

Istituto Nazionale di Fisica Nucleare Sezione di Napoli

Neutral current *B*-decay anomalies

Siavash Neshatpour INFN, Sezione di Napoli

In collaboration with T. Hurth, N. Mahmoudi, D. Martinez Santos Based on: [arXiv:1904.08399, arXiv:2012.12207 and arXiv:2104.10058]

8th Workshop on Theory, Phenomenology and Experiments in Flavour Physics FPCapri2022

June 11 – 13, 2022

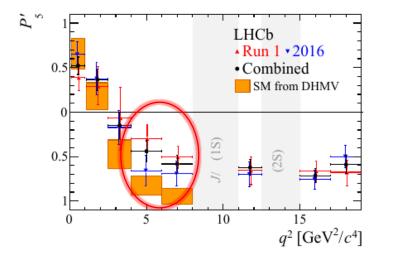
$b \rightarrow s \ell \ell$ anomalies

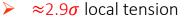
$B ightarrow K^* \mu \mu$ angular observables

Several deviations ("anomalies") with respect to the SM predictions in $b \rightarrow s\ell\ell$ measurements

• $P'_5 (B \to K^* \mu^+ \mu^-)$: Long standing tension since 2013

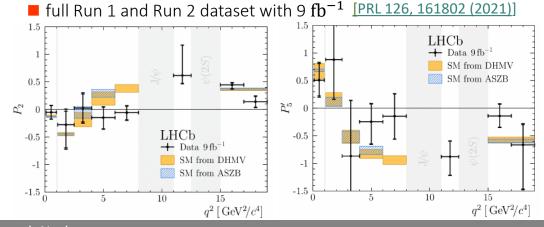
2020 LHCb update with 4.7 fb⁻¹ [PRL 125, 011802 (2021)]





→ significance depends on estimation of hadronic contributions

• First measurement of $B^+ \to K^{*+} \mu^+ \mu^-$ angular observables

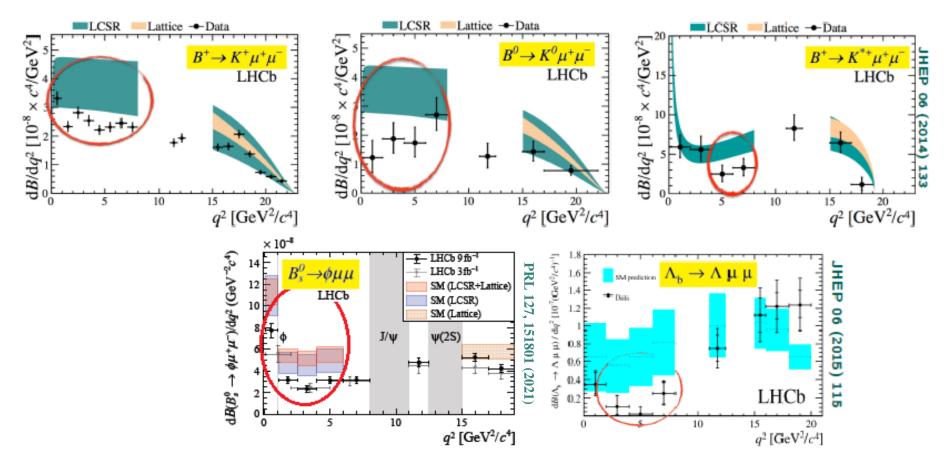


 overall results confirm the trend of tension with respect to the SM

Branching ratios

Several deviations ("anomalies") with respect to the SM predictions in $b \rightarrow s\ell\ell$ measurements

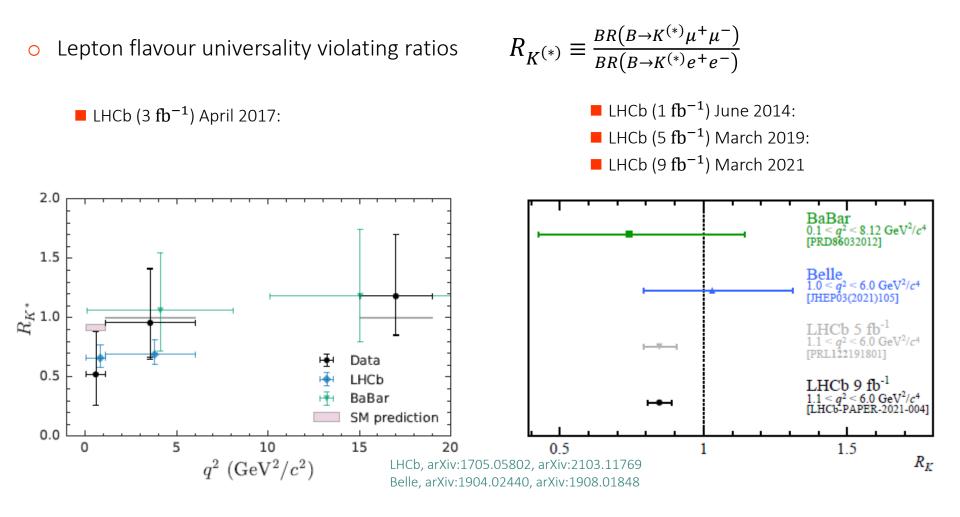
o Branching fractions



igsquire Measurements below SM predictions with $\sim 2-3\sigma$ significance

Large theory uncertainties (several form factors involved)

Lepton flavour universality violation in $b o s \ \ell^+ \ell^-$ decays



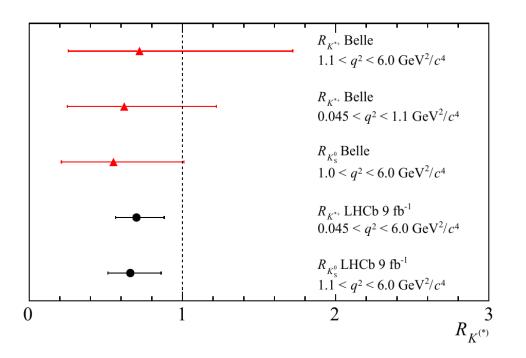
SM prediction very accurate with uncertainty less than (3%) 1%

□ LHCb measurement below SM with (2.3σ) & 2.5σ for R_{K^*} and 3.1σ for $R_K \rightarrow \#$ cautiously excited

• Lepton flavour universality violating ratios

$$R_{K_{S}^{0}(K^{*+})} \equiv \frac{BR(B \to K_{S}^{0}(K^{*+})\mu^{+}\mu^{-})}{BR(B \to K_{S}^{0}(K^{*+})e^{+}e^{-})}$$

■ LHCb (9 fb⁻¹) October 2021



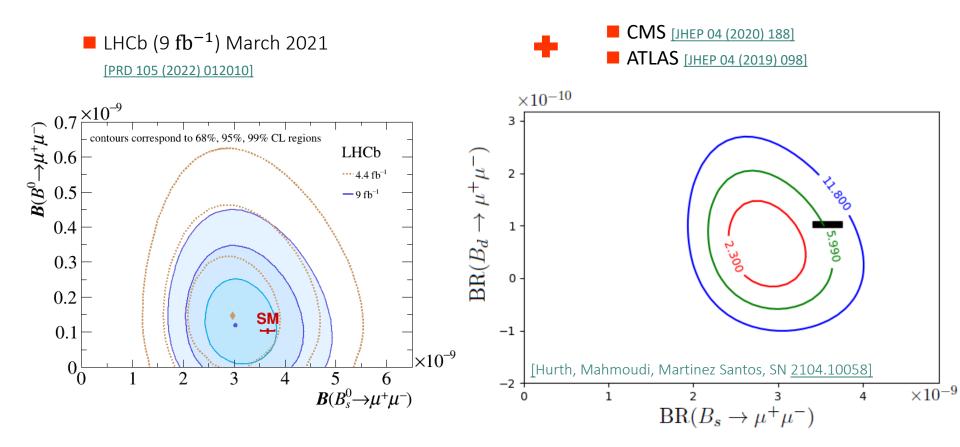
LHCb, arXiv:2110.09501 Belle, arXiv:1904.02440, Belle,arXiv:1908.01848

SM prediction very accurate with uncertainty less than 1%

LHCb measurement only slightly below SM with less than 2σ but consistent with the trend observed in their isospin partners

 $\mathsf{BR}(\overline{B}\to\mu^+\overline{\mu^-})$

Combination of LHCb, CMS and ATLAS measurement for $BR(B_{s,d} \rightarrow \mu^+\mu^-)$



 \Box Theory uncertainties $\lesssim 5\%$

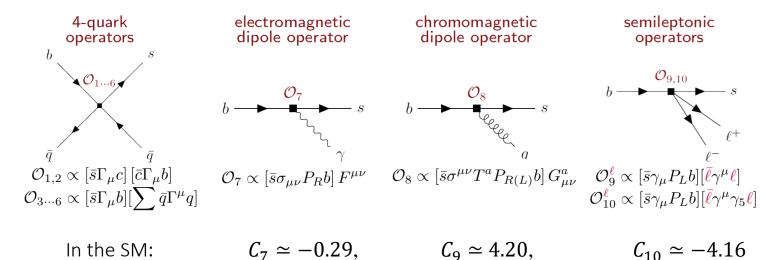
 \Box The SM prediction is near 2σ contour

Theoretical Framework

Theoretical framework: Weak Effective Hamiltonian

Separation between low and high energies using Operator Product Expansion

$$\mathcal{H}_{ ext{eff}} = -rac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big(\sum_{i=1\cdots 10,S,P} ig(C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu) ig) \Big)$$



Additional operators: Chirality flipped (O'_i) , (pseudo)scalar $(O_S \text{ and } O_P)$

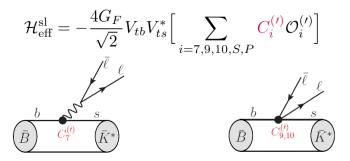
- □ Wilson coefficients $C_i \rightarrow C_i^{SM} + \delta C_i^{NP}$: perturbative, short-distance physics (q^2 independent), well-known in the SM
- Matrix elements of local operators: non-perturbative, long-distance physics (q² dependent), main source of uncertainty

Siavash Neshatpour

Theoretical framework: Matrix elements for $B o M\ell\ell$ ($M = K, K^*, \phi$)

Effective Hamiltonian has two parts:

$$\mathcal{H}_{ ext{eff}} = \ \mathcal{H}_{ ext{eff}}^{ ext{sl}} + \ \mathcal{H}_{ ext{eff}}^{ ext{had}}$$



