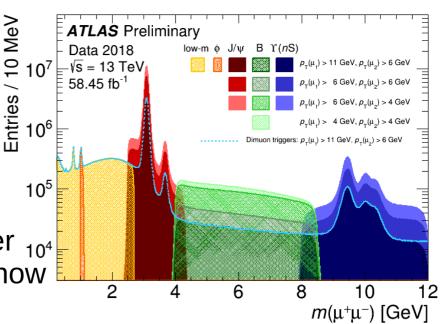
ATLAS flavour physics: recent results and prospects

Marcella Bona
(QMUL)
on behalf of the
ATLAS collaboration



8th Workshop on Theory, Phenomenology and Experiments in Flavour Physics (FPCapri2022) Anacapri, Italy June 12th, 2022

B physics in ATLAS

- 25 fb⁻¹ in Run 1, and 139 fb⁻¹ in Run 2
- Has access to B, B_s , B_c , Λ_b , etc.
- Focus mostly on final states with muons
 - Typical trigger: di-muons with p_T thresholds at 4, 6 and 11 GeV
 - In 2018, a di-electron high-level trigger 104 implemented and being analysed now

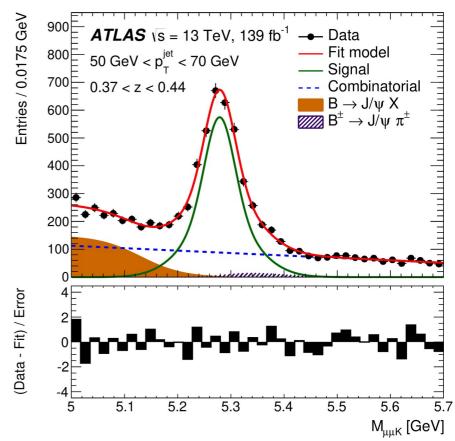
- □ Properties of b-quark fragmentation to $B^{\pm} \rightarrow J/\psi K^{\pm}$ in Run 2
 - arXiv:2108.11650, JHEP 12 (2021) 131
- Study of B_c^+ → J/ψ D_s decays in Run 2
 - arXiv:2203.01808, CERN-EP-2022-025
- Rare and semi-rare decays:
 - B to K*μμ angular analysis in Run 1 [JHEP 10 (2018) 047]
 - B_(s) to μμ in 2015-2016 Run 2 [JHEP 04 (2019) 098]
 - LHC combination $B_{(s)}$ to $\mu\mu$ for 2020, [ATLAS-CONF-2020-049]
- CP violating phase φ_s in $B_s^0 \rightarrow J/\psi \varphi$ angular analysis:
 - 2015-2017 Run 2 [Eur. Phys. J. C 81 (2021) 342]

Properties of b-quark fragmentation to $B^\pm\!\to\! J/\psi K^\pm$

Run2 result:

arXiv:2108.11650, JHEP 12 (2021) 131

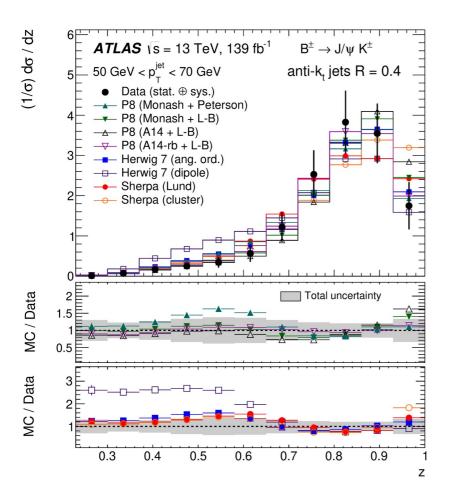
Properties of b-quark fragmentation

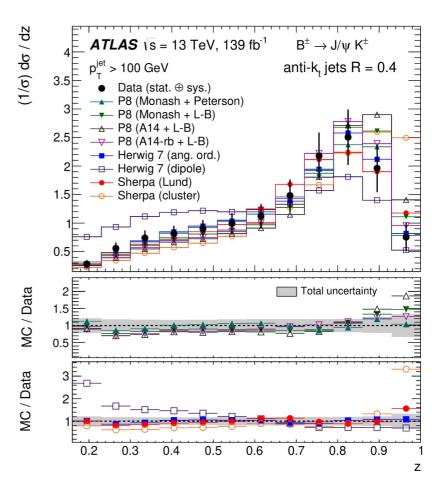

arXiv:2108.11650 JHEP 12 (2021) 131

- 139 fb⁻¹ of Run 2 data
- b-fragmentation functions provide:
 - Test of QCD at LHC energy; MC tunes
 - H → bb and many other channels with b-jet signatures dominant uncertainty

ullet We measure longitudinal (z) and transverse (p_T^{rel}) projections of the B[±] momentum to jet axis.

$$z = rac{ec{p}_J \cdot ec{p}_B}{\left|ec{p}_J
ight|^2}; \qquad p_T^{
m rel} = rac{\left|ec{p}_J imes ec{p}_B
ight|}{\left|ec{p}_J
ight|}$$

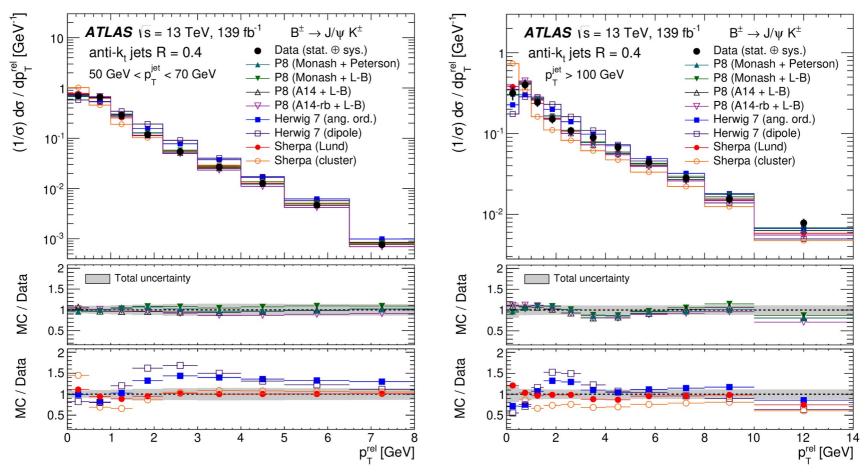

- B[±] mesons are associated to jets if they are within $\Delta R = 0.4$ from jet axis.
- B[±] invariant mass is used to extract differential cross section in each z or p_T^{rel} bins, for the lower and higher intervals of jet momenta: $50 \text{ GeV} < p_T < 70 \text{ GeV}$ and $p_T > 100 \text{ GeV}$.



Properties of b-quark fragmentation

arXiv:2108.11650 JHEP 12 (2021) 131

ullet Results for z distributions for 50 GeV < p_T < 70 GeV and p_T > 100 GeV



- All Pythia fragmentation models give a decent description.
- Herwig7 (dipole) and, to some extend, Sherpa (cluster) visibly deviate from data.

Properties of b-quark fragmentation

arXiv:2108.11650 JHEP 12 (2021) 131

ullet Results for p_T^{rel} distributions for 50 GeV < p_T < 70 GeV and p_T > 100 GeV

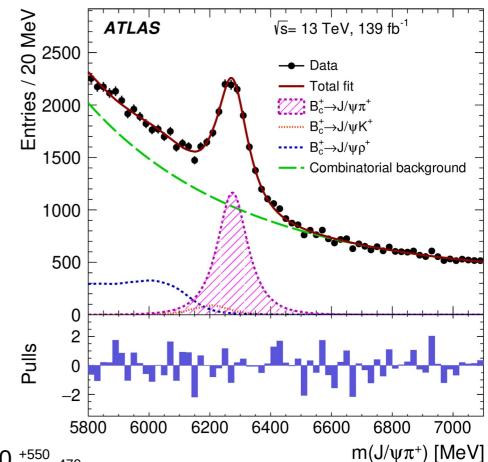
- All Pythia fragmentation models give a decent description.
- Both Herwig7 models and Sherpa (cluster) visibly deviate from data.

Run2 result:

arXiv:2203.01808, CERN-EP-2022-025

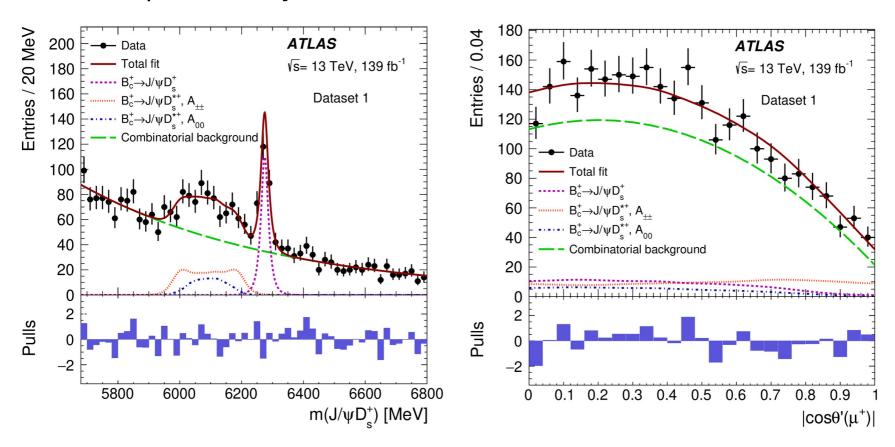
ArXiv:2203.01808 CERN-EP-2022-025

- Observed earlier by LHCb (PRD 87 (2013) 112012) and ATLAS (EPJC 76 (2016) 1) in Run 1.
- Using entire Run 2 dataset: aiming at more precise measurement of branching fractions and the final state polarisation


Testing predictions of various theory models, e.g. pQCD calculation,

relativistic potential models, sum rules calculations.

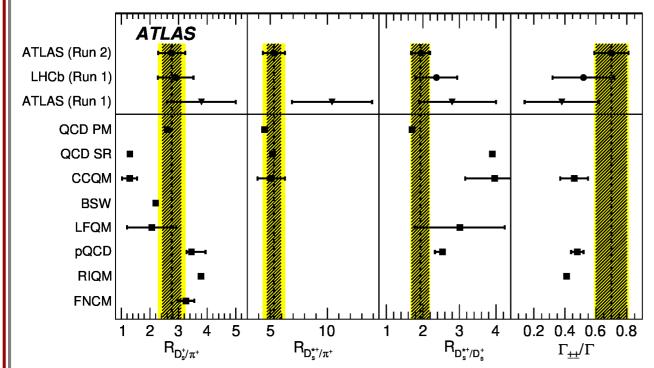
- \circ D_s⁺ and D_s*⁺ are reconstructed from their decays:


 - D_s*+ → D_s+ π ⁰/ γ (soft, not reco)
- Use B_c^+ → $J/\psi \pi^+$ reference channel for BR measurement
- ⊃ Fiducial range: p_T (B_c^+) > 15 GeV, $|η(B_c^+)|$ < 2.0

Reference channel with signal statistics $N(B^+ \rightarrow J/\psi \pi^+) = 8440^{+550}_{-470}$

ArXiv:2203.01808 CERN-EP-2022-025

- 2D fit to extract the signal parameters
 - m(J/ψD_s⁺) and the J/ψ helicity angle
- Doth sensitive to polarisation of the final state particles J/ψ and D_s^+ in $B_c^+ → J/ψ D_s^{*+}$ decay.



