Global neutrino data analyses

Iván Martínez Soler

8th Workshop on Theory, Phenomenology and Experiments in Flavour Physics

June 11, 2022

Neutrino evolution

In the 3ν scenario, neutrino evolution is described by the Schrödinger equation

$$i\frac{d\vec{\nu}}{dt} = \frac{1}{2E} \left[U^{\dagger} Diag(0, \Delta m_{21}^{2}, \Delta m_{31}^{2}) U \right] \vec{\nu} \qquad \qquad \vec{\nu} = (\nu_{e} \, \nu_{\mu} \, \nu_{\tau})^{T}$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-\delta_{cp}} \\ 0 & 1 & 0 \\ -s_{13}e^{\delta_{cp}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} P$$

In the case of Majorana neutrinos, we will have two extra phases

 $P = \operatorname{diag}(1, e^{i\phi_1}, e^{i\phi_2})$

The global fit goal is the determination of the six parameters describing the evolution.

Neutrino evolution

In the 3ν scenario, neutrino evolution is described by the Schrödinger equation

$$i\frac{d\vec{\nu}}{dt} = \frac{1}{2E} \left[U^{\dagger} Diag(0, \Delta m_{21}^2, \Delta m_{31}^2) U \right] \vec{\nu} \qquad \vec{\nu} = (\nu_e \, \nu_\mu \, \nu_\tau)^T$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-\delta_{cp}} \\ 0 & 1 & 0 \\ -s_{13}e^{\delta_{cp}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} P$$

Experiment	Dominant	Important
Solar	θ_{12}	$\Delta m_{21}^2, \theta_{13}$
Reactor LBL	Δm_{21}^2	$ heta_{12}, heta_{13}$
Ractor MBL	θ_{13}	$\left \Delta m_{3l}^2\right $
Atmospheric	θ_{23}	$\left \Delta m_{3l}^2\right , \theta_{13}, \delta_{CP}$
Accelerator LBL ν_{μ} Disapp	$\left \Delta m_{3l}^2\right , \theta_{23}$	
Accelerator LBL ν_e App	δ_{CP}	$\theta_{13}, \theta_{23}, \operatorname{sign}\left(\Delta m_{3l}^2\right)$

Reactor neutrinos

In reactor experiments, a flux of $\overline{\nu_e}$ with energies around $\sim {\rm MeV}$

▶ At distances of $\sim 1 \text{ km}$

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \Delta_{ee}$$
$$\Delta m_{ee}^2 = \cos^2 \theta_{12} |\Delta m_{31}^2| + \sin^2 \theta_{12} |\Delta m_{32}^2|$$

- Reactor neutrinos are sensitive to θ_{13} and Δm_{31}^2 .
- ► Double-Chooz, RENO and Daya Bay established that $\theta_{13} \neq 0$

 $\sin^2 2\theta_{13} = 0.0853 \pm 0.0024$

Phys. Rev. D95, 072006 (2017)

Reactor flux uncertainties

The reevaluation of the $\overline{\nu}_e$ flux determined a deficit in the experimental data.

The ratio of measured over the predicted flux shows an excess at 5 MeV.

K. Kwang Joo (RENO), NEUTRINO 2022

- New evaluations of the flux aliviate those tensions
- ▶ The uncertainties do not affect the results because they are based on a near/far comparison.

Reactor neutrinos: determination of Δm^2_{31}

The spectral information from reactor experiments make possible the determination of Δm^2_{31}

- ▶ Near detector imposes an upper bound over Δm_{31}^2 .
- ► The oscillations measured at the far detector impose lower bound on θ_{13} and Δm_{31}^2

K. Luk (Daya Bay), NEUTRINO 2022

K. Kwang Joo (RENO), NEUTRINO 2022

Solar neutrinos

Solar neutrinos are produced by nuclear fusions reactions: pp chains and CNO cycles

Determination of the solar parameters $(\Delta m_{21}^2, \theta_{21})$

▶ For solar neutrinos ∆m²₃₁ >> E/L, the electron survival probability can be written as

$$\begin{split} P_{ee}^{3\nu} &\approx \cos^2 \theta_{13} \cos^2 \theta_{13}^m P_{eff}^{2\nu} (\Delta m_{21}^2, \theta_{12}) \\ &+ \sin^2 \theta_{13}^m \sin^2 \theta_{13} \end{split}$$