 $\langle M\ell\ell | \mathcal{H}_{\text{eff}}^{\text{sl}} | B \rangle \propto \mathcal{A}_{V}^{\mu} \, \bar{u}_{\ell} \gamma_{\mu} v_{\ell} + \mathcal{A}_{A}^{\mu} \, \bar{u}_{\ell} \gamma_{\mu} \gamma_{5} v_{\ell} + \mathcal{A}_{S} \, \bar{u}_{\ell} v_{\ell} + \mathcal{A}_{P} \, \bar{u}_{\ell} \gamma_{5} v_{\ell}$

local contributions:

$$\mathcal{A}_V^{\mu} = -\frac{2im_b}{q^2} C_7 \langle M | \bar{s} \, \sigma^{\mu\nu} q_\nu \, P_R \, b | B \rangle + C_9 \langle M | \bar{s} \, \gamma^\mu \, P_L \, b | B$$

 $\mathcal{A}^{\mu}_{A} = C_{10} \langle M | \bar{s} \, \gamma^{\mu} \, P_L \, b | B \rangle$

 $\mathcal{A}_{S,P} = C_{S,P} \langle M | \bar{s} P_R b | B \rangle$

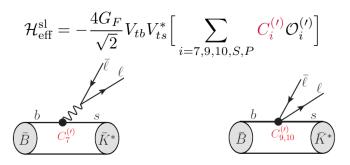
- **3** form factors for final state M = K
- **7** form factors for final state $M = K^*$, ϕ

Determined by Lattice QCD (high q^2), Light-Cone Sum Rules (low q^2) and combined fit of LCSR + Lattice (low + high q^2)

Ball et al' '04; Khodjamirian et al. '10; HPQCD '13; Altmannshofer et al. '14; Bharucha et al. '15; MILC '15 ; Horgan et al. '15; Gubernari et al. '18

Theoretical framework: Matrix elements for $B o M\ell\ell$ ($M = K, K^*, \phi$)

Effective Hamiltonian has two parts:



 $\langle M\ell\ell | \mathcal{H}_{\text{eff}}^{\text{sl}} | B \rangle \propto \mathcal{A}_{V}^{\mu} \, \bar{u}_{\ell} \gamma_{\mu} v_{\ell} + \mathcal{A}_{A}^{\mu} \, \bar{u}_{\ell} \gamma_{\mu} \gamma_{5} v_{\ell} + \mathcal{A}_{S} \, \bar{u}_{\ell} v_{\ell} + \mathcal{A}_{P} \, \bar{u}_{\ell} \gamma_{5} v_{\ell}$

local contributions:

$$\mathcal{A}_V^{\mu} = -\frac{2im_b}{q^2} C_7 \langle M | \bar{s} \, \sigma^{\mu\nu} q_\nu \, P_R \, b | B \rangle + C_9 \langle M | \bar{s} \, \gamma^\mu \, P_L \, b | B \rangle$$

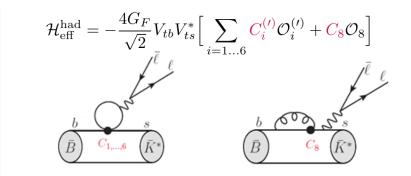
$$\mathcal{A}^{\mu}_{A} = C_{10} \langle M | \bar{s} \, \gamma^{\mu} \, P_{L} \, b | B \rangle$$

 $\mathcal{A}_{S,P} = C_{S,P} \langle M | \bar{s} P_R b | B \rangle$

- 3 form factors for final state M = K
- **7** form factors for final state $M = K^*$, ϕ

Determined by Lattice QCD (high q^2), Light-Cone Sum Rules (low q^2) and combined fit of LCSR + Lattice (low + high q^2)

Ball et al' '04; Khodjamirian et al. '10; HPQCD '13; Altmannshofer et al. '14; Bharucha et al. '15; MILC '15 ; Horgan et al. '15; Gubernari et al. '18



 $\langle M\ell\ell | \mathcal{H}_{\text{eff}}^{\text{had}} | B \rangle \propto \mathcal{N}^{\mu} \bar{u}_{\ell} \gamma_{\mu} v_{\ell}$

non-local contributions:

$$\mathcal{H}^{\mu} = \frac{-16i\pi^2}{q^2} \sum_{i=1,\dots,6,8} C_i \int dx^4 e^{iq \cdot x} \langle M | T\{j^{\mu}_{\rm em}(x), O_i(0)\} | B \rangle$$
$$j^{\mu}_{\rm em} = \sum Q_a \, \bar{q} \gamma^{\mu} q$$

Calculated for low q^2 at LO in QCD factorization (QCDf) Beneke et al '01 and '04

higher powers not fully known ("guesstimated")

 \hookrightarrow recent progress using analyticity + experimental data on $b \to sc\bar{c}$ show these corrections should be small

Bobeth et al. '17, Gubernari, et al. '20 and '22

 $\mathcal{H}_{ ext{eff}} = \mathcal{H}_{ ext{eff}}^{ ext{sl}} + \mathcal{H}_{ ext{eff}}^{ ext{had}}$

 $B \rightarrow K^* \ell \ell$ matrix elements:

local contributions: $\langle K^* | \mathcal{H}_{\text{eff}}^{\text{sl}} | B \rangle : \tilde{V}_{\lambda}(q^2), \tilde{T}_{\lambda}(q^2), \tilde{S}(q^2)$ non-local contributions: $\langle K^* | \mathcal{H}_{\text{eff}}^{\text{had}} | B \rangle : \mathcal{N}_{\lambda} \to [\text{LO from QCDf at low } q^2 + h_{\lambda}(q^2)]$

 $B \to K^* \ell \ell$ helicity amplitudes:

$$H_V(\lambda) = -iN' \left\{ (C_9 - C_9') \,\tilde{V}_\lambda(q^2) + \frac{m_B^2}{q^2} \left[\frac{2m_b}{m_B} \left(C_7 - C_7' \right) \tilde{T}_\lambda(q^2) - 16\pi^2 \mathcal{N}_\lambda(q^2) \right] \right\}$$

$$H_A(\lambda) = -iN'(C_{10} - C'_{10})\,\tilde{V}_{\lambda}(q^2)$$

$$H_P(\lambda) = iN' \left\{ \frac{2m_\ell m_b}{q^2} (C_{10} - C'_{10}) \,\tilde{S}(q^2) \right\}$$

 \Box Non-local contribution can mimic New Physics in $C_{7,9}$

 \succ To distinguish hadronic effects from NP in $C_{7,9}$ good control over hadronic contributions needed

Similar situation for $B_s \to \phi \ell \ell$ and $B \to K \ell \ell$

In the LFUV ratios hadronic uncertainties cancel out

□ For BR($B_s \rightarrow \mu^+ \mu^-$) only one hadronic parameter f_{B_s}

"clean observables"

Global Fit

Many $b \to s\ell^+\ell^-$ observables

- $R_{K}, R_{K^{*}}, R_{K_{S}}, R_{K^{*+}}$ $BR(B_{s,d} \to \mu^{+}\mu^{-})$ $BR(B_{s} \to e^{+}e^{-})$
- BR($B \to X_s \mu^+ \mu^-$) BR($B \to X_s e^+ e^-$) BR($B \to K^* e^+ e^-$): BR, ang. Obs.
- $\square B_s \to \phi \ \mu^+ \mu^-: \text{ BR, ang. obs.}$
- □ $B^{0(+)} \to K^{0(+)} \mu^+ \mu^-$: BR, ang. obs.
- $\square B^{(+)} \rightarrow K^{*(+)}\mu^+\mu^-$: BR, ang. obs.
- \square $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$: BR, ang. obs.

183 observable \Rightarrow Global fits

Minimization of χ^2 , scanning over the values of δC_i

$$\chi^{2} = \left(\vec{O}^{\text{th}}(\delta C_{i}) - \vec{O}^{\text{exp}}\right) \cdot \left(\Sigma_{\text{th}} + \Sigma_{\text{exp}}\right)^{-1} \cdot \left(\vec{O}^{\text{th}}(\delta C_{i}) - \vec{O}^{\text{exp}}\right)$$
$$\left(\Sigma_{\text{th}} + \Sigma_{\text{exp}}\right)^{-1} : \text{the inverse covariance matrix}$$

Theoretical uncertainties and correlations

- Monte Carlo analysis
- □ Variation of the input parameters: masses, scales, CKM, decay constants, form factors, ...
- Parameterization of uncertainties due to power corrections:

Leading Order QCDf of non-factorisable piece
$$\times \left(1 + a_k \exp(i\phi_k) + b_k \frac{q^2}{6 \text{ GeV}^2} \exp(i\theta_k)\right)$$
 with a_k 10 to 60%, $b_k \sim 2.5 a_k$

Computations performed using SuperIso public program

Comparison of one-operator NP fits:

Only LFUV ratios and $B_{s,d} \to \ell^+ \ell^-$				
	2021 data $(\chi^2_{\rm SM} = 34.25)$			
	b.f. value	$\chi^2_{ m min}$	$\mathrm{Pull}_{\mathrm{SM}}$	
δC_9	-2.00 ± 5.00	34.1	0.4σ	
δC_9^e	0.83 ± 0.21	14.5	4.4σ	
δC_9^{μ}	-0.80 ± 0.21	15.4	4.3σ	
δC_{10}	0.43 ± 0.24	30.6	1.9σ	
δC^e_{10}	-0.81 ± 0.19	12.3	4.7σ	
δC^{μ}_{10}	0.66 ± 0.15	10.3	4.9σ	
$\delta C^e_{\rm LL}$	0.43 ± 0.11	13.3	4.6σ	
$\delta C^{\mu}_{ m LL}$	-0.39 ± 0.08	10.1	4.9σ	
	\downarrow			

Clean observables

 $\delta \mathcal{C}_{LL}$ basis corresponds to $\delta \mathcal{C}_9 = - \delta \mathcal{C}_{10}$

Comparison of one-operator NP fits:

Only LFUV ratios and $B_{s,d} \rightarrow \ell^+ \ell^-$ 2021 data $(\chi^2_{\text{SM}} = 34.25)$			
	b.f. value	$\chi^2_{\rm min}$	$\operatorname{Pull}_{\mathrm{SM}}$
δC_9	-2.00 ± 5.00	34.1	0.4σ
δC_9^e	0.83 ± 0.21	14.5	4.4σ
δC_9^{μ}	-0.80 ± 0.21	15.4	4.3σ
δC_{10}	0.43 ± 0.24	30.6	1.9σ
δC_{10}^e	-0.81 ± 0.19	12.3	4.7σ
δC_{10}^{μ}	0.66 ± 0.15	10.3	4.9σ
$\delta C_{\rm LL}^e$	0.43 ± 0.11	13.3	4.6σ
$\delta C^{\mu}_{ m LL}$	-0.39 ± 0.08	10.1	4.9σ