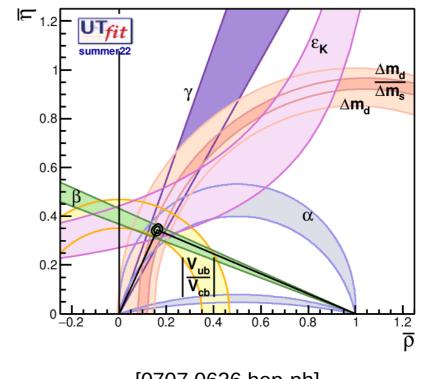
Left: fit to inv. mass m(J/ ψ D_s⁺). Right: fit to |cos θ '(μ ⁺)|, where θ '(μ ⁺) is the helicity angle between μ ⁺ and D_s⁺ momenta, in J/ ψ rest frame.

ArXiv:2203.01808 CERN-EP-2022-025

$$R_{D_s^+/\pi^+} \equiv \mathcal{B}_r(B_c^+ \to J/\psi D_s^+)/\mathcal{B}_r(B_c^+ \to J/\psi \pi^+) = 2.76 \pm 0.33 ({\rm stat.}) \pm 0.30 ({\rm syst.}) \pm 0.16 ({\rm BF})$$
 $R_{D_s^{*+}/\pi^+} \equiv \mathcal{B}_r(B_c^+ \to J/\psi D_s^{*+})/\mathcal{B}_r(B_c^+ \to J/\psi \pi^+) = 5.33 \pm 0.61 ({\rm stat.}) \pm 0.67 ({\rm syst.}) \pm 0.32 ({\rm BF})$
 $R_{D_s^{*+}/D_s^+} \equiv \mathcal{B}_r(B_c^+ \to J/\psi D_s^+)/\mathcal{B}_r(B_c^+ \to J/\psi D_s^{*+}) = 1.93 \pm 0.24 ({\rm stat.}) \pm 0.10 ({\rm syst.})$
 $B_c^+ \to J/\psi D_s^{*+}$ transvers polarisation fraction $\Gamma_{\pm\pm}/\Gamma_s^- = 0.70 \pm 0.10 ({\rm stat.}) \pm 0.04 ({\rm syst.})$

- New results consistent with earlier measurements
- ightharpoonup R(D_s*+/ π +) described well by the predictions

- R(D_s⁺/π⁺) and R(D_s*⁺/D_s⁺) predictions consistently deviate from data
 - except QCD PM (PRD 61 (2000) 034012)
- Γ_{±±}/Γ agrees with a naive spin-counting estimate of 2/3 and larger than predictions
- → Hatched areas → stat uncertainties; yellow bands → total uncertainties.

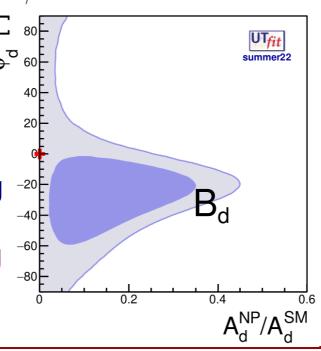

NP searches and CP violation

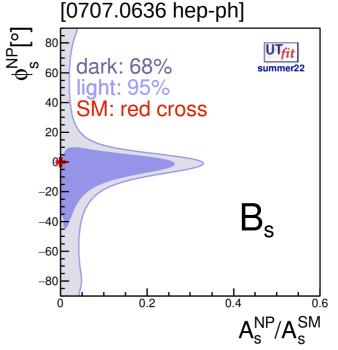
CP violation in the SM and NP:

- ullet B_(s) systems are giving us a rather precise picture
 - However there is some space for NP
 - Could appear as new contributions in $\Delta F=2$ loop processes

$$A_q = C_{B_q} e^{2i\phi_{B_q}} A_q^{SM} e^{2i\phi_q^{SM}}$$

$$A_q = \left(1 + \frac{A_q^{NP}}{A_q^{SM}} e^{2i(\phi_q^{NP} - \phi_q^{SM})}\right) A_q^{SM} e^{2i\phi_q^{SM}}$$


The ratio of NP/SM amplitudes is:


< 35% @68% prob.

(45% @95%) in B_d mixing

< 25% @68% prob.

(35% @95%) in B_s mixing

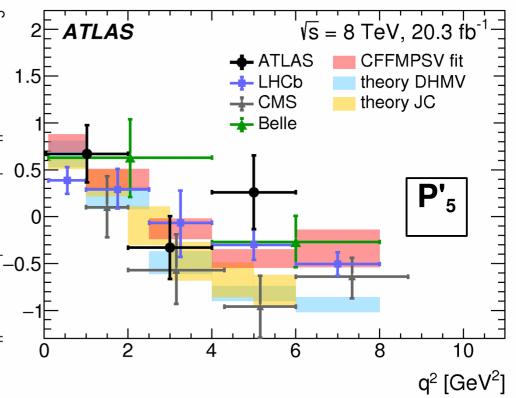
Angular analysis on B \rightarrow K* $\mu\mu$

Run1 result:

JHEP 10 (2018) 047, arXiv:1805.04000

HL-LHC prospects:

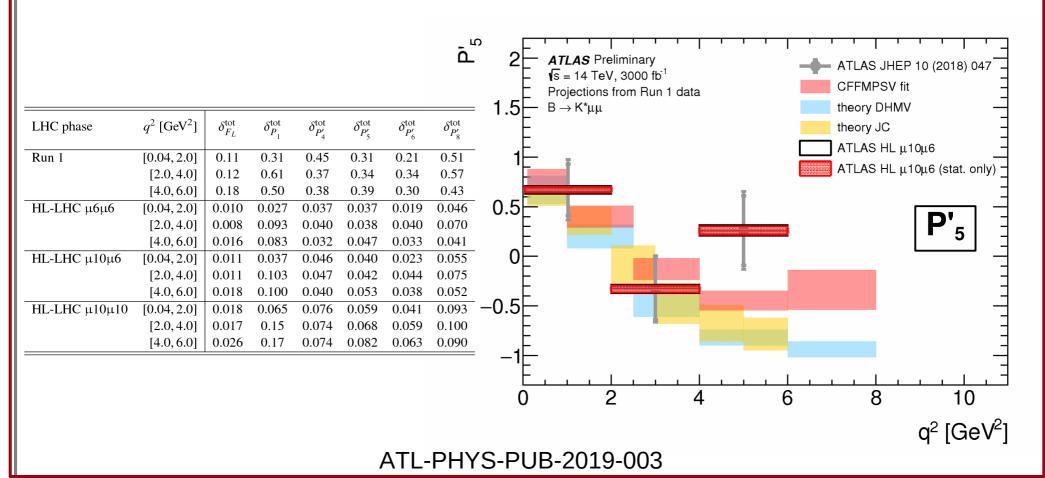
ATL-PHYS-PUB-2019-003



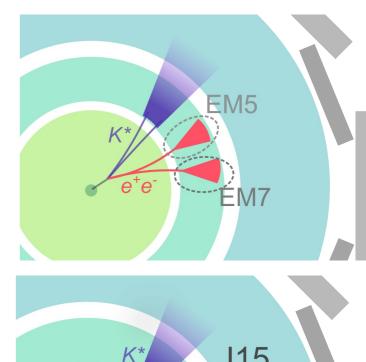
K*μμ angular analysis

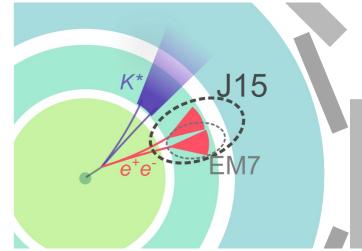
JHEP 10 (2018) 047, arXiv:1805.04000

- Data collected in 2012 at 8 TeV with 20.3 fb⁻¹ Run 1 data
- fold the angular distribution via trigonometric relations to reduce the number of free parameters
- Results are compatible with theoretical calculations & fits
- P(P') parameters have reduced dependence on hadronic form factors.
- O ATLAS gets deviations of about 2.5 σ (2.7 σ) from DHMV in P'₄(P'₅) in [4,6] GeV²


q^2 [GeV ²]	P_4'	P_5'
[0.04, 2.0]	$0.31 \pm 0.40 \pm 0.20$	$0.67 \pm 0.26 \pm 0.16$
[2.0, 4.0]	$-0.76 \pm 0.31 \pm 0.21$	$-0.33 \pm 0.31 \pm 0.13$
[4.0, 6.0]	$0.64 \pm 0.33 \pm 0.18$	$0.26 \pm 0.35 \pm 0.18$
[0.04, 4.0]	$-0.30 \pm 0.24 \pm 0.17$	$0.32 \pm 0.21 \pm 0.11$
[1.1, 6.0]	$0.05 \pm 0.22 \pm 0.14$	$0.01 \pm 0.21 \pm 0.08$
[0.04, 6.0]	$0.05 \pm 0.20 \pm 0.14$	$0.27 \pm 0.19 \pm 0.06$

OPE and LHCb data fit: CFFMPSV: Ciuchini et al.; JHEP 06 (2016) 116. QCD factorisation: DMVH: Decotes-Genon et al.; JHEP 12 (2014) 125. JC: Jäger-Camalich; Phys. Rev. D93 (2016) 014028.


Projections for K*μμ angular analysis at HL-LHC


- Extrapolation from signal/background yields in Run 1 and toy-MC simulations
- Accounting for improved performance of the ATLAS Upgraded tracking system
- Three trigger scenarios: high-yield, intermediate and low-statistics for signal.
- The precision on, for example, the P'5 parameter expected to improve by factors of \sim 9×, \sim 8×, \sim 5× (for the three trigger scenarios) relative to Run 1

Brewing in ATLAS...