▶ For neutrinos created in high densities

$$P_{eff}^{2\nu}(\Delta m_{21}^2, \theta_{12}) = \frac{1}{2}(1 + \cos\theta_{12}^m \cos\theta_{12})$$

- Solar neutrino experiment are mainly sensitive to θ_{12} .
- There is a small dependence on Δm_{21}^2 .
- θ_{13}^m carries a slight dependence with Δm_{31}^2 .
- The constraints over θ_{12} are mainly driven by SK+SNO .
- The results are independent of Solar model used.

Day-night assymetry

$$A_{D/N} = \frac{\Phi_{\text{day}} - \Phi_{\text{night}}}{0.5 * \Phi_{\text{day}} - \Phi_{\text{night}}} \qquad A_{D/N} = -3.1\% \quad \rightarrow \quad -2.1\%$$

Long-baseline reactor: Determination of Δm_{21}^2 and θ_{21}

Atmospheric neutrinos

Created in the collisions of cosmic rays with the atmosphere.

$$\begin{split} \pi^{\pm} &\to \mu^{\pm} + \nu_{\mu}(\overline{\nu_{\mu}}) \\ K^{\pm} &\to \mu^{\pm} + \nu_{\mu}(\overline{\nu_{\mu}}) \\ \mu^{\pm} &\to e^{\pm} + \nu_{e}(\overline{\nu_{e}}) + \nu_{\mu}(\overline{\nu_{\mu}}) \end{split}$$

E. Richard et al. (SK), Phys.Rev.D 94 (2016) 5, 052001

Atmospheric neutrinos

In matter, the evolution is affected by the matter potential

$$i\frac{d\vec{\nu}}{dt} = \frac{1}{2E} \left[U^{\dagger} Diag(0, \Delta m_{21}^2, \Delta m_{31}^2) U \pm V_{mat} \right] \vec{\nu}$$

$$V_{mat} = \sqrt{2}G_F N_e \text{Diag}(1,0,0)$$

Atmospheric neutrinos: sub-GeV

For E < 1 GeV, the CP-violation term is enhanced due to the development Δm_2^2 .

 $P_{CP} = -8J_{CP}^{max}\sin\delta_{CP}\sin\Delta_{21}\sin\Delta_{31}\sin\Delta_{32}$

• For
$$E > 1$$
, $\sin(\Delta_{21}) << 1$

For E < 1, $\sin(\Delta_{31})\sin(\Delta_{32}) \sim 1/2$

For $\delta \neq 0$, the CPT conservation implies

 $P(\nu_{\mu} \to \nu_{e}) \neq P(\nu_{e} \to \nu_{\mu})$

• The impact of δ_{cp} depends on the neutrino direction

Atmospheric neutrinos: multi-GeV

In the multi-GeV region, atmospheric neutrinos are sensitive to Δm^2_{31} and θ_{23}

At the GeV scale, there is resonant flavor conversion. Neutrinos are sensitive to the mass ordering:

- The matter effect enhances the oscillation of ν ($\overline{\nu}$) for NO (IO)
- ▶ There is an enhancement of θ_{13}

1.0

$$a^{\frac{3}{2}}$$
 0.5
0.0
1.0
 $a^{\frac{9}{2}}$ 0.5
0.0
Normal Ordering
1.0
 $a^{\frac{9}{2}}$ 0.5
0.0
Normal Ordering
1.0
 $a^{\frac{9}{2}}$ 0.5
0.0
 $b^{\frac{1}{2}}$
 b^{\frac

$$E_r \simeq 5.3 \text{GeV}\left(\frac{\Delta m_{31}^2}{2.5 \times 10^{-3} \text{eV}^2}\right) \left(\frac{\cos 2\theta}{0.95}\right) \left(\frac{\rho}{6 \text{g/cc}}\right)$$

Long-baseline accelerators

Long-baseline experiments are sensitive to Δm^2_{31} and θ_{23} in the $\nu_\mu\text{-disappearance}$ channel