All obs. except LFUV ratios and $B_{s,d} \to \ell^+ \ell^-$				
	2021 data $(\chi^2_{\rm SM} = 221.8)$			
	b.f. value	$\chi^2_{ m min}$	$\operatorname{Pull}_{\operatorname{SM}}$	
δC_9	-0.95 ± 0.13	185.1	6.1σ	
δC_9^e	0.70 ± 0.60	220.5	1.1σ	
δC_9^{μ}	-0.96 ± 0.13	182.8	6.2σ	
δC_{10}	0.29 ± 0.21	219.8	1.4σ	
δC_{10}^e	-0.60 ± 0.50	220.6	1.1σ	
δC_{10}^{μ}	0.35 ± 0.20	218.7	1.8σ	
$\delta C_{\rm LL}^e$	0.34 ± 0.29	220.6	1.1σ	
$\delta C^{\mu}_{\mathrm{LL}}$	-0.64 ± 0.13	195.0	5.2σ	

Clean observables

 $\delta \mathcal{C}_{LL}$ basis corresponds to $\delta \mathcal{C}_9 = - \delta \mathcal{C}_{10}$

Compatible NP scenarios between different sets

Comparison of one-operator NP fits:

Only LFUV ratios and $B_{s,d} \rightarrow \ell^+ \ell^-$ 2021 data $(\chi^2_{\rm SM} = 34.25)$			
	b.f. value	$\chi^2_{\rm min}$	$\operatorname{Pull}_{\mathrm{SM}}$
δC_9	-2.00 ± 5.00	34.1	0.4σ
δC_9^e	0.83 ± 0.21	14.5	4.4σ
δC_9^{μ}	-0.80 ± 0.21	15.4	4.3σ
δC_{10}	0.43 ± 0.24	30.6	1.9σ
δC_{10}^e	-0.81 ± 0.19	12.3	4.7σ
δC_{10}^{μ}	0.66 ± 0.15	10.3	4.9σ
$\delta C_{\rm LL}^e$	0.43 ± 0.11	13.3	4.6σ
$\delta C^{\mu}_{ m LL}$	-0.39 ± 0.08	10.1	4.9σ

2021 data ($\chi^2_{\rm SM} = 221.8$) b.f. value $\chi^2_{\rm min}$ Pull_{SM} δC_9 -0.95 ± 0.13 185.1 6.1σ δC_9^e 0.70 ± 0.60 220.5 1.1σ δC^{μ}_{9} -0.96 ± 0.13 182.8 6.2σ δC_{10} 0.29 ± 0.21 219.8 1.4σ δC_{10}^e -0.60 ± 0.50 220.6 1.1σ δC_{10}^{μ} 0.35 ± 0.20 218.7 1.8σ δC^e_{LL} 0.34 ± 0.29 220.6 1.1σ $\delta C^{\mu}_{\rm LL}$ -0.64 ± 0.13 195.0 5.2σ

All obs. except LFUV ratios and $B_{s,d} \rightarrow \ell^+ \ell^-$

	All observables 2021 data $(\chi^2_{\rm SM} = 253.3)$				
	b.f. value $\chi^2_{\rm min}$ Pull _{SM}				
δC_9	-0.93 ± 0.13	218.4	5.9σ		
δC_9^e	0.82 ± 0.19	232.3	4.6σ		
δC_9^{μ}	-0.90 ± 0.11	197.7	7.5σ		
δC_{10}	0.27 ± 0.17	250.5	1.7σ		
δC_{10}^e	-0.78 ± 0.18	230.4	4.8σ		
δC_{10}^{μ}	0.54 ± 0.12	231.5	4.7σ		
$\delta C_{\rm LL}^e$	0.42 ± 0.10	231.2	4.7σ		
$\delta C^{\mu}_{\rm LL}$	-0.46 ± 0.07	208.2	6.7σ		

Clean observables

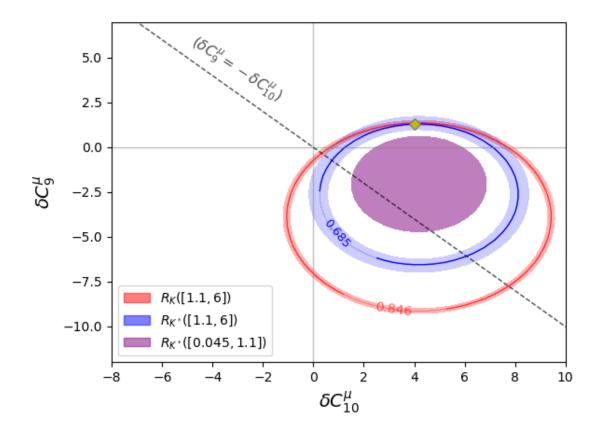
Depends on the assumptions on the non-factorisable power corrections

 $\delta \mathcal{C}_{LL}$ basis corresponds to $\delta \mathcal{C}_9 = -\delta \mathcal{C}_{10}$

- Compatible NP scenarios between different sets
- Hierarchy of preferred NP scenarios have remained the same with updated data compared to 2019 $(\delta C_9^{\mu}$ followed by $\delta C_{LL}^{\mu})$
- \Box Significance increased by more than 2 σ in the preferred scenarios compared to 2019

Fit to clean observables $R_K, R_{K^*}, B_S \rightarrow \mu^+ \mu^-$

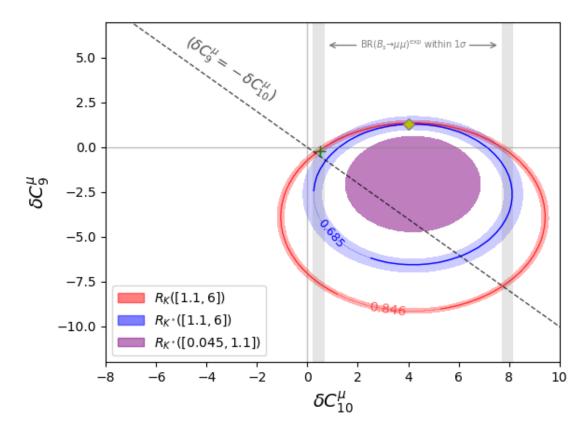
Coloured regions: 1σ range (th + exp uncertainties added in quadrature) with the experimental central value



Yellow diamond \diamondsuit : best fit point of $(\delta C_9^{\mu}, \delta C_{10}^{\mu})$ fit to $R_K + R_{K^*}$

Fit to clean observables $R_K, R_{K^*}, B_s \rightarrow \mu^+ \mu^-$

Coloured regions: 1σ range (th + exp uncertainties added in quadrature) with the experimental central value



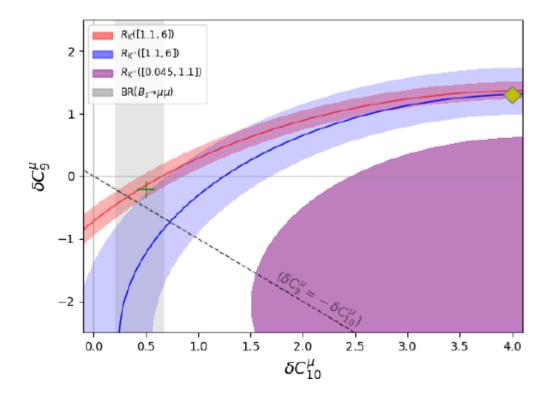
Yellow diamond \diamond : best fit point of $(\delta C_9^{\mu}, \delta C_{10}^{\mu})$ fit to $R_K + R_{K^*}$

Green cross +: best fit point of $(\delta C_9^{\mu}, \delta C_{10}^{\mu})$ fit to $R_K + R_{K^*} + B_s \rightarrow \mu^+ \mu^-$

Siavash Neshatpour

Fit to clean observables $R_K, R_{K^*}, B_S \rightarrow \mu^+ \mu^-$

Coloured regions: 1σ range (th + exp uncertainties added in quadrature) with the experimental central value



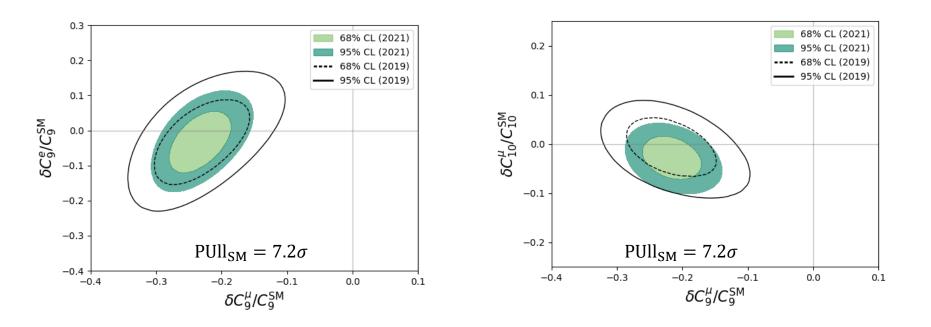
Yellow diamond : best fit point of $(\delta C_9^{\mu}, \delta C_{10}^{\mu})$ fit to $R_K + R_{K^*}$

Green cross +: best fit point of $(\delta C_9^{\mu}, \delta C_{10}^{\mu})$ fit to $R_K + R_{K^*} + B_s \rightarrow \mu^+ \mu^-$

Siavash Neshatpour

NP fit with two operators; all observables

Considering all the relevant data on $b \rightarrow s$ transitions (183 observables)



Similar fits by other groups:

Altmannshofer et al. arXiv: 2103.13370, Algueró et al. arXiv:2104.08921, Ciuchini et al. arXiv:2011.01212, Datta et al. 1903.10086, Geng et al. arXiv:2103.12738, Kowalska et al., arXiv:1903.10932

Considering only one or two Wilson coefficients may not give the full picture!