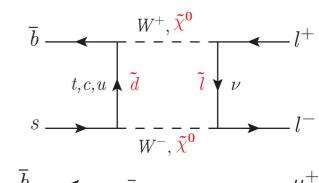
- In 2018, a di-electron high-level trigger implemented and being analysed now
- Aiming at R(K*) measurement
- Angular analysis on di-muon final state on the whole 139 fb⁻¹ Run-2 data also ongoing
- ATLAS potentially can do
 - R(K), R(φ), R(pK) = BR(Λ_b → pKμμ)/BR(Λ_b → pKee)
- Stay tuned

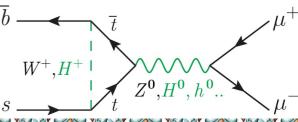
rare B decays $B_{(s)} \rightarrow \mu^{\dagger} \mu^{-}$

Run1 result:

EPJ C76 (2016) 513, arXiv:1604.04263

Run2 result on 2015-2016 data:

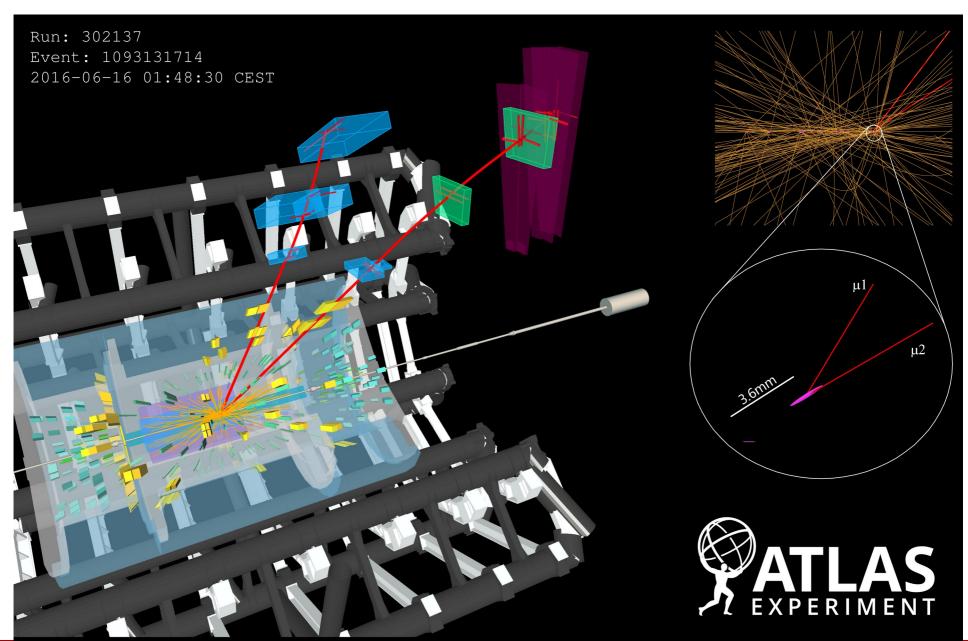

JHEP 04 (2019) 098, arXiv:1812.03017


LHC combination:

ATLAS-CONF-2020-049

HL-LHC prospects:

ATL-PHYS-PUB-2018-005



JHEP 04 (2019) 098, arXiv:1812.03017

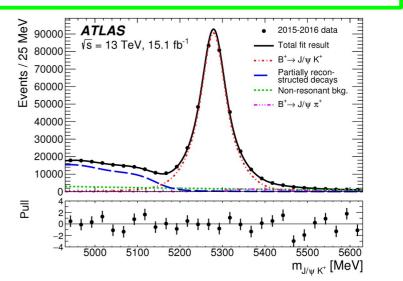
rare B decays $B_{(s)} \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$

JHEP 04 (2019) 098

arXiv:1812.03017

Motivations

- Flavour Changing Neutral Currents (FCNC), CKM and helicity suppressed.
- SM prediction with small theoretical uncertainties of order 6-8%
- Perfect for indirect new physics searches: virtual new particles in the loop
 - both enhancement and suppression effects are possible

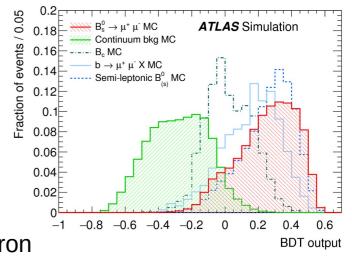

ATLAS analysis on 2015-2016 Run 2 data

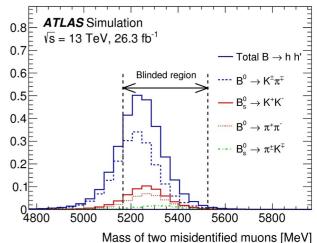
- 36.2 fb⁻¹ dataset of 2015-2016 data taking:
 - effectively 26.3 fb⁻¹ for B → μμ
- Trigger: higher thresholds [4-6 GeV] than in Run 1,
 - \bullet L_{xy} > 0 request at trigger level

$$\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-) = \boxed{\frac{N_{d(s)}}{\varepsilon_{\mu^+ \mu^-}}} \times \boxed{\frac{\varepsilon_{J/\psi K^+}}{N_{J/\psi K^+}}} \times \boxed{\frac{f_u}{f_{d(s)}} \times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)\right]}$$

Normalisation B yield extraction

• unbinned maximum likelihood fit of the invariant mass $m_{J/\psi K} \rightarrow m_{\mu\mu K}$

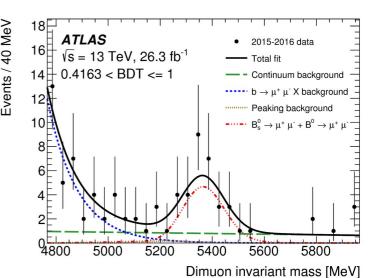

Backgrounds and control samples


- combinatorial background: µ's from other b quarks
 - BDT classifier with 15 variables.
- partially reconstructed B decays:
 - Same Vertex (SV): B → μμX decays
 - Same Side (SS): b \rightarrow c $\mu\nu$ \rightarrow s(d) $\mu\mu\nu\nu$
 - B_c decays: like $B_c \rightarrow J/\psi \mu \nu$
- semileptonic B and B_s decays: µ and charged hadron
- peaking background from hadronic B_(S) decays:
 - B decays to two hadrons h (K/π) : $B^0_{(S)} \rightarrow hh'$

Tight muon-ID against hadron misID

- negligible misidentification of protons (< 0.01%)
- misidentification is 0.08% (0.10%) for K (π).

peaking-background events: 2.7±1.3

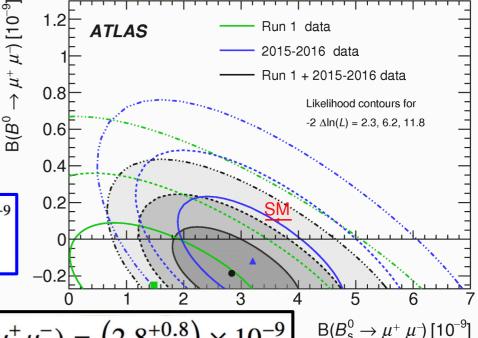

Efficiency ratio $\varepsilon_{\mu\mu}/\varepsilon_{J/\psi K}$

- from MC and systematic from data-MC discrepancies
- For B⁰_s: 2.7% correction for lifetime difference of the B⁰_S mass eigenstates

Source	Contribution (%)
Statistical	0.8
BDT Input Variables	3.2
Kaon Tracking Efficiency	1.5
Muon trigger and reconstruction	1.0
Kinematic Reweighting (DDW)	0.8
Pile-up Reweighting	0.6

Signal yield extraction

- unbinned maximum likelihood fit to the dimuon mass simultaneously in 4 BDT bins
 - 18% signal efficiency each bin
 - signals, B to hh: 3 double Gaussians
 - continuum: first order polynomial
 - partially reconstructed B: exponential
 - semi-leptonic: exponential


Run 2 results and combinations with Run 1

- yields unconstrained:
 - $N_S = 80 \pm 22$ and $N_d = -12 \pm 20$
 - expected from the SM:
 - $N_S = 91 \pm \text{ and } N_d = 10$

Neyman Contours for Run 2:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(3.21^{+0.96+0.49}_{-0.91-0.30}\right) \times 10^{-9} = \left(3.2^{+1.1}_{-1.0}\right) \times 10^{-9}$$

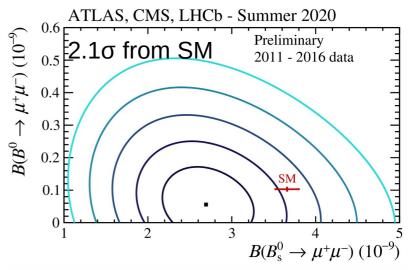
 $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.3 \times 10^{-10}$ @ 95% CL

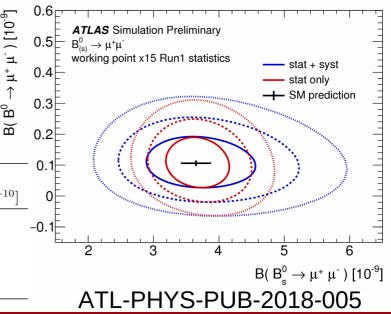
Compatible with SM at 2.4σ

Run 1 + Run 2 (2015+2016):
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(2.8^{+0.8}_{-0.7}\right) \times 10^{-9}$$
 Compatible with SM at 2.4o
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.1 \times 10^{-10}$$

LHC combination from Summer 2020

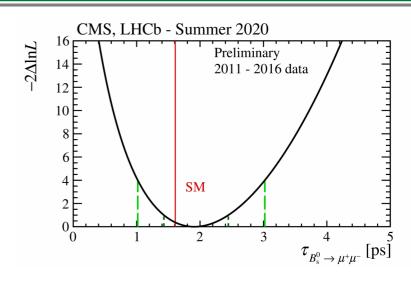
- Combination from binned two-dimensional profile likelihoods
- Independent systematics, except for ratio of fragmentation fractions f_d/f_s,


Latest LHCb result not included


$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.69^{+0.37}_{-0.35}) \times 10^{-9}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 1.9 \times 10^{-10} \text{ at } 95\% \text{ CL.}$

Prospect on $B_{(s)} \rightarrow \mu^{+}\mu^{-}$ at ATLAS


- HL-LHC → 3 trigger scenarios: with thresholds $(p^{\mu 1}_{T}, p^{\mu 2}_{T})$:
 - Conservative: (10 GeV, 10 GeV) → ×15 Run 1
 - Intermediate: (6 GeV, 10 GeV) → ×60 Run 1
 - → High-yield: (6 GeV, 6 GeV) → ×75 Run 1

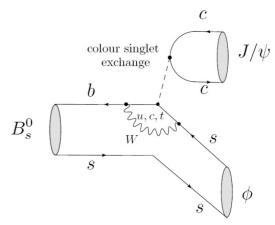
	$\mathcal{B}(B)$	$Q_s^0 o \mu^+\mu^-)$	$\mathcal{B}(B^0 o \mu^+\mu^-)$		
	stat $[10^{-10}]$	$stat + syst \left[10^{-10}\right]$	stat $[10^{-10}]$	$stat + syst [10^{-10}]$	
Run 2	7.0	8.3	1.42	1.43	
HL-LHC: Conservative	3.2	5.5	0.53	0.54	
HL-LHC: Intermediate	1.9	4.7	0.30	0.31	
HL-LHC: High-yield	1.8	4.6	0.27	0.28	

Brewing in ATLAS...