	Experiment	Energy	Baseline
$P \sim 1 - \sin^2 2\theta \sin^2 \frac{\Delta m_{\mu\mu}^2 L}{\Delta m_{\mu\mu}^2}$	T2K	$\sim 0.6 { m ~GeV}$	$\sim 300 \text{ km}$
$I \mu \mu = 1$ $\sin 20 \mu \mu \sin 4E$	NOvA	$\sim 2 { m GeV}$	$\sim 800~{\rm km}$
	MINOS	$\sim 3 { m GeV}$	$\sim 735~{\rm km}$
where	MINOS+	$\sim 7 { m ~GeV}$	$\sim 735~{ m km}$

$$\sin^{2} \theta_{\mu\mu} = \cos^{2} \theta_{13} \sin^{2} \theta_{23}$$
$$\Delta m_{\mu\mu}^{2} = \sin^{2} \theta_{12} \Delta m_{31}^{2} + \cos^{2} \theta_{12} \Delta m_{32}^{2} + \cos \delta_{cp} \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23} \Delta m_{21}^{2}$$

 P_{µµ} is symmetric around θ₂₃ = 45. It can discriminate whether θ₂₃ is maximal mixing or not

Long-baseline accelerators

In the apperance channel $(\nu_{\mu} \rightarrow \nu_{e})$, LBL are sensitive to:

Ivan Martinez Soler (Harvard U.)

17/32

Tension between NOvA and T2K

The new data from NOvA and T2K show tension in the determination of δ_{cp} for NO

See also Kelly, Machado, Parke, Perez-Gonzalez and Funchal Phys.Rev.D. 103 (2021) 1

Status of δ_{cp}

▶ The combined analysis of LBL has a preference for $\delta_{cp} \sim 180$ in NO and close to maximal CP-violation for IO

Ivan Martinez Soler (Harvard U.)

Δm^2_{31} and the mass ordering

The combination between LBL and reactors leads to a preference for NO lower than 2σ .

- Each LBL has a preference for NO
- The tension between T2K and NOvA leads a preference for IO
- Combining LBL $(\Delta m^2_{\mu\mu})$ and reactors (Δm^2_{ee}) , we get a preference for NO of $\sim 2\sigma$
- Super-K increases the preference for NO upto $\sim 2.7\sigma$

Status of the 3ν mixing scenario

The best-fit values and the 1σ region for each parameter are:

Param.	Best-fit	Prec
θ_{12}	33.44	4%
θ_{13}	8.57	2.8%
θ_{23}	49.2	2.8%
δ_{cp}	197	
Δm_{21}^2	$7.4 \times 10^{-5} \mathrm{eV}^2$	$\sim 3\%$
Δm_{31}^2	$2.5 \times 10^{-3} \mathrm{eV}^2$	$\sim 1\%$

The less constrained parameters are:

- Mass ordering
- Octant of θ_{23}
- CP-phase

Future sensitivity with atmospheric neutrinos

Measuring the atmospheric neutrino flux

In the near future we are going to have a more precise measurement of the atmospheric neutrino flux

Super-K

- ▶ 22.5 kton water Cherenkov
- Event sample divided in: FC, PC and Up- μ
- Low directionality for sub-GeV ν
- Currently, SK is using Gd-tagging

IceCube-upgrade

- ▶ $\sim 1 \text{km}^3$ ice Cherenkov
- Events sample divided in: cascades and tracks
- The upgrade will lower the $E \ge 1 \text{ GeV}$

Combined analysis: θ_{23} and Δm_{31}^2

Making a combined analysis of SK and IceCube-upgrade, we have estimated the sensitivity of δ_{cp} , θ_{23} and the **mass ordering**

- Adding both experiments, we can resolve the octant of θ₂₃ at 2σ
- The measurement of Δm_{31}^2 is dominated by IC

C. Argüelles, P. Fernandez, I. Martinez-Soler, M. Jin, in preparation

Ivan Martinez Soler (Harvard U.)