All relevant Wilson coefficients:

 $C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_S^{\ell}, C_P^{\ell}$ + primed coefficients \rightarrow 20 degrees of freedom

Considering the most general NP description, look-elsewhere effect is avoided

All observables with $\chi^2_{\rm SM} = 253.3$				
2021 data $(\chi^2_{\min} = 179.2; \text{Pull}_{\text{SM}} = 5.5(5.5)\sigma)$				
δ	77	δC_8		
0.06 =	0.06 ± 0.03		-0.80 ± 0.40	
$\delta C'_7$			$\delta C'_8$	
-0.01 ± 0.01		-0.30 ± 1.30		
δC_9^{μ}	δC_9^e	δC^{μ}_{10}	δC^e_{10}	
-1.15 ± 0.18	-6.60 ± 1.60	0.21 ± 0.20	degenerate w/ $C_{10}^{\prime e}$	
$\delta C_9^{\prime \mu}$	$\delta C_9'^e$	$\delta C_{10}^{\prime\mu}$	$\delta C_{10}^{\prime e}$	
0.05 ± 0.31	1.40 ± 2.10	-0.04 ± 0.19	degenerate w/ C^{e}_{10}	
$C^{\mu}_{Q_1}$	$C^e_{Q_1}$	$C^{\mu}_{Q_2}$	$C^e_{Q_2}$	
0.07 ± 0.06	-1.60 ± 1.60	-0.11 ± 0.14	-4.00 ± 1.2	
$C_{Q_1}^{\prime\mu}$	$C_{Q_1}^{\prime e}$	$C_{Q_2}^{\prime\mu}$	$C_{Q_2}^{\prime e}$	
-0.07 ± 0.06	-1.70 ± 1.30	-0.21 ± 0.15	-4.10 ± 0.8	

Insensitive Wilson coefficients and flat directions eliminated via likelihood profiles and corr. matrices

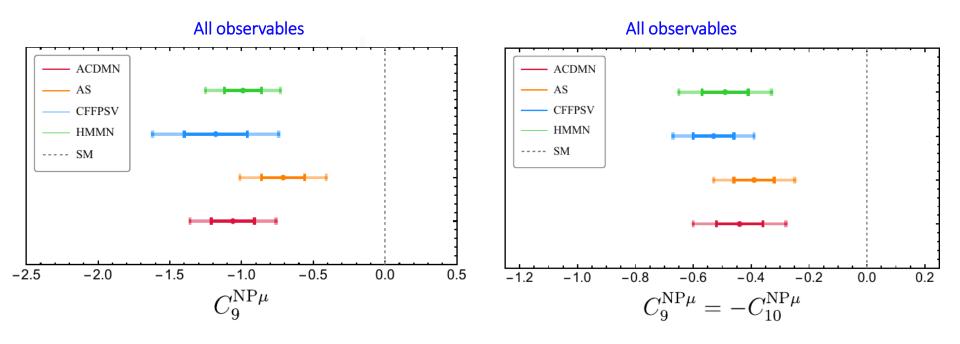
 \hookrightarrow Effective dof = (19) giving 5.5 σ significance

Siavash Neshatpour

Comparison of different fitting groups

 different assumptions about non-local matrix elements, form factor inputs, experimental inputs, etc. and different statistical frameworks

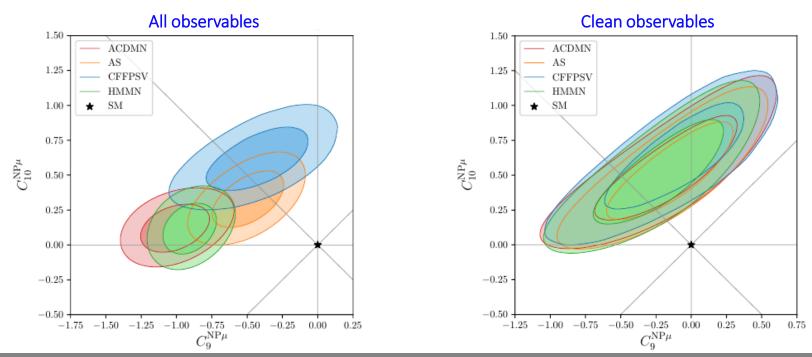
One-dimensional fits:



Joint theory presentation at Flavour Anomaly Workshop 2021 [B. Capdevila, M. Fedele, SN, Stang]] [arXiv:2104.08921] ACDMN (M. Algueró, B. Capdevila, S. Descotes-Genon, J. Matias, M. Novoa-Brunet) \geq AS (W. Altmannshofer, P. Stangl) [arXiv:2103.13370] CFFPSV (M. Ciuchini, M. Fedele, E. Franco, A. Paul, L. Silvestrini, M. Valli) [arXiv:2011.01212] HMMN (T. Hurth, F. Mahmoudi, D. Martínez-Santos, S. Neshatpour) [arXiv:2104.10058]

different assumptions about non-local matrix elements, form factor inputs, experimental inputs, etc. and different statistical frameworks

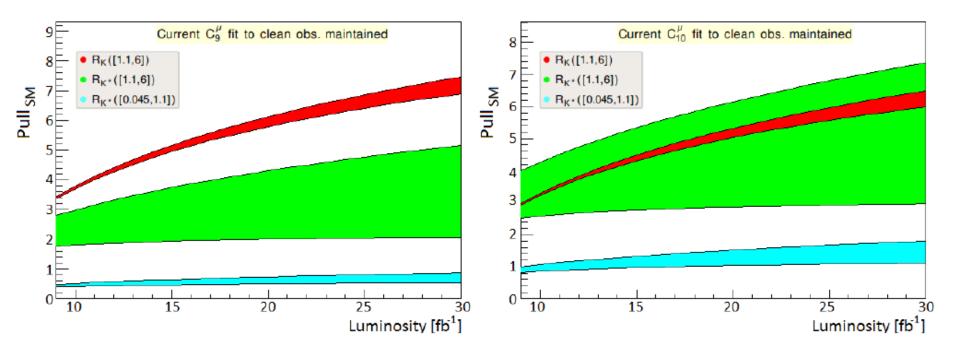
Two-dimensional fits:



Prospect of clean observables

Evolution of the tension between the SM and the experimental values

Assuming the best fit value of δC_9^{μ} (left) and δC_{10}^{μ} (right)



Upper limit: assuming ultimate systematic uncertainty (1% for ratios & 4% for $B_s \rightarrow \mu^+ \mu^-$)

Lower limit: assuming current systematic uncertainties do not improve

> For the
$$\delta C_9^{\mu}$$
 case, R_K can individually reach 5σ at $\sim 16~{\rm fb}^{-1}$

Projections: one operator fit to clean observables

Projections of Pull_{SM} for 1-dimensional fit to δC_9^{μ} or δC_{10}^{μ} or δC_{LL}^{μ}

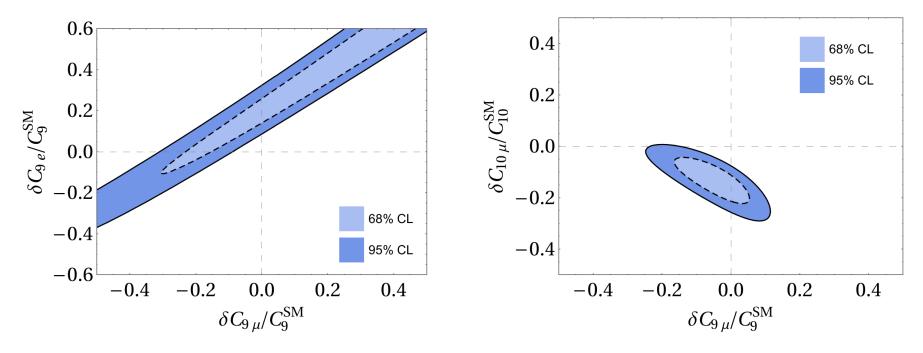
- \Box using only the clean observables R_K , R_{K^*} and $B_S \rightarrow \mu^+ \mu^-$
- \Box assuming LHCb upgrade scenarios with 18, 50 and 300 fb⁻¹ collected luminosity

Pull _{SM} with $R_{K^{(*)}}$ and $BR(B_s \to \mu^+ \mu^-)$ prospects			
LHCb lum.	18 fb^{-1}	$50~{\rm fb^{-1}}$	$300 \ {\rm fb^{-1}}$
δC_9^μ	6.5σ	14.7σ	21.9σ
δC^{μ}_{10}	7.1σ	16.6σ	25.1σ
δC^{μ}_{LL}	7.5σ	17.7σ	26.6σ

 \succ For all three scenarios NP significance will be larger than 6 σ already with 18 ${
m fb^{-1}}$

Projections of 2-dimensional fits

- \Box using only the clean observables R_K , R_{K^*} and $B_S \rightarrow \mu^+ \mu^-$
- \Box assuming LHCb upgrade scenarios with 18, 50 and 300 fb⁻¹ collected luminosity

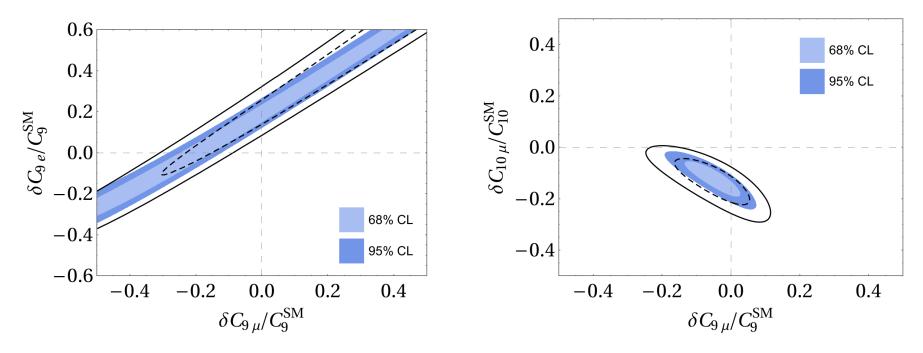


Current data

Projections: two operator fit to clean observables

Projections of 2-dimensional fits

- \Box using only the clean observables R_K , R_{K^*} and $B_S \rightarrow \mu^+ \mu^-$
- \Box assuming LHCb upgrade scenarios with 18, 50 and 300 $\mathrm{fb^{-1}}$ collected luminosity

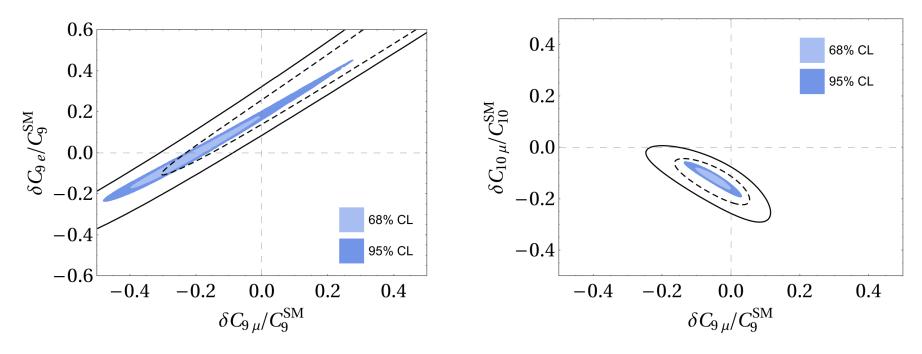


Projections for 18 $\rm fb^{-1}$

Projections: two operator fit to clean observables

Projections of 2-dimensional fits

- \Box using only the clean observables R_K , R_{K^*} and $B_S \rightarrow \mu^+ \mu^-$
- \Box assuming LHCb upgrade scenarios with 18, 50 and 300 fb⁻¹ collected luminosity