- B_s lifetime analysis ongoing in the dimuon final state
- Branching ratio analysis on 2017+2018 to get to the whole 139 fb⁻¹ Run-2 data ongoing
- Stay tuned

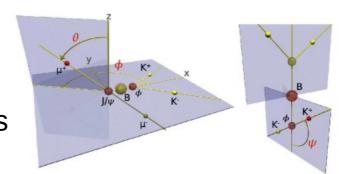
CP violation parameters from time-dependent angular analysis on $B_s \rightarrow J/\psi \phi$

Run1 result:


JHEP 08 (2016) 147, arXiv:1601.03297

Run2 result with 2015-2017 data:

Eur. Phys. J. C 81 (2021) 342, arXiv:2001.07115

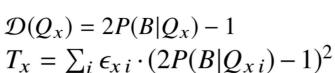

HL-LHC prospects:

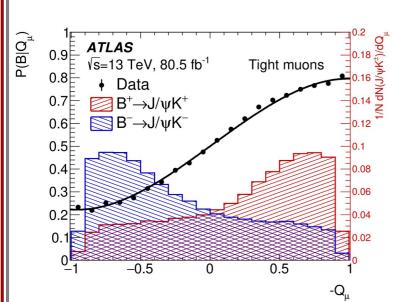
ATL-PHYS-PUB-2018-041

Time-dependent angular analysis of $B_s \rightarrow J/\psi \phi$

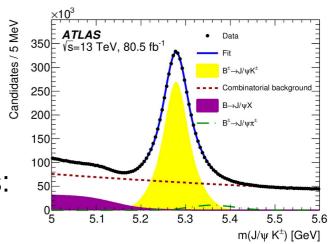
- Parameters of the B_s system:
 - Decay width difference $\Delta\Gamma_s = \Gamma_L \Gamma_H = 0.087 \pm 0.021 \text{ ps}^{-1}$ (SM) [arXiv:1102.4274]
 - CPV phase $\phi_s \rightarrow weak$ phase between mixing and $b \rightarrow ccs$ decay
 - $\phi_s = -2\beta_s = 0.0370 \pm 0.0010$ (SM) [Utfit18] with $\beta_s = arg[-(V_{ts}V_{tb}^*)/(V_{cs}V_{cb}^*)]$
 - Golden mode: penguin diagrams contribute either with the same weak phase (λ^2) or they are CKM suppressed (λ^4)
- Pseudoscalar to vector—vector decay
 - \rightarrow mixed CP-odd and CP-even (L = 0, 1 or 2).
 - Also K⁺K⁻ pairs in S-wave → CP-odd.
- Angular analysis: differential decay rate depends on amplitudes A_0 , $A_{||}$, A_{\perp} , A_S (and interferences) and angles θ_T , ψ_T , ϕ_T .

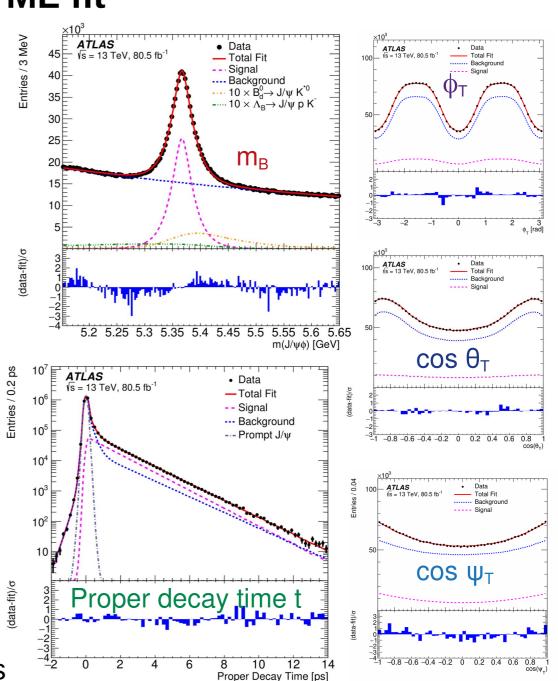
ATLAS Run-2 result


- 80.5 fb⁻¹ of 13 TeV data (Run 2, 2015-2017)
- J/ψ trigger with muon p_T of 4 or 6 GeV
- Measurement of the proper decay time $t = L_{xy} m_B / p_T^B$
- Flavour tagging to identify the flavour of the b quark


ATLAS $B_s \rightarrow J/\psi \phi$ analysis: flavour tagging

- Flavour tagging to identify the flavour of the b quark:
 - opposite-side tagging (OST) using p_⊤-weighted charge of tracks in cone around muons / electrons / b jets

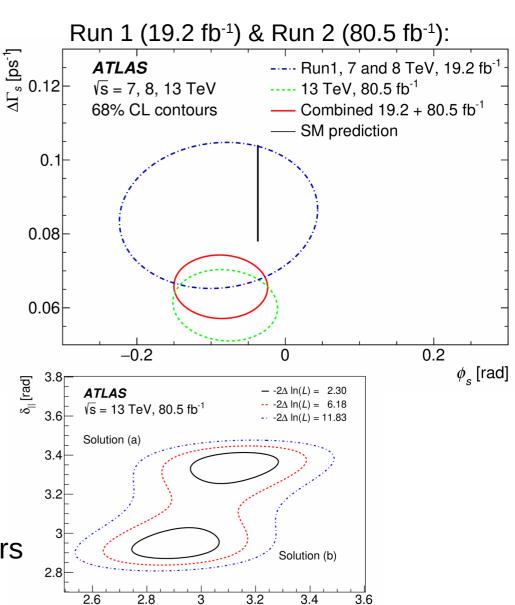

- Tag probabilities included in the B_s fit
- Dilution $D(Q_x)$ and tagging power T_x defined as:


Tag method	ϵ_x [%]	D_x [%]	T_x [%]
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
Low- p_T muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Jet	12.04 ± 0.02	16.6 ± 0.1	0.334 ± 0.006
Total	21.23 ± 0.03	28.7 ± 0.1	1.75 ± 0.01
		_	

0 -	$\sum_{i}^{N \text{ tracks}} q_i \cdot (p_{\mathrm{T}i})^{\kappa}$
$Q_X =$	$\sum_{i}^{N \text{ tracks}} (p_{\mathrm{T}i})^{\kappa}$

ATLAS $B_s \rightarrow J/\psi \phi$ analysis: ML fit

- Unbinned maximum-likelihood fit
 - B_s properties: mass m_B (and its error), proper decay time t, proper decay time error σ_t , tagging probability $P(B|Q_x)$
 - Transversity angles: $\Omega(\theta_T, \psi_T, \phi_T)$
 - Physical parameters: $\Delta\Gamma_s$, ϕ_s , Γ_s , $|A_0(0)|^2$, $|A_{||}(0)|^2$, $|\delta_{||}$, $|\delta_{\perp}$, $|A_s(0)|^2$ and $|\delta_s|$
- Systematics:
 - Lifetime model: varying p_⊤
 bins and signal fraction
 - Backgrounds: $B_d / Λ_b / angular$ models varied / p_T bins varied
 - Tagging: variation of the parameterisation / recalibration from MC samples / pile-up effects

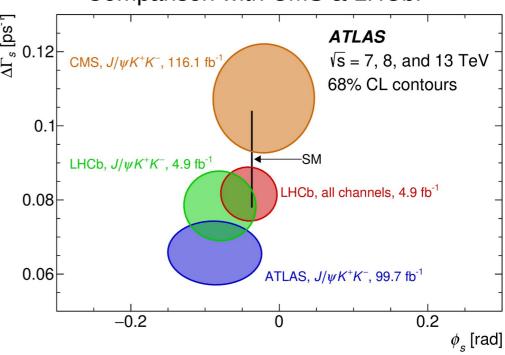

ATLAS $B_s \rightarrow J/\psi \phi$ analysis: Run-2 results

ATLAS Run-2 result on 80.5 fb⁻¹ of 2015-2017 data

Run 2 only (80.5 fb⁻¹):

Parameter Value		Systematic			
	uncertainty	uncertainty			
-0.081	0.041	0.022			
0.0607	0.0047	0.0043			
0.6687	0.0015	0.0022			
0.2213	0.0019	0.0023			
0.5131	0.0013	0.0038			
0.0321	0.0033	0.0046			
-0.25	0.05	0.04			
Solution (a)					
3.12	0.11	0.06			
3.35	0.05	0.09			
Solution (b)					
2.91	0.11	0.06			
2.94	0.05	0.09			
	-0.081 0.0607 0.6687 0.2213 0.5131 0.0321 -0.25 Solution (a) 3.12 3.35 Solution (b) 2.91	uncertainty -0.081			

Two solutions in δ_{\parallel} - δ_{\perp} plane, negligible impact on other parameters

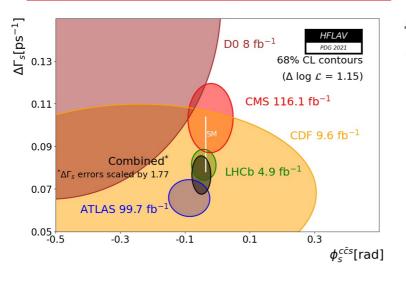

 δ_{I} [rad]

ATLAS $B_s \rightarrow J/\psi \phi$ analysis: Run1+2 combination

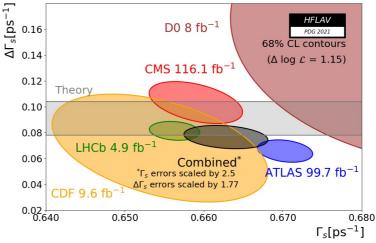
ATLAS Run 1 & Run 2 combined (19.2 fb⁻¹ + 80.5 fb⁻¹)

	Solution (a)					
Parameter	Value	Statistical	Systematic			
		uncertainty	uncertainty			
ϕ_s [rad]	-0.087	0.036	0.021			
$\Delta\Gamma_s$ [ps ⁻¹]	0.0657	0.0043	0.0037			
Γ_s [ps ⁻¹]	0.6703	0.0014	0.0018			
$ A_{\parallel}(0) ^2$	0.2220	0.0017	0.0021			
$ A_0(0) ^2$	0.5152	0.0012	0.0034			
$ A_S ^2$	0.0343	0.0031	0.0045			
δ_{\perp} [rad]	3.22	0.10	0.05			
δ_{\parallel} [rad]	3.36	0.05	0.09			
$\delta_{\perp} - \delta_{S}$ [rad]	-0.24	0.05	0.04			

Comparison with CMS & LHCb:

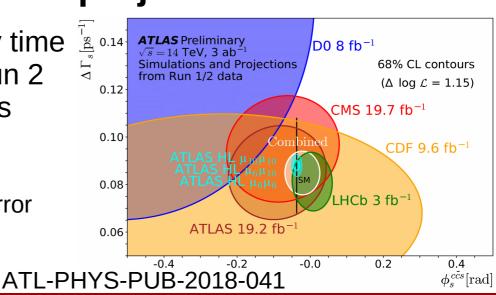


 ϕ_s = -0.087 ± 0.036 (stat) ± 0.021 (syst) rad $\Delta\Gamma_s$ = 0.0657 ± 0.0043 (stat) ± 0.0037 (syst) ps⁻¹


- \bullet ϕ_s result consistent with results from CMS, LHCb and SM
- Competitive single measurement of $\Delta\Gamma_s$, Γ_s and helicity parameters
- Still to add 60 fb⁻¹ of 2018 data

B_s → J/ψφ results: HFLAV average

HFLAV average for PDG21: $\phi_s = -0.050 \pm 0.019$ rad



Because of tensions, errors on Γ_s and $\Delta\Gamma_s$ scaled by 2.5 and 1.77

ATLAS $B_s \rightarrow J/\psi \phi$ results: HL-LHC projections

- Updated tracking (ITk): proper decay time resolution improved by 21% w.r.t. Run 2
- Three trigger scenarios for thresholds
- Improvements w.r.t. Run 1:
 - ϕ_s stat: better by \sim 9x to 20x
 - uncertainty on ϕ_s at least as the theory error
 - \circ ΔΓ_s stat: better by \sim 4x to 10x

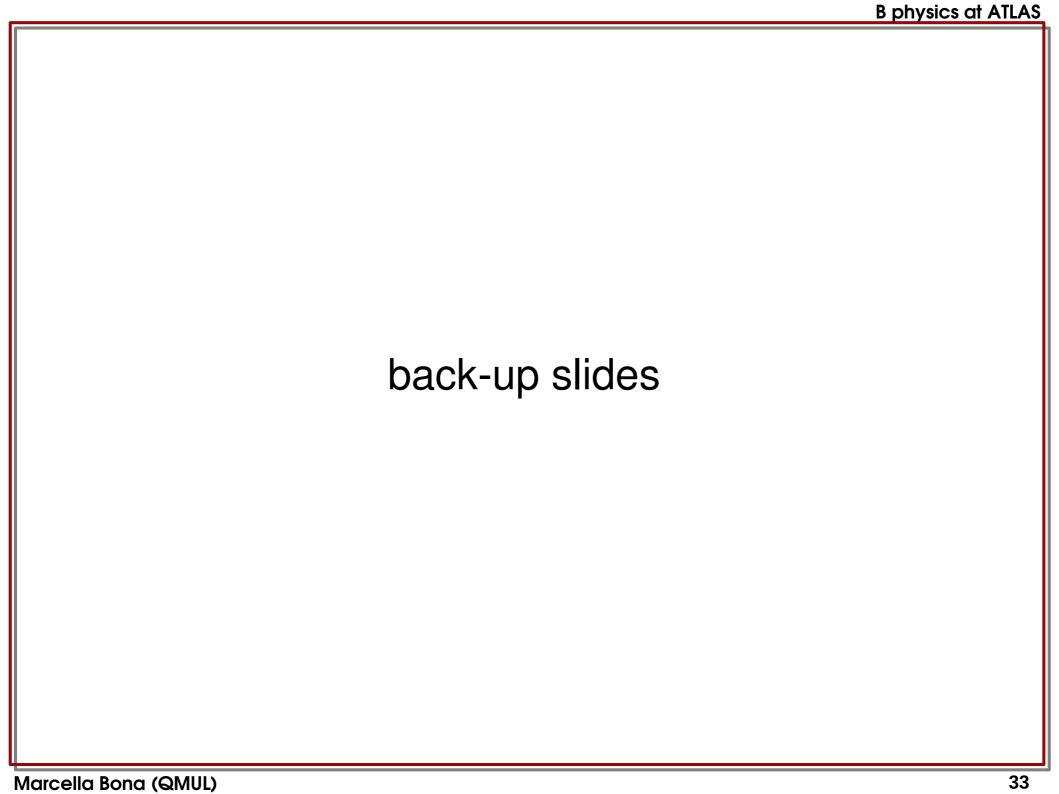
Brewing in ATLAS...

- → Time-dependent analysis ongoing on the 2018 to get to the whole 139 fb⁻¹ Run-2 data ongoing
- $oldsymbol{ iny}$ Includes λ and Δm_s among the fit parameters
- LHC combination group in stand-by for the updated analyses
- Stay tuned

Marcella Bona (QMUL) 31

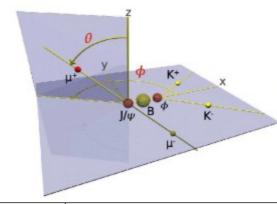
Conclusions

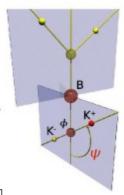
Thanks to accumulated statistical samples


Thanks to some detector performance (tracking)

 ${\color{red} \bullet}$ Perfect example the angular analysis of the golden mode $B_s \rightarrow J/\psi \phi$

Working on the updates of all analyses to full Run-2 statistics and preparing for Run 3


Time-dependent angular analysis of $B_s \rightarrow J/\psi \phi$


- Systematics:
 - Lifetime model: varying p_T bins and signal fraction
 - Backgrounds: $B_d / \Lambda_b / angular models varied / p_T bins varied$
 - Tagging: variation of the parameterisation / recalibration from MC samples / pile-up effects

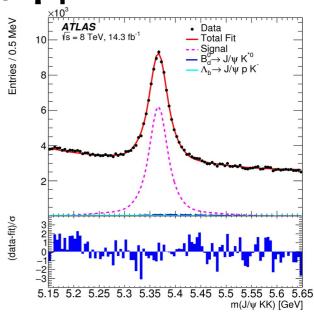
	ϕ_s	$\Delta\Gamma_s$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_{S}$
	$[10^{-3} \text{ rad}]$	$[10^{-3} \text{ ps}^{-1}]$	$[10^{-3} \text{ ps}^{-1}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3} \text{ rad}]$	$[10^{-3} \text{ rad}]$	10^{-3} rad
	[10 Iuu]	[10 ps]	[10 ps]	[IO]	[10]	[10]	[10 Idd]	[10 Idd]	[10 140
Tagging	19	0.4	0.3	0.2	0.2	1.1	17	19	2.3
ID alignment	0.8	0.2	0.5	< 0.1	< 0.1	< 0.1	11	7.2	< 0.1
Acceptance	0.5	0.3	< 0.1	1.0	0.9	2.9	37	64	8.6
Time efficiency	0.2	0.2	0.5	< 0.1	< 0.1	0.1	3.0	5.7	0.5
Best candidate selection	0.4	1.6	1.3	0.1	1.0	0.5	2.3	7.0	7.4
Background angles model:									
Choice of fit function	2.5	< 0.1	0.3	1.1	< 0.1	0.6	12	0.9	1.1
Choice of $p_{\rm T}$ bins	1.3	0.5	< 0.1	0.4	0.5	1.2	1.5	7.2	1.0
Choice of mass window	9.3	3.3	0.2	0.4	0.8	0.9	17	8.6	6.0
Choice of sidebands intervals	0.4	0.1	0.1	0.3	0.3	1.3	4.4	7.4	2.3
Dedicated backgrounds:									
B_d^0	2.6	1.1	< 0.1	0.2	3.1	1.5	10	23	2.1
Λ_b	1.6	0.3	0.2	0.5	1.2	1.8	14	30	0.8
Alternate Δm_s	1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	15	4.0	< 0.1
Fit model:									
Time res. sig frac	1.4	1.1	0.5	0.5	0.6	0.8	12	30	0.4
Time res. $p_{\rm T}$ bins	0.7	0.5	0.8	0.1	0.1	0.1	2.2	14	0.7
S-wave phase	0.3	< 0.1	< 0.1	< 0.1	< 0.1	0.2	8.0	15	37
Fit bias	5.7	1.3	1.2	1.3	0.4	1.1	3.3	19	0.3
Total	22	4.3	2.2	2.3	3.8	4.6	55	88	39

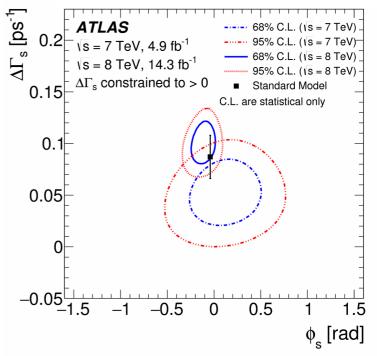
Time-dependent angular analysis of $B_s \rightarrow J/\psi \phi$

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}t\;\mathrm{d}\Omega} = \sum_{k=1}^{10} O^{(k)}(t) g^{(k)}(\theta_T,\psi_T,\phi_T),$$

k	$O^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\pm2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T (1 - \sin^2 \theta_T \sin^2 \phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[\left(1-\cos\phi_{s}\right)e^{-\Gamma_{L}^{(s)}t}+\left(1+\cos\phi_{s}\right)e^{-\Gamma_{H}^{(s)}t}\mp2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T \sin^2 \theta_T$
4	$\frac{1}{2} A_0(0) A_{ }(0) \cos\delta_{ }$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2\theta_T\sin 2\phi_T$
	$\left[(1 + \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)} t} + (1 - \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$	·
5	$ A_{\parallel}(0) A_{\perp}(0) \frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}$	$-\sin^2\psi_T\sin2\theta_T\sin\phi_T$
	$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))]$	
6	$ A_0(0) A_{\perp}(0) \frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
	$\pm e^{-\Gamma_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$	·
7	$\frac{1}{2} A_S(0) ^2 \left[(1 - \cos\phi_s) e^{-\Gamma_L^{(s)}t} + (1 + \cos\phi_s) e^{-\Gamma_H^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$\alpha A_S(0) A_{\parallel}(0) [\frac{1}{2} (e^{-\Gamma_L^{(s)} t} - e^{-\Gamma_H^{(s)} t}) \sin(\delta_{\parallel} - \delta_S) \sin \phi_S$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin2\phi_T$
	$\pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos\phi_s \sin(\Delta m_s t))]$	
9	$\frac{1}{2}\alpha A_S(0) A_\perp(0) \sin(\delta_\perp-\delta_S)$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
	$\left[(1 - \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)} t} + (1 + \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \mp 2 e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$	
10	$\alpha A_0(0) A_S(0) [\frac{1}{2} (e^{-\Gamma_{\rm H}^{(s)} t} - e^{-\Gamma_{\rm L}^{(s)} t}) \sin \delta_S \sin \phi_S$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
	$\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$,