Separate and Combined Sensitivities

Combined analysis: mass ordering

- The sensitivity to the ordering is dominated by the tracks crossing the core in IC-upgrade
- We expect a sensitivity at 5σ by the end of the decade

C. Argüelles, P. Fernandez, I. Martinez-Soler, M. Jin, in preparation

Combined analysis: δ_{cp}

The sensitivity to δ_{cp} is dominated by Super-kamiokande

- The samples that dominate the sensitivity are the e-like and μ-like with no neutron tagged
- By the end of the decade, we expect a sensitivity larger than 2σ just with atmospheric neutrinos

C. Argüelles, P. Fernandez, I. Martinez-Soler, M. Jin, in preparation

Conclusions

- The 3ν mixing scenario explains with a good accuracy most of the data measured in reactors, accelerators, solar and atmospheric neutrinos.
 - ▶ LBL and reactors shows a preference for NO lower than 2σ . If SK is included, the significance increases to $\sim 2.7\sigma$
 - Both octants for θ_{23} are still possible.
 - ▶ For NO, $\delta_{CP} \sim 195$. In the case of IO, the CP phase remains close to the maximal violation.
- ▶ In the future, atmospheric neutrinos can provide valuable information about the less constraints parameters:
 - The ordering can be resolved to $\sim 5\sigma$.
 - The octant of θ_{23} can be excluded 2σ .
 - Some values of θ_{cp} can be explored at more than 2σ .

Thank you!

Backup: Comparison between global analysis

Comparison between different global fits

	Esteban et al., [1]	Capozzi et al.,[2]	Salas et al.,[3]
$\sin^2 heta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.303\substack{+0.01\\-0.013}$	$0.318\substack{+0.16\\-0.16}$
$\sin^2 heta_{23}$	$0.573\substack{+0.018\\-0.023}$	$0.455_{-0.015}^{+0.018}$	$0.574\substack{+0.14\\-0.14}$
$\sin^2 heta_{13}$	$0.0222\substack{+0.00068\\-0.00062}$	$0.0223\substack{+0.0007\\-0.0006}$	$0.022\substack{+0.00069\\-0.00069}$
δ_{CP}	194^{+52}_{-25}	234^{+41}_{-32}	218^{+38}_{-27}
$\frac{\Delta m_{21}^2}{10^{-5} {\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$7.36\substack{+0.16 \\ -0.15}$	$7.50^{+0.22}_{-0.20}$
$\frac{\Delta m_{31}^2}{10^{-3} {\rm eV}^2}$	$2.515_{-0.031}^{+0.033}$	$2.458^{+0.023}_{-0.029}$	$2.55_{-0.03}^{+0.02}$

 I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, JHEP 09 (2020) 178, www.nu-fit.org

[2] F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri, and A. Palazzo, Phys.Rev.D 104 (2021) 8

[3] P.F. de Salas, D.V. Forero, S. Gariazzo, P. Martinez-Mirave, O. Mena C.A. Ternes, M. Tortola, J.W.F. Valle, JHEP 02 (2021) 071

KamLAND and the 5 MeV excess

- There is no a near detector in KamLAND.
- the flux can be affected by the excess around $E_{\nu} \sim 5$ MeV.
- There is a small impact on the determination of Δm_{21}^2

Backup: Status of the mixing parameters

NuFIT 5.1 (2021)

Backup: Unitarity triangle

$$\begin{split} |U|_{3\sigma}^{\text{w/o SK-atm}} &= \begin{pmatrix} 0.801 \rightarrow 0.845 & 0.513 \rightarrow 0.579 & 0.143 \rightarrow 0.156 \\ 0.232 \rightarrow 0.507 & 0.459 \rightarrow 0.694 & 0.629 \rightarrow 0.779 \\ 0.260 \rightarrow 0.526 & 0.470 \rightarrow 0.702 & 0.609 \rightarrow 0.763 \\ |U|_{3\sigma}^{\text{with SK-atm}} &= \begin{pmatrix} 0.801 \rightarrow 0.845 & 0.513 \rightarrow 0.579 & 0.144 \rightarrow 0.156 \\ 0.244 \rightarrow 0.499 & 0.505 \rightarrow 0.693 & 0.631 \rightarrow 0.768 \\ 0.272 \rightarrow 0.518 & 0.471 \rightarrow 0.669 & 0.623 \rightarrow 0.761 \\ \end{pmatrix}$$

 $J_{CP} = \operatorname{Im}\left[U_{\alpha i}U_{\alpha j}^{*}U_{\beta i}U_{\beta j}^{*}\right]$

Ivan Martinez-Soler (Fermilab and Northwestern U.)

32 / 32