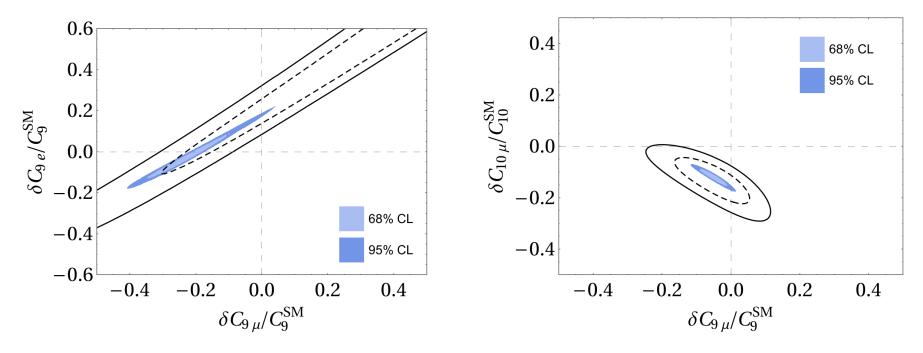


Projections for 50 $\rm fb^{-1}$

Projections: two operator fit to clean observables

Projections of 2-dimensional fits

- \Box using only the clean observables R_K , R_{K^*} and $B_S \rightarrow \mu^+ \mu^-$
- \Box assuming LHCb upgrade scenarios with 18, 50 and 300 $\mathrm{fb^{-1}}$ collected luminosity



Projections for 300 fb^{-1}

- > Experimental measurements show persistent tensions with the SM predictions in $b \rightarrow s\ell\ell$ transitions which can be consistently explained by New Physics
- \succ The most preferred NP fits are δC_9 and/or δC_{10}
- > Main source of theory uncertainty in global fit due to non-local hadronic contributions
- > Fit to clean observables and the rest of the $b \rightarrow s\ell\ell$ observables point towards compatible NP scenarios
- Different fits with different setups, inputs and statistical frameworks show remarkable agreement
- > Using clean observables, future data can pin down δC_9 , δC_{10} , δC_{LL} assuming that's where new physics is

- > Experimental measurements show persistent tensions with the SM predictions in $b \rightarrow s\ell\ell$ transitions which can be consistently explained by New Physics
- > The most preferred NP fits are δC_9 and/or δC_{10}
- > Main source of theory uncertainty in global fit due to non-local hadronic contributions
- > Fit to clean observables and the rest of the $b \rightarrow s\ell\ell$ observables point towards compatible NP scenarios
- Different fits with different setups, inputs and statistical frameworks show remarkable agreement
- > Using clean observables, future data can pin down δC_9 , δC_{10} , δC_{LL} assuming that's where new physics is

Thank you!

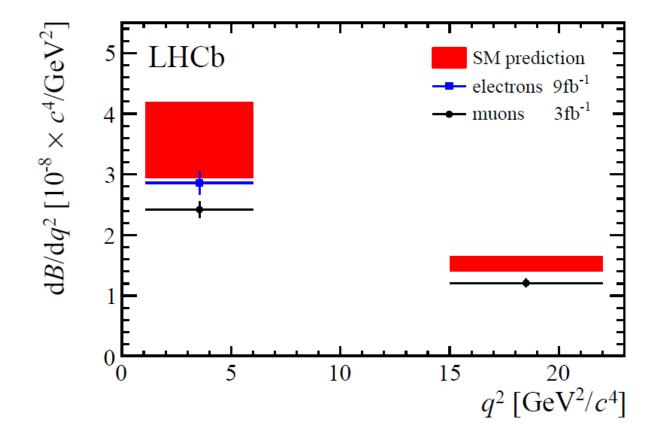
Backup

Hadronic fit for $B \rightarrow K^* \mu \mu$

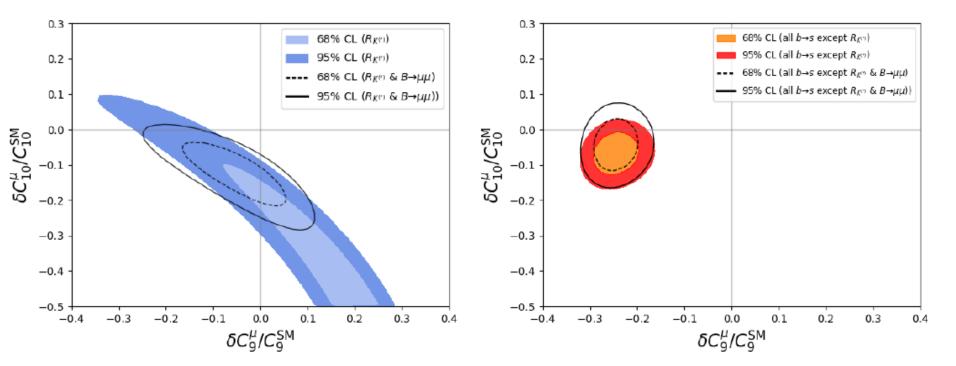
Other clean $R_{\mu/e}$ to differentiate between preferred NP scenario

		Predictions assuming 50 $\rm fb^{-1}$ luminosity							
Obs.	C_9^{μ}	C_9^e	C^{μ}_{10}	C^e_{10}	C^{μ}_{LL}	C^e_{LL}			
$R_{F_L}^{[1.1,6.0]}$	[0.922, 0.932]	[0.941, 0.944]	[0.995, 0.998]	[0.996, 0.997]	[0.961, 0.964]	[1.006, 1.010]			
$R^{[1.1,6.0]}_{A_{FB}}$	[4.791, 5.520]	[-0.416, -0.358]	[0.938, 0.939]	[0.963, 0.970]	[2.822, 3.089]	[0.279, 0.307]			
$R_{S_3}^{[1.1,6.0]}$	[0.922, 0.931]	[0.914, 0.922]	[0.832, 0.852]	[0.858, 0.870]	[0.853, 0.870]	[1.027, 1.032]			
$R_{S_5}^{[1.1,6.0]}$	[0.453, 0.543]	[0.723, 0.742]	[1.014, 1.014]	[1.040, 1.048]	[0.773, 0.801]	[1.298, 1.361]			
$R_{F_L}^{[15,19]}$	[0.998, 0.999]	[0.998, 0.998]	[0.998, 0.998]	[0.998, 0.998]	[0.998, 0.998]	[0.998, 0.998]			
$R^{[15,19]}_{A_{FB}}$	[0.929, 0.944]	[0.988, 0.989]	[1.009, 1.010]	[1.036, 1.042]	[0.996, 0.996]	[1.023, 1.028]			
$R_{S_3}^{[15,19]}$	[0.998, 0.998]	[0.998, 0.998]	[0.999, 0.999]	[0.999, 0.999]	[0.999, 0.999]	[0.998, 0.998]			
$R_{S_5}^{[15,19]}$	[0.929, 0.944]	[0.988, 0.989]	[1.009, 1.010]	[1.036, 1.042]	[0.996, 0.996]	[1.023, 1.028]			
$R_{K^*}^{[15,19]}$	[0.825, 0.847]	[0.815, 0.835]	[0.828, 0.846]	[0.799, 0.820]	[0.804, 0.825]	[1.093, 1.107]			
$R_{K}^{[15,19]}$	[0.823, 0.847]	[0.819, 0.838]	[0.854, 0.870]	[0.825, 0.844]	[0.820, 0.839]	[1.098, 1.113]			
$R_{\phi}^{[1.1,6.0]}$	[0.862, 0.879]	[0.841, 0.858]	[0.824, 0.843]	[0.795, 0.816]	[0.819, 0.839]	[1.070, 1.080]			
$R_{\phi}^{[15,19]}$	[0.825, 0.847]	[0.815, 0.835]	[0.826, 0.845]	[0.797, 0.819]	[0.803, 0.824]	[1.093, 1.107]			

 R_K



Fit to clean observables R_K , $R_{K^{(*)}}$, $B_S \to \mu^+ \mu^-$ and the rest of the $b \to s\ell\ell$ obs.



Depends on the assumptions on the non-factorisable power corrections

FPCapri2022 - June 11, 2022

Multi-dimensional fit: C_7 , C_8 , C_9^ℓ , C_{10}^ℓ , C_S^ℓ , C_P^ℓ + primed coefficients

Set of WC	param.	$\chi^2_{ m min}$	$\operatorname{Pull}_{\mathrm{SM}}$	Improvement
\mathbf{SM}	0	225.8	-	-
C_9^{μ}	1	168.6	7.6σ	7.6σ
C_9^μ, C_{10}^μ	2	167.5	7.3σ	1.0σ
$C_7, C_8, C_9^{(e,\mu)}, C_{10}^{(e,\mu)}$	6	158.0	7.1σ	2.0σ
All non-primed WC	10	157.2	6.5σ	0.1σ
All WC (incl. primed)	20(19)	151.6	$5.5(5.6)\sigma$	$0.2(0.3)\sigma$

Hadronic uncertainties

1. Different assumptions on the form factor uncertainties

Filled area: global fit with normal form factor error Bharucha, Straub, Zwicky: 1503.05534 Solid contour: removing form factor error correlations Dashed contour: 2 x form factor errors Dotted contour: 4 x form factor errors

- Only when assuming 4 imes form factor errors tensions goes below 2σ
- 2. Different assumptions on the size of the non-factorisable power corrections

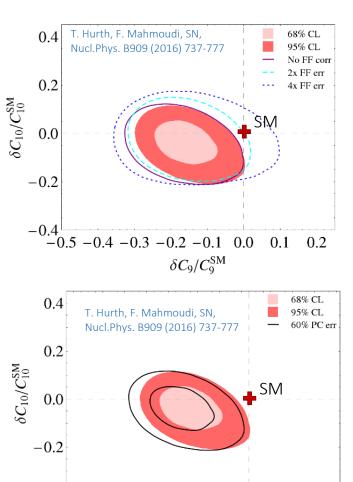
Filled area: 10% power correction Solid contour: 60% power correction

"Guesstimate" of unknown power corrections:

eading Order QCDf of
non-factorisable piece
$$\times \left(1 + a_k \exp(i\phi_k) + b_k \frac{q^2}{6 \text{ GeV}^2} \exp(i\theta_k)\right)$$

with $a_k(b_k)$ varied between $-X\%(\times 2.5)$ and $+X\%(\times 2.5)$

- Tension not significantly reduced with 60% power correction
- 60% power corrections at amplitude level \implies 17-20% on the observable level
- Large enough hadronic power corrections required to remove tension amount to more than 150% at the amplitude level in the critical bins (20-50% on the observable level)