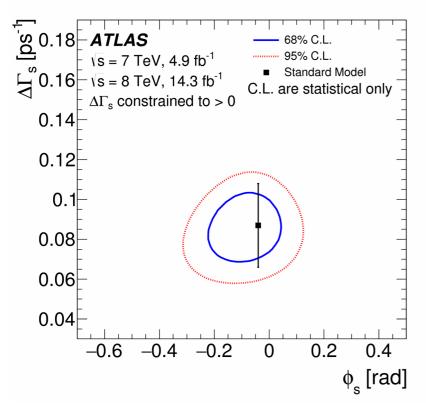
TD angular analysis of $B_s \rightarrow J/\psi \phi$

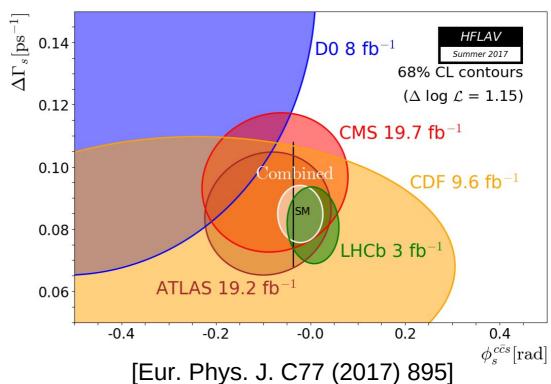

ATLAS Run-1 result:


- 14.3 fb⁻¹ of ATLAS data from 2012 at 8 TeV
- Results:

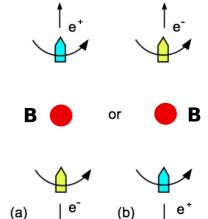
$$\phi_s$$
 = -0.090 ± 0.078 (stat) ± 0.041 (syst) rad $\Delta\Gamma_s$ = 0.085 ± 0.011 (stat) ± 0.007 (syst) ps⁻¹ [JHEP 08 (2016) 147]

- Agrees with SM
- Consistent with other experiments
- Consistent with previous analysis, using 2011 data at 7 TeV


[Phys. Rev. D 90, 052007 (2014)]
A Best Linear Unbiased Estimate (BLUE) combination used to combine 7 and 8 TeV measurements

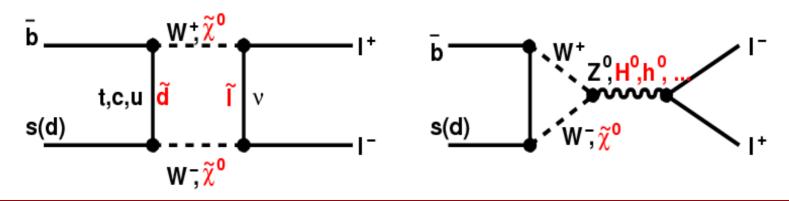


Time-dependent angular analysis of $B_s \rightarrow J/\psi \phi$


ATLAS combined Run-1 result:

Motivations and predictions

- Decays of B⁰ and B⁰_s into two leptons have to proceed through Flavour Changing Neutral Currents (FCNC)
 - → forbidden at tree level in the SM
- In addition, they are CKM and helicity suppressed.
- Within the SM, they can be calculated with small theoretical uncertainties of order 6-8%



${\bf meson}$		Lepton type	
$_{\mathrm{type}}$	e	$oldsymbol{\mu}$	au
$oldsymbol{B^0}$	$(2.48 \pm 0.21)10^{-15}$	$(1.06 \pm 0.09)10^{-10}$	$(2.22 \pm 0.19)10^{-8}$
B_s^0	$(8.54 \pm 0.55)10^{-14}$	$(3.65 \pm 0.23)10^{-9}$	$(7.73 \pm 0.49)10^{-7}$

Bobeth et al., PRL 112 (2104) 101801 [includes NLO EM and NNLO QCD

corrections]

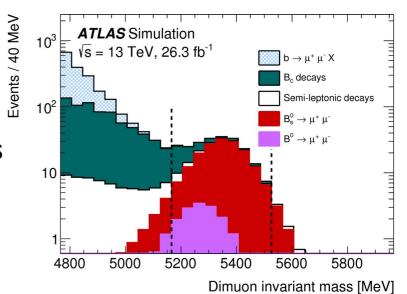
- Perfect ground for indirect new physics searches:
 - virtual new particles can contribute to the loop
 - both enhancement and suppression effects are possible

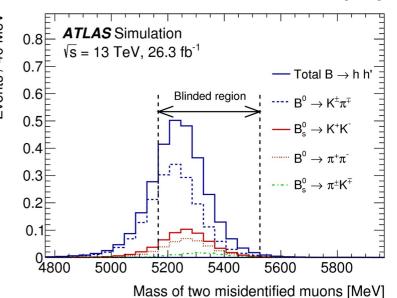
ATLAS analysis on 2015-2016 Run 2 data

JHEP 04 (2019) 098, arXiv:1812.03017

- 36.2/fb dataset of 2015-2016 data taking:
 - effectively 26.3/fb for B → μμ
 - 15.1/fb for B \rightarrow J/ $\psi\Phi$ and B \rightarrow J/ ψK
- Trigger: higher thresholds [4-6 GeV] than in Run1,
 - Lxy > 0 request at trigger level

$$\begin{split} \mathcal{B}(B_{(s)}^{0} \!\to\! \mu^{+}\mu^{-}) &= \frac{N_{d(s)}}{\varepsilon_{\mu^{+}\mu^{-}}} \times \frac{\varepsilon_{J/\psi K^{+}}}{N_{J/\psi K^{+}}} \times \frac{f_{u}}{f_{d(s)}} \\ &\times \left[\mathcal{B}(B^{+} \to J/\psi K^{+}) \times \mathcal{B}(J/\psi \to \mu^{+}\mu^{-}) \right] \end{split}$$

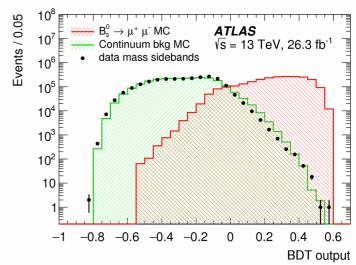

- correction for the different hadronisation probabilities for B⁰_S and B⁰ vs B[±]
- include the B[±] and J/y branching fractions
- correction for the efficiencies of the two channels
- normalisation yield and efficiency ratio define the factor:

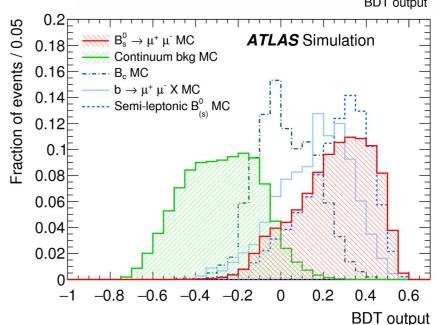

$$\mathcal{D}_{\text{norm}} = N_{J/\psi K^+} \left(\frac{\varepsilon_{\mu^+ \mu^-}}{\varepsilon_{J/\psi K^+}} \right)$$

Background contributions

In order of relative magnitude:

- combinatorial background:
 - two real muons from different b quarks
- partially reconstructed B decays:
 - two real muons
 - Same Vertex (SV): B → mmX decays
 - Same Side (SS): semileptonic decay cascades (b → cmn → s(d)mmnn)
 - B_c decays: like $B_c \rightarrow J/y$ mn
 - all these accumulate at low values of the dimuon invariant mass
- semileptonic B and B_s decays:
 - one real muon and a charged hadron.
- peaking background from charmless hadronic B_(S) decays:
 - B decays into two hadrons h (kaons and pions): $B^{0}_{(S)} \rightarrow hh'$
 - smaller component, but overlays with the signal in dimuon invariant mass


Tight muon-ID against hadron misidentification

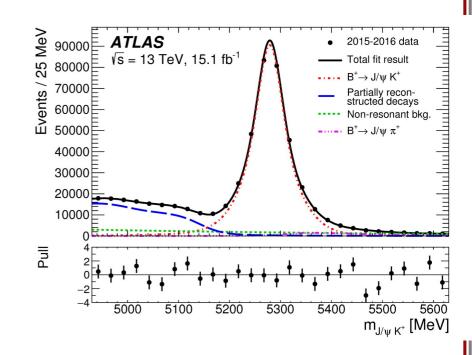

- mis-identification reduced by 0.39² using standard 'tight' ATLAS selections
- studied on simulated samples
- validated on control regions
- negligible misidentification of protons (< 0.01%)</p>
- misidentification is 0.08%(0.10%) for K(p).

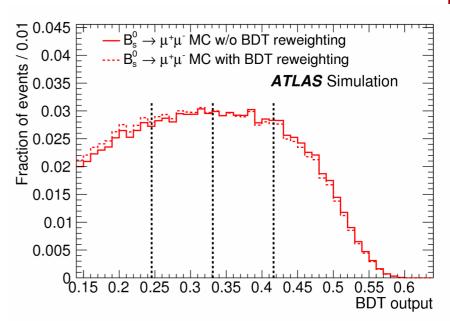
peaking-background events: 2.7±1.3

BDT against combinatorial bkg

- MVA classifier to discriminate from signal
- trained and tested on mass sidebands
 - divided in 3 subsets
 - 3 independent BDTs
 - compatible performance
- 15 variables related to properties of B candidates, muons from the B decay, other tracks from the same collision and to pile-up vertices.

