0 and cos 2θ0 for a fixed
MW0 value.

FIG. 3. Theoretical predictions for σðpp → W0ÞBrðW0 → tbÞ (top panels) and σðpp → W0ÞBrðW0 → τντÞ (bottom panels) as a
function ofMW0 at

ffiffiffi
s

p
¼ 13 TeV (left panels) and

ffiffiffi
s

p
¼ 14 TeV (right panels). The cyan band represents the allowed phase space from

the top-flavor prediction. The dashed violet and orange lines correspond to ΓTot=MW0 ¼ 0.1 and 0.2 in the TF model, respectively. The
red, violet and orange continuous curves are the SSM predictions with αL ¼ 1, αR ¼ 0 for ΓTot=MW0 equal to 0.01, 0.1, and 0.2,
respectively. The black curve was built using the data in Refs. [37,38].
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Conclusions

• LHC searches for W’ extra charged gauge boson often use sequantial
model as benchmark

• Even if sequential model incorporates a wide variety of models, search
results are not so general

• We consider top-flavor as an example showing that a very different
conclusion can be obtained from current data

• The main motivation probably is due to blind vs unblind flavor model
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