-0.5 - 0.4 - 0.3 - 0.2 - 0.1 0.0

 $\delta C_{\rm q}/C_{\rm q}^{\rm SM}$

0.1

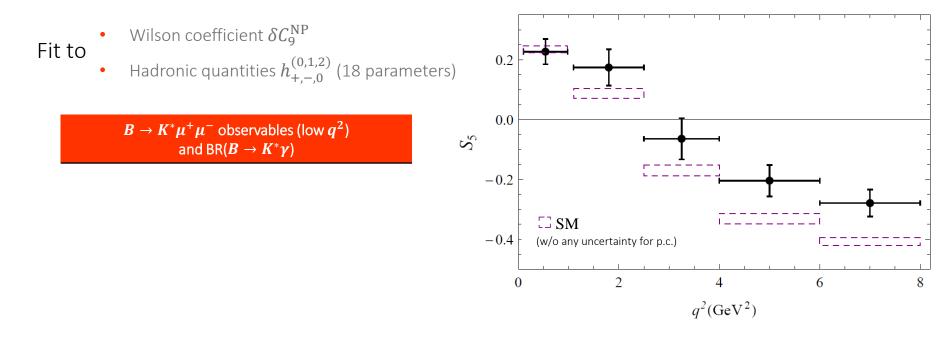
0.2

-0.4

Siavash Neshatpour

Instead of making assumptions on the size of the power corrections h_{λ} , they can be parameterised by a general ansatz (compatible with the analyticity structure): [Jäger, Camalich, 1412.3183], [Ciuchini et al. 1512.07157] $h_{\pm,[0]} = \left[\sqrt{q^2} \times\right] \left(h_{\pm,[0]}^{(0)} + q^2 h_{\pm,[0]}^{(1)} + q^4 h_{\pm,[0]}^{(2)}\right)$

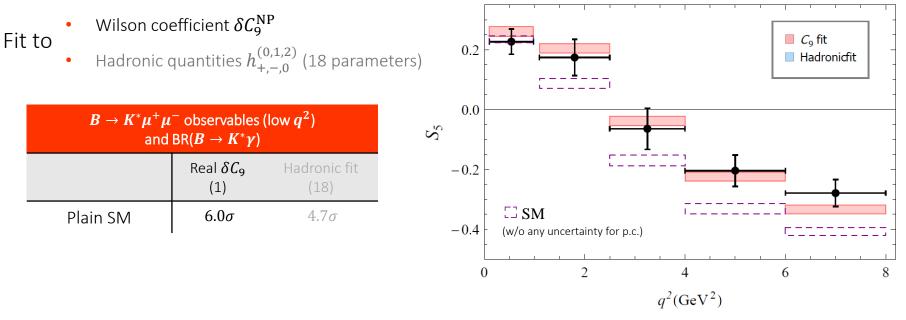
 \Rightarrow NP effects in C_9 are embedded in the hadronic contributions [A. Arbey, T. Hurth, F. Mahmoudi, SN, 1806.02791] Due to the embedding, fits to NP and hadronic contributions can be compared with the Wilks' test



Instead of making assumptions on the size of the power corrections h_{λ} , they can be parameterised by a general ansatz (compatible with the analyticity structure): [Jäger, Camalich, 1412.3183], [Ciuchini et al. 1512.07157]

$$h_{\pm,[0]} = \left\lfloor \sqrt{q^2} \times \right\rfloor \left(h_{\pm,[0]}^{(0)} + q^2 h_{\pm,[0]}^{(1)} + q^4 h_{\pm,[0]}^{(2)} \right)$$

 \Rightarrow NP effects in C_9 are embedded in the hadronic contributions A. Arbey, T. Hurth, F. Mahmoudi, SN, 1806.02791] Due to the embedding, fits to NP and hadronic contributions can be compared with the Wilks' test

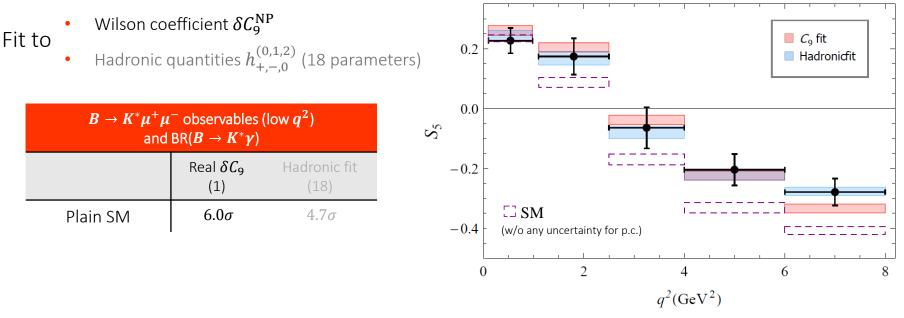


 \succ Fit to δC_9 improves description of the data with 6σ compared to the SM (w/o any uncertainty for p.c.)

Instead of making assumptions on the size of the power corrections h_{λ} , they can be parameterised by a general ansatz (compatible with the analyticity structure): [Jäger, Camalich, 1412.3183], [Ciuchini et al. 1512.07157]

$$h_{\pm,[0]} = \left\lfloor \sqrt{q^2} \times \right\rfloor \left(h_{\pm,[0]}^{(0)} + q^2 h_{\pm,[0]}^{(1)} + q^4 h_{\pm,[0]}^{(2)} \right)$$

 \Rightarrow NP effects in C_9 are embedded in the hadronic contributions A. Arbey, T. Hurth, F. Mahmoudi, SN, 1806.02791] Due to the embedding, fits to NP and hadronic contributions can be compared with the Wilks' test

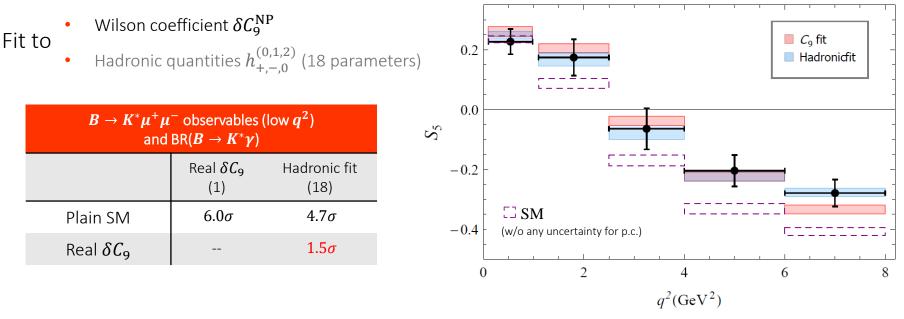


- \succ Fit to δC_9 improves description of the data with 6σ compared to the SM (w/o any uncertainty for p.c.)
- Hadronic fit also describes the data well

Instead of making assumptions on the size of the power corrections h_{λ} , they can be parameterised by a general ansatz (compatible with the analyticity structure): [Jäger, Camalich, 1412.3183], [Ciuchini et al. 1512.07157]

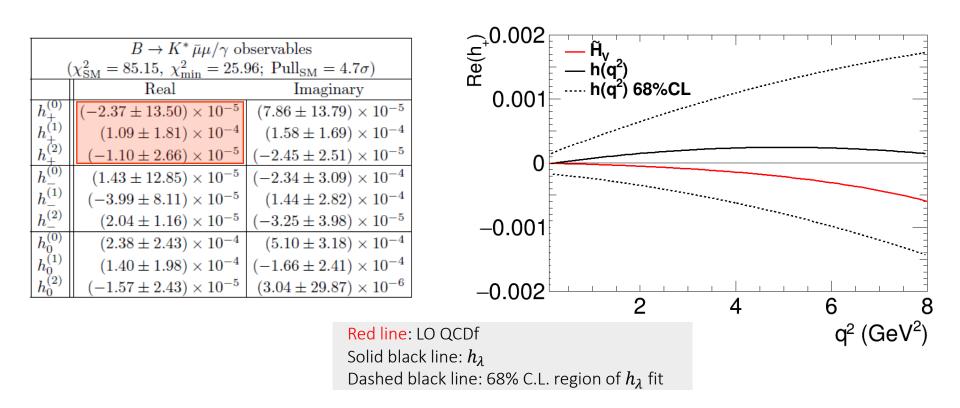
$$h_{\pm,[0]} = \left\lfloor \sqrt{q^2} \times \right\rfloor \left(h_{\pm,[0]}^{(0)} + q^2 h_{\pm,[0]}^{(1)} + q^4 h_{\pm,[0]}^{(2)} \right)$$

 \Rightarrow NP effects in C_9 are embedded in the hadronic contributions A. Arbey, T. Hurth, F. Mahmoudi, SN, 1806.02791] Due to the embedding, fits to NP and hadronic contributions can be compared with the Wilks' test

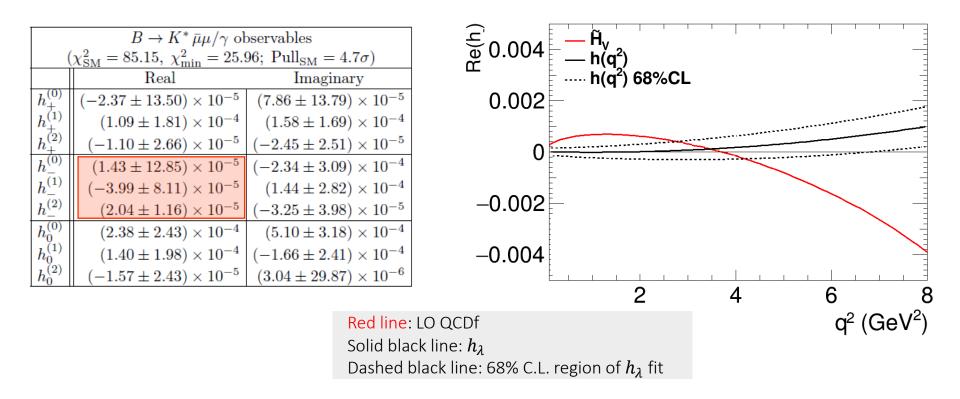


- \succ Fit to δC_9 improves description of the data with 6σ compared to the SM (w/o any uncertainty for p.c.)
- Hadronic fit also describes the data well
- > Adding 17 more parameters compared to the NP in C_9 doesn't significantly improve the fit (~1.5 σ)

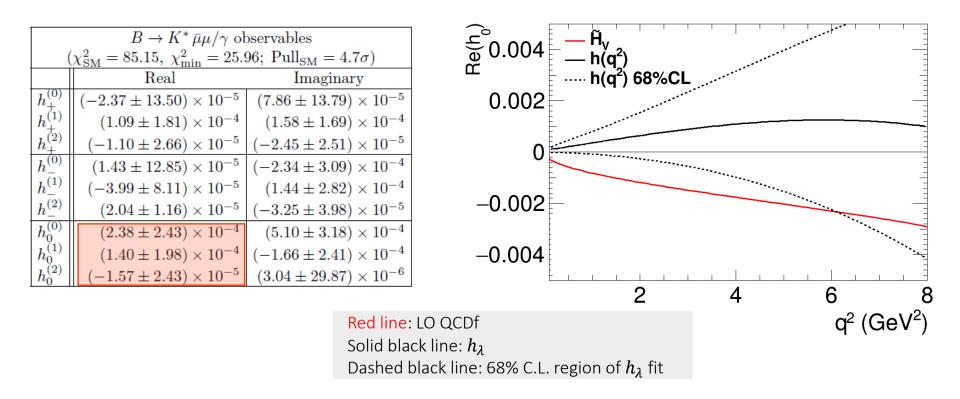
	$B \to K^* \bar{\mu} \mu / \gamma$ observables							
($(\chi^2_{\rm SM} = 85.15, \ \chi^2_{\rm min} = 25.96; \ {\rm Pull}_{\rm SM} = 4.7\sigma)$							
	Real	Imaginary						
$h_{+}^{(0)}$	$(-2.37 \pm 13.50) \times 10^{-5}$	$(7.86 \pm 13.79) \times 10^{-5}$						
$h^{(1)}_{\pm}$	$(1.09 \pm 1.81) \times 10^{-4}$	$(1.58 \pm 1.69) \times 10^{-4}$						
$h_{\pm}^{(2)}$	$(-1.10 \pm 2.66) \times 10^{-5}$	$(-2.45 \pm 2.51) \times 10^{-5}$						
$h_{-}^{(0)}$	$(1.43 \pm 12.85) \times 10^{-5}$	$(-2.34 \pm 3.09) \times 10^{-4}$						
$h_{-}^{(1)}$	$(-3.99 \pm 8.11) \times 10^{-5}$	$(1.44 \pm 2.82) \times 10^{-4}$						
$h_{-}^{(2)}$	$(2.04 \pm 1.16) \times 10^{-5}$	$(-3.25 \pm 3.98) \times 10^{-5}$						
$h_{0}^{(0)}$	$(2.38 \pm 2.43) \times 10^{-4}$	$(5.10 \pm 3.18) \times 10^{-4}$						
$h_0^{(1)}$	$(1.40 \pm 1.98) \times 10^{-4}$	$(-1.66 \pm 2.41) \times 10^{-4}$						
$h_0^{(2)}$	$(-1.57 \pm 2.43) \times 10^{-5}$	$(3.04 \pm 29.87) \times 10^{-6}$						



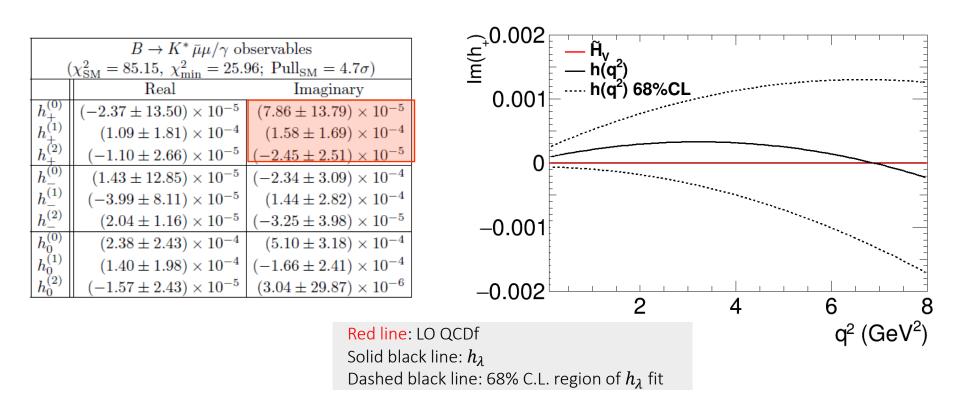
 $\succ h_{\lambda}$ compatible with zero at 1σ level



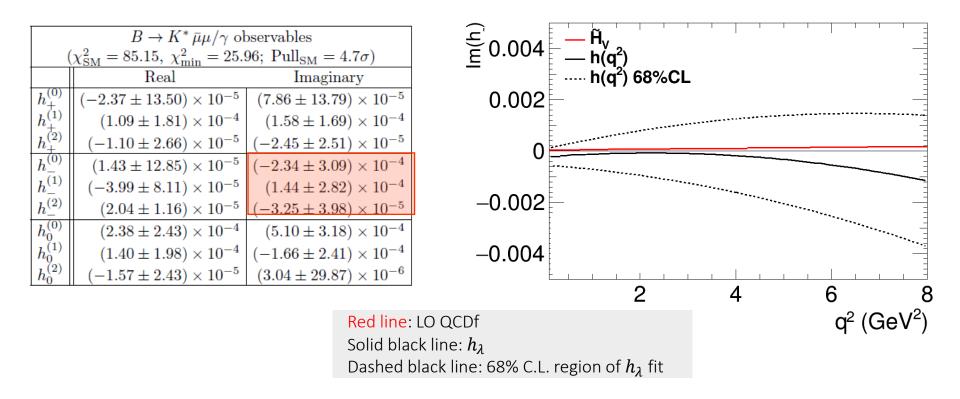
> h_{λ} compatible with zero at 1σ level



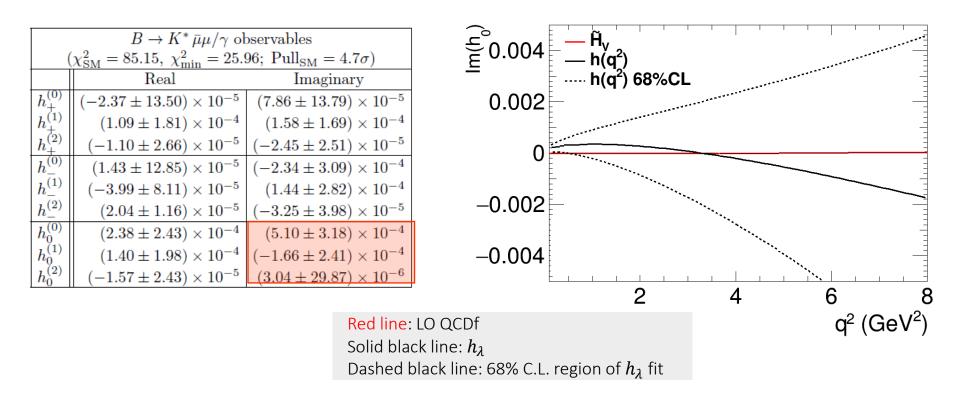
> h_{λ} compatible with zero at 1σ level



 $\succ h_{\lambda}$ compatible with zero at 1σ level



 $\succ h_{\lambda}$ compatible with zero at 1σ level



 $\succ h_{\lambda}$ compatible with zero at 1σ level

A (minimal) description of hadronic contributions with fewer free parameters

$$h_{\lambda}(q^2) = -\frac{\tilde{V}_{\lambda}(q^2)}{16\pi^2} \frac{q^2}{m_B^2} \Delta C_9^{\lambda, \text{PC}}$$

for each helicity ($\lambda=+,-,0$) a different $\Delta \mathcal{C}_9^{
m PC}$

 \rightarrow three real (six complex) parameters

➢ If NP in C₉ is the favoured scenario, the three different fitted helicities should give the same value
 ⇒ Can work as a null test for NP

A (minimal) description of hadronic contributions with fewer free parameters

$$h_{\lambda}(q^2) = -\frac{\tilde{V}_{\lambda}(q^2)}{16\pi^2} \frac{q^2}{m_B^2} \Delta C_9^{\lambda, \text{PC}}$$

for each helicity ($\lambda=+,-,0$) a different $\Delta \mathcal{C}_9^{
m PC}$

 \rightarrow three real (six complex) parameters

➢ If NP in C₉ is the favoured scenario, the three different fitted helicities should give the same value
 ⇒ Can work as a null test for NP

	$B \to K^* \bar{\mu} \mu / \gamma$ observables						
$(\chi^2_{\rm SM} = 8$	$(\chi^2_{\rm SM} = 85.15, \ \chi^2_{\rm min} = 39.40; \ {\rm Pull}_{\rm SM} = 5.5\sigma)$						
	best fit value						
$\Delta C_9^{+,\mathrm{PC}}$	$(3.39 \pm 6.44) + i(-14.98 \pm 8.40)$						
$\Delta C_9^{-,\mathrm{PC}}$	$(-1.02 \pm 0.22) + i(-0.68 \pm 0.79)$						
$\Delta C_9^{0,\mathrm{PC}}$	$(-0.83 \pm 0.53) + i(-0.89 \pm 0.69)$						

Fitted parameters not the same for different helicities but in agreement with each other within 1σ

A (minimal) description of hadronic contributions with fewer free parameters

$$h_{\lambda}(q^2) = -\frac{\tilde{V}_{\lambda}(q^2)}{16\pi^2} \frac{q^2}{m_B^2} \Delta C_9^{\lambda, \text{PC}}$$

for each helicity ($\lambda=+,-,0$) a different $\Delta \mathcal{C}_9^{
m PC}$

 \rightarrow three real (six complex) parameters

If NP in C_9 is the favoured scenario, the three different fitted helicities should give the same value \Rightarrow Can work as a null test for NP

	$B \to K^* \bar{\mu} \mu / \gamma$ observables						
$(\chi^2_{\rm SM} = 8$	$(\chi^2_{\rm SM} = 85.15, \ \chi^2_{\rm min} = 39.40; \ {\rm Pull}_{\rm SM} = 5.5\sigma)$						
	best fit value						
$\Delta C_9^{+,\mathrm{PC}}$	$(3.39 \pm 6.44) + i(-14.98 \pm 8.40)$						
$\Delta C_9^{-,\mathrm{PC}}$	$(-1.02 \pm 0.22) + i(-0.68 \pm 0.79)$						
$\Delta C_9^{0,\mathrm{PC}}$	$(-0.83 \pm 0.53) + i(-0.89 \pm 0.69)$						

Fitted parameters not the same for different helicities but in agreement with each other within 1σ

Fit to only BR($B o K^* \gamma$) and $B o K^* \mu^+ \mu^-$ observables (low q^2)						
	Real δC_9 Hadronic fit;(1)Complex $\Delta C_9^{\lambda, PC}$ (6)					
Plain SM (0)	(6.0 <i>σ</i>)	(5.5 <i>σ</i>)				
Real δC_9 (1)		(1.8 σ)				

 \succ Adding the hadronic parameters improve the fit with less than 2σ significance

Strong indication that the NP interpretation is a valid option, although the situation remains inconclusive

Siavash Neshatpour

Prospects for hadronic fit to $B \rightarrow K^* \mu \mu$

LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (*p*-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same

LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (p-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same

Central value of fit to C ₉ remains the same							
	14 fb ⁻¹ (Syst.)		50 fb ⁻¹ (Syst./4)		300 fb ⁻¹ (Syst./4)		
	Real δC_9	Hadronic fit h_{λ}	Real δC_9	Hadronic fit h_λ	Real δC_9	Hadronic fit h_{λ}	
Plain SM	8.1σ	5.1σ	15.1 <i>σ</i>	12.9 <i>0</i>	21.4σ		

> Very good fits for C_9 by construction

LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (p-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same

Central value of fit to C ₉ remains the same							
	14 fb ⁻¹ (Syst.)		50 fb ⁻¹ (Syst./4)		300 fb ⁻¹ (Syst./4)		
	Real δC_9	Hadronic fit h_λ	Real δC_9	Hadronic fit h_λ	Real δC_9	Hadronic fit h_λ	
Plain SM	8.1σ	5.1 <i>o</i>	15.1 <i>σ</i>	12.9σ	21.4σ	19.6 σ	

> Very good fits for C_9 by construction

- \succ Good hadronic fits for all three benchmark points of this scenario, but no improvement compared to C_9
- → Uncertainties of most of the parameters of the hadronic fit become very large for higher luminosities indicating most of the 18 parameters are not needed to describe the data

LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (p-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same

Central values of the hadronic fit is always the same							
	14 fb ⁻¹ (Syst.)		50 fb ⁻¹ (Syst./4)		300 fb ⁻¹ (Syst./4)		
	Real δC_9	Hadronic fit h_λ	Real δC_9	Hadronic fit h_λ	Real δC_9	Hadronic fit h_λ	
Plain SM	7.9σ	7.9σ	14.6 σ	22.5σ	18.9σ	41.8σ	

LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (p-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same

Central values of the hadronic fit is always the same							
	14 fb^{-1} (Syst.) 50 fb^{-1} (Syst./4) 300 fb^{-1} (Syst.					⁻¹ (Syst./4)	
	Real δC_9	Hadronic fit h_λ	Real δC_9	Hadronic fit h_λ	Real δC_9	Hadronic fit h_λ	
Plain SM	7.9σ	7.9σ	14.6 <i>σ</i>	22.5σ	18.9 <i>σ</i>	41.8σ	
Real δC_9		4.0σ		17.5 <i>σ</i>		37.4σ	

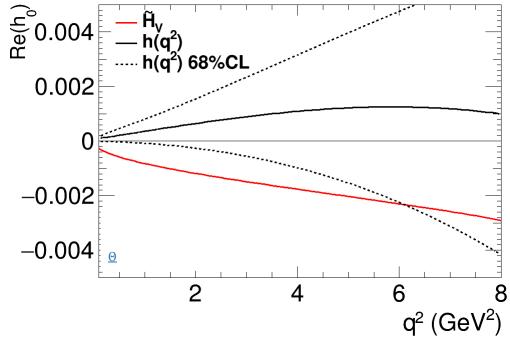
- > Hadronic fit, gives an improvement with 4σ significance compared to fit to C_9 after Run 2 (14 fb⁻¹) but situation still remains inconclusive
- > After first LHCb upgrade (50 fb^{-1}) conclusive judgment is possible

LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (p-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same



> Hadronic fit, gives an improvement with 4σ significance compared to fit to C_9 after Run 2 (14 fb⁻¹) but situation still remains inconclusive

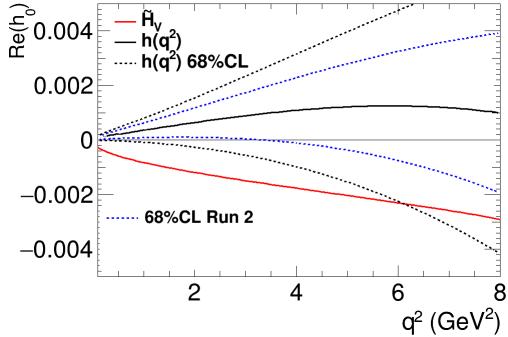
> After first LHCb upgrade (50 fb^{-1}) conclusive judgment is possible

LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (p-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same



> Hadronic fit, gives an improvement with 4σ significance compared to fit to C_9 after Run 2 (14 fb⁻¹) but situation still remains inconclusive

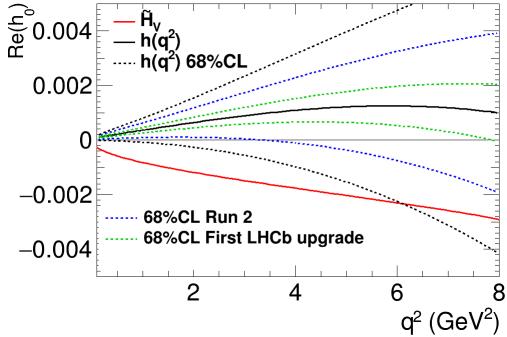
> After first LHCb upgrade (50 fb^{-1}) conclusive judgment is possible

LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (p-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same



> Hadronic fit, gives an improvement with 4σ significance compared to fit to C_9 after Run 2 (14 fb⁻¹) but situation still remains inconclusive

- > After first LHCb upgrade (50 fb^{-1}) conclusive judgment is possible
 - \hookrightarrow fitted parameters no longer consistent with zero at 1σ level

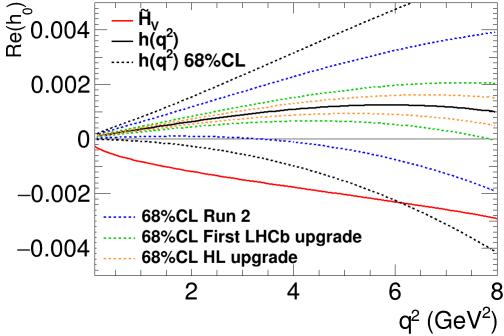
Siavash Neshatpour

LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (p-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same



> Hadronic fit, gives an improvement with 4σ significance compared to fit to C_9 after Run 2 (14 fb⁻¹) but situation still remains inconclusive

- > After first LHCb upgrade (50 fb^{-1}) conclusive judgment is possible
 - \hookrightarrow fitted parameters no longer consistent with zero at 1σ level

Siavash Neshatpour

$B o V \ell \ell$ decay

Differential decay distribution

$$\frac{d^4\Gamma}{dq^2 d\cos\theta_l d\cos\theta_K d\phi} = \frac{9}{32\pi} J(q^2, \theta_l, \theta_K, \phi)$$

$$J(q^{2}, \theta_{\ell}, \theta_{K^{*}}, \phi) = J_{1}^{s} \sin^{2} \theta_{K^{*}} + J_{1}^{c} \cos^{2} \theta_{K^{*}} + (J_{2}^{s} \sin^{2} \theta_{K^{*}} + J_{2}^{c} \cos^{2} \theta_{K^{*}}) \cos 2\theta_{\ell}$$

+ $J_{3} \sin^{2} \theta_{K^{*}} \sin^{2} \theta_{\ell} \cos 2\phi + J_{4} \sin 2\theta_{K^{*}} \sin 2\theta_{\ell} \cos \phi + J_{5} \sin 2\theta_{K^{*}} \sin \theta_{\ell} \cos \phi$
+ $(J_{6}^{s} \sin^{2} \theta_{K^{*}} + J_{6}^{c} \cos^{2} \theta_{K^{*}}) \cos \theta_{\ell} + J_{7} \sin 2\theta_{K^{*}} \sin \theta_{\ell} \sin \phi$
+ $J_{8} \sin 2\theta_{K^{*}} \sin 2\theta_{\ell} \sin \phi + J_{9} \sin^{2} \theta_{K^{*}} \sin^{2} \theta_{\ell} \sin 2\phi$

Angular observables:

$$\langle P_1 \rangle_{\text{bin}} = \frac{1}{2} \frac{\int_{\text{bin}} dq^2 [J_3 + \bar{J}_3]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \qquad \langle P_4' \rangle_{\text{bin}} = \frac{1}{\mathcal{N}_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_4 + \bar{J}_4] \qquad \langle P_6' \rangle_{\text{bin}} = \frac{-1}{2\mathcal{N}_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_7 + \bar{J}_7] \\ \langle P_2 \rangle_{\text{bin}} = \frac{1}{8} \frac{\int_{\text{bin}} dq^2 [J_{6s} + \bar{J}_{6s}]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \qquad \langle P_5' \rangle_{\text{bin}} = \frac{1}{2\mathcal{N}_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \qquad \frac{[\text{Egede et al. 0807.2589}]}{[\text{Egede et al. 1005.0571}]} \\ \langle P_6 \rangle_{\text{bin}} = \frac{1}{2\mathcal{N}_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \qquad \frac{[\text{Egede et al. 0807.2589}]}{[\text{Matias et al. 1202.4266}]} \\ \langle P_5 \rangle_{\text{bin}} = \frac{1}{2\mathcal{N}_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \qquad \frac{[\text{Egede et al. 0807.2589}]}{[\text{Descotes-Genon et al. 1303.5794}]} \\ \langle P_6 \rangle_{\text{bin}} = \frac{1}{2\mathcal{N}_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \qquad \frac{[\text{Egede et al. 0807.2589}]}{[\text{Descotes-Genon et al. 1303.5794}]} \\ \langle P_5 \rangle_{\text{bin}} = \frac{1}{2\mathcal{N}_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \qquad \frac{[\text{Egede et al. 0807.2589}]}{[\text{Descotes-Genon et al. 1303.5794}]} \\ \langle P_6 \rangle_{\text{bin}} = \frac{1}{2\mathcal{N}_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \qquad \frac{[\text{Egede et al. 0807.2589}]}{[\text{Descotes-Genon et al. 1303.5794]}} \\ \langle P_6 \rangle_{\text{bin}} = \frac{1}{2\mathcal{N}_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \qquad \frac{[\text{Egede et al. 0807.2589}]}{[\text{Descotes-Genon et al. 1303.5794]}} \\ \langle P_6 \rangle_{\text{bin}} = \frac{1}{2\mathcal{N}_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] = \frac{1}{2\mathcal{N}_{\text{bin}'}'} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \qquad \frac{[\text{Egede et al. 0807.2589]}{[\text{Descotes-Genon et al. 1303.5794]}} \\ \langle P_6 \rangle_{\text{bin}} = \frac{1}{2\mathcal{N}_{\text{bin}'}'} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] = \frac{1}{2\mathcal{N}_{\text{bin}'}'} \int_{\text{bin}'} dq^2 [J_5 + \bar{J}_5] = \frac{1}{2\mathcal{N}_{\text{bin}'}'} \int_{\text{bin}'} dq^2 [J_5 + \bar{J}_5] = \frac{1}{2\mathcal{N}_{\text{bin}'}'} \int_{\text{bin}'} dq^2 [J_5 + \bar{J}_5] = \frac{1}{2\mathcal{N}_{\text{bi$$

$$\mathcal{N}_{\rm bin}' = \sqrt{-\int_{\rm bin} dq^2 [J_{2s} + \bar{J}_{2s}] \int_{\rm bin} dq^2 [J_{2c} + \bar{J}_{2c}]}$$

$$S_i = \left(J_i + \bar{J}_i\right) \left/ \left(\frac{d\Gamma}{dq^2} + \frac{d\bar{\Gamma}}{dq^2}\right) \right.$$
 [Altmannshofer et al. 0811.1214]

FPCapri2022 - June 11, 2022

 K^+

B

 θ_{K^*}

 π^{-}