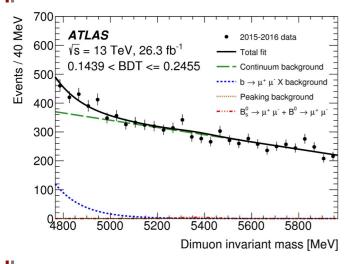
Normalisation B yield extraction

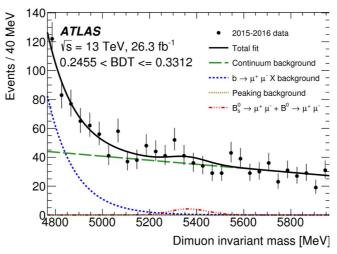

- unbinned maximum likelihood fit of the invariant mass m_{J/yK} → m_{mmK}
- cross-checked with raw relative yield of J/yp over J/yK ratio r_{p/K} = (3.71 ± 0.09)%

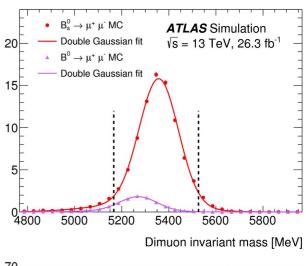

$$\mathcal{D}_{\text{norm}} = N_{J/\psi K^+} \left(\frac{\varepsilon_{\mu^+ \mu^-}}{\varepsilon_{J/\psi K^+}} \right)$$

Efficiency ratio $\varepsilon_{\mu\mu}/\varepsilon_{J/\psi K}$

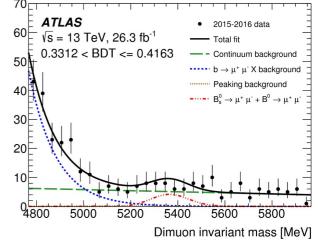
- efficiency ratio from MC
- systematic from data-MC discrepancies
- For B⁰_S: 2.7% correction for lifetime difference of the B⁰_S mass eigenstates

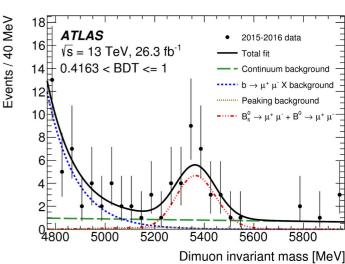

Source	Contribution (%)
Statistical	0.8
BDT Input Variables	3.2
Kaon Tracking Efficiency	1.5
Muon trigger and reconstruction	1.0
Kinematic Reweighting (DDW)	0.8
Pile-up Reweighting	0.6



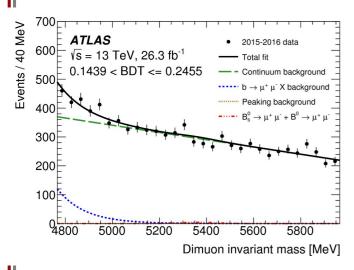


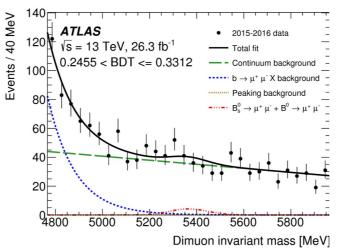
Signal yield extraction

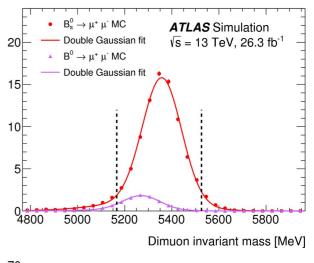

- signal yields extracted with a unbinned maximum likelihood fit to the dimuon mass
- fit performed simultaneously in four BDT bins
 - 18% signal efficiency



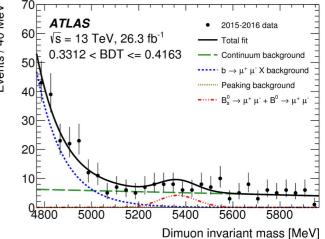
Events / 40 Me\

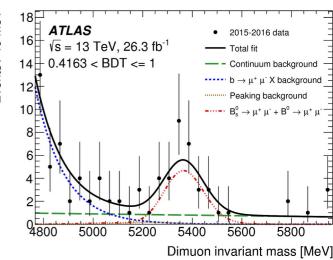



- continuum: first order polynomial
- partially reconstructed B: exponential
- semi-leptonic: exponential



Signal yield extraction

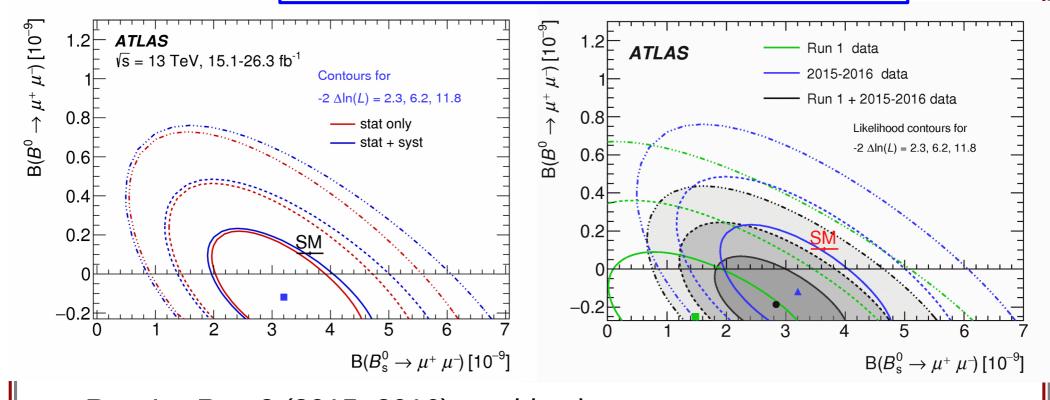

- yields unconstrained:
 - $N_S = 80 \pm 22$ and $N_d = -12 \pm 20$
- expected from the SM:
 - $N_S = 91 \pm and N_d = 10$


Events / 40 Me\

- consistent with Standard Model predictions
- likelihood maximum:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(3.21^{+0.90+0.48}_{-0.83-0.31}\right) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = \left(-1.3^{+2.2+0.7}_{-1.9-0.8}\right) \times 10^{-10}$$



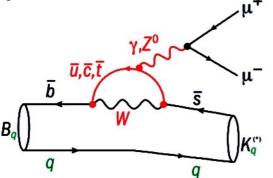
Combination of Run 1 and Run 2 results

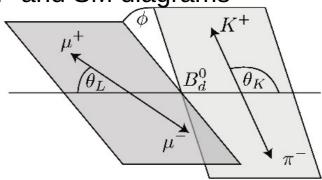
Neyman Contours yield for Run 2:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(3.21_{-0.91-0.30}^{+0.96+0.49}\right) \times 10^{-9} = \left(3.2_{-1.0}^{+1.1}\right) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.3 \times 10^{-10} \text{ @ 95\% CL}$$

Run 1 + Run 2 (2015+2016) combination: Compatible with SM at 2.4 σ


$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8^{+0.8}_{-0.7}) \times 10^{-9}$$


$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.1 \times 10^{-10}$$

Angular analysis on $B \rightarrow K^* \mu \mu$

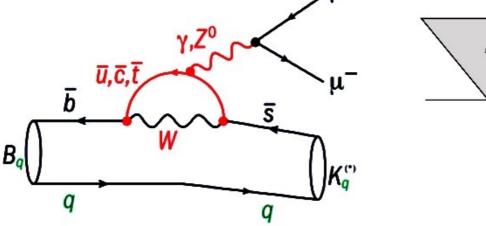
JHEP 10 (2018) 047, arXiv:1805.04000

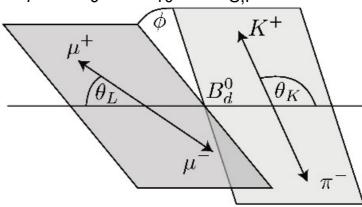
- \odot FCNC b to s transition with a BR $\sim 1.1 \cdot 10^{-6}$
- Angular distribution of the 4 particles in the final state sensitive to new physics for the interference of NP and SM diagrams

Decay described by three angles (q_L, q_K, f) and the di-muon mass squared q^2 → angular distribution in bins of q^2 as function of q_L , q_K and f.

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_\ell d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \left[\frac{3(1-F_L)}{4} \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1-F_L}{4} \sin^2\theta_K \cos 2\theta_\ell - F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right].$$

The S parameters are translated into the P⁽⁾ parameters via


$$P_1 = \frac{2S_3}{1 - F_L}$$
 $P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1 - F_L)}}$


with reduced dependence on the hadronic form factors.

Angular analysis on B \rightarrow K* $\mu\mu$

- \circ another way to look at FCNC: b \rightarrow s transition with a BR \sim 1.1 10^{-6}
- angular distribution of the 4 particles in the final state sensitive to new physics for the interference of NP and SM diagrams

 allows measuring a large set of angular parameters sensitive to Wilson coefficients C⁽⁺⁾₇, C⁽⁺⁾₉, C⁽⁺⁾₁₀, C⁽⁺⁾_{S.P}

- odecay described by three angles $(\theta_L, \theta_K, \phi)$ and the di-muon mass squared $q^2 \rightarrow$ the angular distribution is analysed in finite bins of q^2 as a function of θ_L , θ_K and ϕ .
- $_{\odot}$ LHCb reports a 3.4 σ deviation from the SM.

JHEP 02 (2016) 104 arXiv:1512.04442

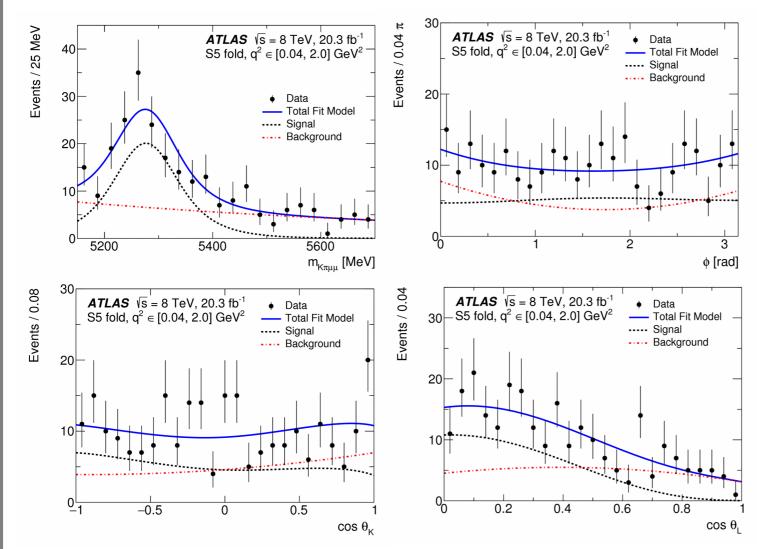
Angular analysis on B \rightarrow K* $\mu\mu$

- B⁰ flavour eigenstate can be identified through the $K^* \to K^- \pi^+$ decay
- angular distribution given by:

$$\begin{split} \frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_\ell d\cos\theta_K d\phi dq^2} &= \frac{9}{32\pi} \Bigg[\frac{3(1-F_L)}{4} \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1-F_L}{4} \sin^2\theta_K \cos 2\theta_\ell \\ &- F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi \\ &+ S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell \\ &+ S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi \\ &+ S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \Bigg]. \end{split}$$

the S parameters are translated into the P⁽¹⁾ parameters via

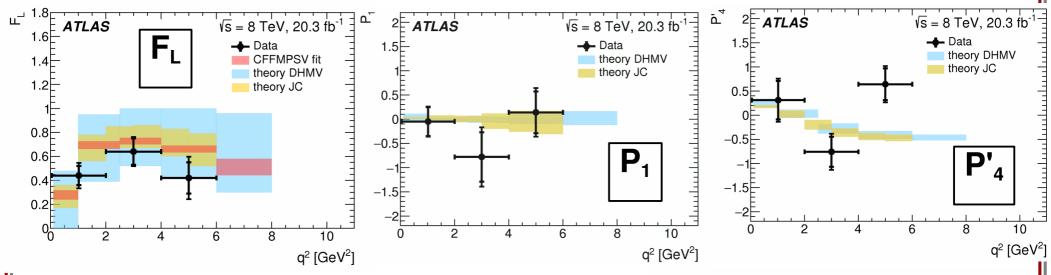
$$P_1 = \frac{2S_3}{1 - F_L}$$
 $P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1 - F_L)}}$

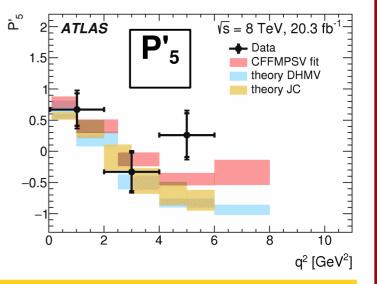

- the P^(*) parameters are expected to have a reduced dependence on the hadronic form factors.
- ATLAS and CMS need to fold the angular distribution via trigonometric relations to reduce the number of free parameters

Analysis strategy for $B \rightarrow K^* \mu \mu$

- Data collected in 2012 at 8 TeV with 20.3 fb⁻¹ Run 1 data
- Measured in 6 (overlapping) bins of q² in the range [0.04, 6] GeV²
- 4 sets of fits for three parameters (F_L, S_3) and S_i with j=4,5,7,8
- Selection of triggers with muon p_T thresholds starting at 4 GeV
- K* tagged by the kaon sign:
 - dilution from mistag probability included in (1-2<w>):
 - <w> ~ 10.9(1)% with small dependence on q²
- 787 events selected with q² < 6 GeV²
- Extended unbinned maximum likelihood fits in each of the fit variants in each q² bin:
 - two step fit procedure: first fit the invariant mass distribution
 - then add to the fit the angular distributions to extract the F_L and S(P) parameters
- Signal shape studies from control samples K*J/ψ and K*ψ(2S)

Fit projections

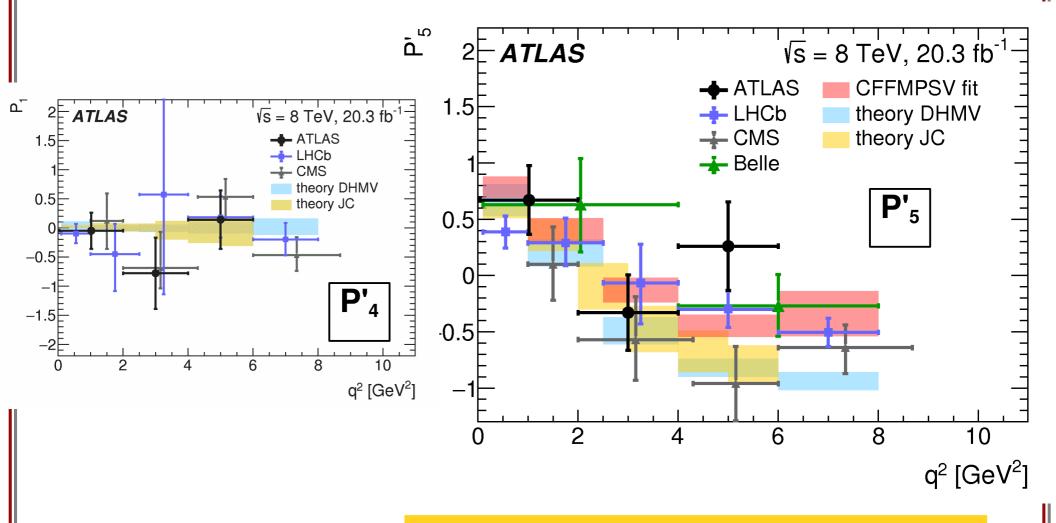

o fit m(K*μμ), $cos\theta_L$, $cos\theta_K$ and ϕ to isolate signal and extract parameters of interest.


- Data shown for [0.04,2.0] GeV²
- projections for the S₅ fit.
- Approx 106-128 signal events in 2 GeV² q² bin.
- Similar results for the other q² bins and other fit variants.

Angular analysis results

Results are compatible with theoretical calculations & fits:

$q^2 [\text{GeV}^2]$	P_{1}	P_4'	P_5'
[0.04, 2.0]	$-0.05 \pm 0.30 \pm 0.08$	$0.31 \pm 0.40 \pm 0.20$	$0.67 \pm 0.26 \pm 0.16$
[2.0, 4.0]	$-0.78 \pm 0.51 \pm 0.34$	$-0.76 \pm 0.31 \pm 0.21$	$-0.33 \pm 0.31 \pm 0.13$
[4.0, 6.0]	$0.14 \pm 0.43 \pm 0.26$	$0.64 \pm 0.33 \pm 0.18$	$0.26 \pm 0.35 \pm 0.18$
[0.04, 4.0]	$-0.22 \pm 0.26 \pm 0.16$	$-0.30 \pm 0.24 \pm 0.17$	$0.32 \pm 0.21 \pm 0.11$
[1.1, 6.0]	$-0.17 \pm 0.31 \pm 0.13$	$0.05 \pm 0.22 \pm 0.14$	$0.01 \pm 0.21 \pm 0.08$
[0.04, 6.0]	$-0.15 \pm 0.23 \pm 0.10$	$0.05 \pm 0.20 \pm 0.14$	$0.27 \pm 0.19 \pm 0.06$



OPE and LHCb data fit: CFFMPSV: Ciuchini et al.; JHEP 06 (2016) 116. QCD factorisation: DMVH: Decotes-Genon et al.; JHEP 12 (2014) 125.

JC: Jäger-Camalich; Phys. Rev. D93 (2016) 014028.

Angular analysis results

ATLAS gets deviations of about 2.5σ (2.7σ) from DHMV in P'₄(P'₅) in [4,6] GeV²

CFFMPSV: Ciuchini et al.; JHEP 06 (2016) 116.

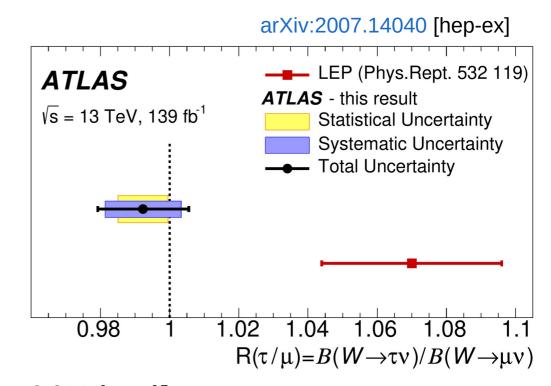
DHMV: Decotes-Genon et al.; JHEP 12 (2014) 125.

JC: Jäger-Camalich; Phys. Rev. D93 (2016) 014028.

TD angular analysis of $B_s \rightarrow J/\psi \phi$

ATL-PHYS-PUB-2018-041

Period	$L_{\rm int}$ [fb ⁻¹]	$N_{ m sig}$	$f_{ m sig}$	Tag Power [%]	$\sigma(\tau)$ [ps]	$\delta_{\phi_s}^{ m stat}$ [rad]	$\delta_{\Delta\Gamma_s}^{ m stat} \ [m ps^{-1}]$
						measured	measured
						(extrapolated)	(extrapolated)
2012	14.3	73693	0.20	1.49	0.091	0.082	0.013
2011	4.9	22690	0.17	1.45	0.100	0.25 (0.22)	0.021 (0.023)
						$\delta_{\phi_s}^{ m stat}$ [rad]	
						extrapolated	
HL-LHC	3000						
Trigger µ6µ6		$9.72 \cdot 10^{6}$	0.17	1.49	0.048	0.004	0.0011
Trigger μ10μ6		$5.93 \cdot 10^6$	0.17	1.49	0.044	0.005	0.0014
Trigger μ10μ10		$1.75 \cdot 10^6$	0.15	1.49	0.038	0.009	0.003


Around and outside B physics...

Test of the universality of τ and μ in W decays from tt events

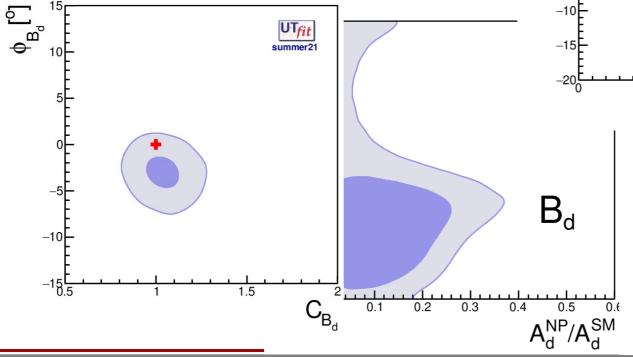
Muons from W and muons from tau distinguished using the lifetime of the τ , through the muon transverse impact parameter, and differences in the muon transverse momentum spectra.

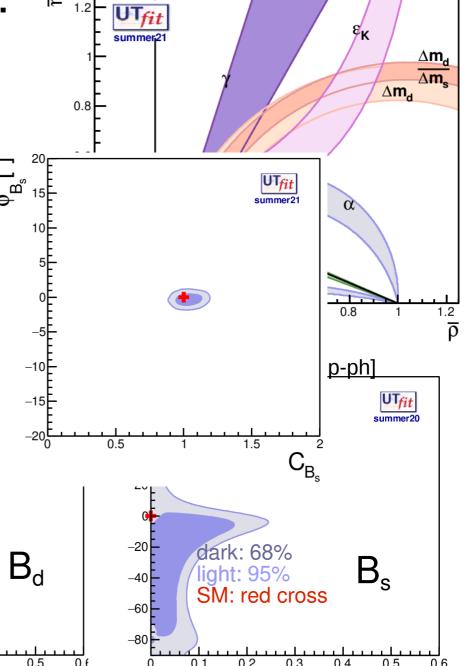
Tag and probe approach: tag leptons to select the events, probe muon from prompt decay, $W \to \mu \nu_{\mu}$, or via intermediate τ , $W \to \tau \nu_{\tau} \to \mu \nu_{\mu} \nu_{\tau} \nu_{\tau}$.

Di-leptonic tt events with either one electron and one muon (e $-\mu$ channel), or two muons (μ $-\mu$ channel).

 $R(\tau/\mu) = 0.992 \pm 0.013 [\pm 0.007 (stat) \pm 0.011 (syst)]$

CP violation in the SM and NP:


- ullet B_(s) systems are giving us a rather precise picture
 - However there is some space for NP
 - Could appear as new contributions in Δ[□]


loop processes

 $A_q = C_{B_q} e^{2i\phi_{B_q}} A_q^{SM} e^{2i\phi_{B_q}}$

$$A_q = \left(1 + \frac{A_q^{NP}}{A_q^{SM}} e^{2i(\phi_q^{NP} - \phi_q^{SM})}\right) A_q^{SM} e^{2i\phi_q^{SM}}$$

The ratio of NP/SM amplitudes need to be:

