

FACTORIZATION OF WEAK ANNIHLLATION AMPLITUDES IN NON-LEPTONIC B DECAYS

MATTHIAS NEUBERT

PRISMA+ CLUSTER OF EXCELLENCE \& MITP — JOHANNES GUTENBERG UNIVERSITY MAINZ
FPCAPRI 2022 - ANACAPRI, 11 JUNE 2022
WORK IN PROGRESS WITH PHILIPP BÖER \& MICHEL STILLGER

PRiSMA ${ }^{+}$

MOTIVATION

How to obtain a theory of power corrections for observables not admitting a (Euclidean) operator product expansion?

- highly relevant for phenomenology, e.g. LHC physics and heavy flavor physics, which rely on factorization theorems involving hadronic matrix elements of light-ray operators
- collider physics: PDFs, generalized PDFs, ...
- heavy flavor physics: B-meson shape function, LCDAs, ...
- 1990s: "CERN Renormalon Club"

MOTIVATION

QCD factorization approach for non-leptonic B decays (1999-2001)
M. Beneke, G. Buchalla, C.T. Sachrajda, MN $(1999,2000,2001)$

$$
\begin{aligned}
& \left\langle M_{1} M_{2}\right| \mathcal{O}_{i}|\bar{B}\rangle=\sum_{j} F_{j}^{B \rightarrow M_{1}}\left(m_{2}^{2}\right) \int_{0}^{1} d u T_{i j}^{I}(u) \Phi_{M_{2}}(u)+\left(M_{1} \leftrightarrow M_{2}\right) \\
& \quad+\int_{0}^{1} d \xi d u d v T_{i}^{I I}(\xi, u, v) \Phi_{B}(\xi) \Phi_{M_{1}}(v) \Phi_{M_{2}}(u)
\end{aligned}
$$

MOTIVATION

SCET - Soft-Collinear Effective Theory (2000-2002)

C.W. Bauer, S. Fleming, D. Pirjol, I.W. Stewart (2000)

- rigorous EFT framework for describing
C.W. Bauer, D. Pirjol, I.W. Stewart (2001)
M. Beneke, A.P. Chapovsky, M. Diehl, T. Feldmann (2002) the interactions of energetic light particles
- solid basis for deriving soft-collinear factorization theorems
- theory of power corrections to factorization theorems?

MOTIVATION

OCD factorization approach

- does not allow for a consistent calculation of power-suppressed contributions to the decay amplitudes
- factorization at $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ is spoiled by endpoint-divergent convolution integrals, e.g.:

$$
\int_{0}^{1} \frac{d x}{x^{2}} \phi_{\pi}(x) \sim \int_{0}^{1} \frac{d x}{x}
$$

MOTIVATION

SCET factorization at next-to-leading power (NLP)

- subject of intense recent research
I. Moult, G. Vita, K. Yan (2019)
I. Moult, I.W. Stewart, G. Vita [+ H.X. Zhu] (2019)
M. Beneke, A. Broggio, S. Jaskiewicz, L. Vernazza (2019)
Z.L. Liu, MN (2019)
- endpoint divergences are a generic feature
- not clear how to deal with them; simplest case:

- how to interpret addition $1 / \epsilon$ poles from convolution integral?
- how to renormalize such integrals?

MOTIVATION

Consistent solution based on D-dimensional refactorization conditions and plus-type subtractions of endpoint divergences

- formalism developed for the example of $H \rightarrow(b \bar{b})^{*} \rightarrow \gamma \gamma$, but technique is completely general
- factorization theorems contains (at least) two different terms with endpoint singularities, e.g.:

$$
\int_{0}^{1} \frac{d x}{x^{1+\epsilon}} H_{1}(x)\left\langle O_{1}(x)\right\rangle+\int_{0}^{\infty} \frac{d x}{x^{1+\epsilon}} H_{2}(x)\left\langle O_{2}(x)\right\rangle
$$

- using SCET techniques, one can prove that in the singular regions the two integrands, defined in dimensional regularization, are identical (to all orders in α_{s}) up to power-suppressed terms

MOTIVATION

Consistent solution based on D-dimensional refactorization conditions and plus-type subtractions of endpoint divergences
Z.L. Liu, MN (2019)

- endpoint divergences can then be removed by a rearrangement of the integrands (in the bare theory):

$$
\begin{aligned}
& \int_{0}^{1} \frac{d x}{x^{1+\epsilon}}\left(H_{1}(x)\left\langle O_{1}(x)\right\rangle-\left[\left[H_{1}(x)\right]\right]\left[\left[\left\langle O_{1}(x)\right\rangle\right]\right]\right) \\
+ & \int_{0}^{\infty} \frac{d x}{x^{1+\epsilon}}\left(H_{2}(x)\left\langle O_{2}(x)\right\rangle-\left[\left[H_{2}(x)\right]\right]\left[\left[\left\langle O_{2}(x)\right\rangle\right]\right]\right)
\end{aligned}
$$

- difference is a scaleless integral, which vanishes is dim reg
- one can prove that this rearrangement can be maintained after renormalization
Z.L. Liu, B. Mecaj, MN, X. Wang (2020)

MOTIVATION

Consistent solution based on D-dimensional refactorization conditions and plus-type subtractions of endpoint divergences $\begin{gathered}\text { 2.L. Liu , MN (2019) } \\ \text { Z.L Liu, B. Mecaj, MN, x. Wang (2020) }\end{gathered}$

- recently, the same method has been applied to flavor non-singlet, offdiagonal contributions to thrust in the 2-jet region
M. Beneke, M. Garny, Jaskiewicz, J. Strohm, R. Szafron (2022)
- goal of this project:
first application in context of B physics!

MOTIVATION

Consistent solution based on D-dimensional refactorization conditions and plus-type subtractions of endpoint divergences $\begin{gathered}\text { 2.L. Liu , MN (2019) } \\ \text { Z.L Liu, B. Mecaj, MN, x. Wang (2020) }\end{gathered}$

- recently, the same method has been applied to flavor non-singlet, offdiagonal contributions to thrust in the 2-jet region
M. Beneke, M. Garny, Jaskiewicz, J. Strohm, R. Szafron (2022)
- goal of this project:
first application in context of B physics!
Good news:

MOTIVATION

Consistent solution based on D-dimensional refactorization conditions

Z.L. Liu, B. Mecaj, MN, X. Wang (2020)

- recently, the same method has been applied to flavor non-singlet, offdiagonal contributions to thrust in the 2-jet region
M. Beneke, M. Garny, Jaskiewicz, J. Strohm, R. Szafron (2022)
- goal of this project:
first application in context of B physics!
Good news:
- power corrections to QCD factorization can be factorized in a systematic way, with regularized endpoint behavior ...

MOTIVATION

Consistent solution based on D-dimensional refactorization conditions

Z.L. Liu, B. Mecaj, MN, X. Wang (2020)

- recently, the same method has been applied to flavor non-singlet, offdiagonal contributions to thrust in the 2-jet region
M. Beneke, M. Garny, Jaskiewicz, J. Strohm, R. Szafron (2022)
- goal of this project:

first application in context of B physics!

Good news:

- power corrections to QCD factorization can be factorized in a systematic way, with regularized endpoint behavior ...
- ... but at the expense of a proliferation of nonperturbative functions

FACTORIZATION OF WEAK ANNIHILATION AMPLITUDES

Consider the decay $\bar{B}^{0} \rightarrow K^{+} K^{-}$as a study case

- pure weak annihilation mode: $(b \bar{d}) \rightarrow(u \bar{s})+(s \bar{u})$, so the valence quarks of the B meson must be annihilated at the weak vertex
- amplitude starts at $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ relative to leading-order amplitudes
- QCD factorization yields a divergent result ($\bar{x} \equiv 1-x$):

$$
\mathcal{A}\left(\bar{B}^{0} \rightarrow K^{+} K^{-}\right) \propto 4 \pi \alpha_{s} f_{B} f_{K}^{2} \int_{0}^{1} d x \int_{0}^{1} d y \Phi_{K^{+}}(x) \Phi_{K^{-}}(y)\left[\frac{1}{y(1-x \bar{y})}+\frac{1}{\bar{x}^{2} y}\right]
$$

diverges for $x \rightarrow 1$

FACTORIZATION OF WEAK ANNIHILATION AMPLITUDES

Consider the decay $\bar{B}^{0} \rightarrow K^{+} K^{-}$as a study case

- analysis of this decay involves a 3-step matching procedure:

- rather than presenting a detailed technical discussion, I will illustrate the resulting structures using tree-level Feynman graphs
- resulting factorization theorem:

$$
\begin{aligned}
\mathcal{A}\left(\bar{B}^{0} \rightarrow K^{+} K^{-}\right)= & \sum_{i} H_{i}\left(m_{b}, \mu\right) \otimes J_{i}\left(m_{b} \Lambda_{\mathrm{QCD}}, \mu\right) \otimes S_{i}\left(\Lambda_{\mathrm{QCD}}, \mu\right) \\
& \text { hard functions jet functions } \\
\text { bert }-10 & \text { JGU Mainz }
\end{aligned} \begin{gathered}
\text { soft functions } \\
\text { (nonperturbative) }
\end{gathered}
$$

FACTORIZATION OF WEAK ANNIHILATION AMPLITUDES

Step 1: effective weak Hamiltonian

$$
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} \sum_{q=u, c} V_{q b_{q d} V_{q d}^{*}}\left[C_{1} Q_{1}^{q}+C_{2} Q_{2}^{q}+\sum_{i=3}^{6} C_{i} Q_{i}+C_{8 g} Q_{8 g}\right]+\text { h.c. }
$$

- local operators:

$$
\begin{aligned}
Q_{1}^{q} & =(\bar{d} q)_{V-A}(\bar{q} b)_{V-A} & Q_{2}^{q}=\left(\bar{d}^{i} q^{j}\right)_{V-A}\left(\bar{q}^{j} b^{i}\right)_{V-A} \\
Q_{3} & =(\bar{d} b)_{V-A} \sum_{q}(\bar{q} q)_{V-A} & Q_{4}=\left(\bar{d}^{i} b^{j}\right)_{V-A} \sum_{q}\left(\bar{q}^{j} q^{i}\right)_{V-A} \\
Q_{5} & =(\bar{d} b)_{V-A} \sum_{q}(\bar{q} q)_{V+A} & Q_{6}=\left(\bar{d}^{i} b^{j}\right)_{V-A} \sum_{q}\left(\bar{q}^{j} q^{i}\right)_{V+A} \\
Q_{8 g} & =-\frac{g_{s}}{8 \pi^{2}} m_{b} \bar{d} \sigma_{\mu \nu}\left(1+\gamma_{5}\right) t^{a} b G^{\mu \nu a} &
\end{aligned}
$$

FACTORIZATION OF WEAK ANNIHILATION AMPLITUDES

Step 2: matching onto SCET-1

- relevant operators: 4-quark operators, 4-quark operators with an extra gluon, 6-quark operators

- matching coefficients define the hard functions

FACTORIZATION OF WEAK ANNIHILATION AMPLITUDES

Step 2: matching onto SCET-2

- relevant operators:
, 6-quark operators
- 6-quark operators plus final-state gluon
- 8-quark operators
- 8-quark operators plus initial-state gluon

- 8-quark operators plus final-state gluon
- matching coefficients define the jet functions

FACTORIZATION OF WEAK ANNIHILLATION AMPLITUDES

Step 2: matching onto SCET-2

- relevant operators:
, 6-quark operators
- 6-quark operators plus final-state gluon
- 8-quark operators
- 8-quark operators plus initial-state gluon
- 8-quark operators plus final-state gluon

- matching coefficients define the jet functions

FACTORIZATION OF WEAK ANNIHILATION AMPLITUDES

Step 2: matching onto SCET-2

- relevant operators:
- 6-quark operators
- 6-quark operators plus final-state gluon
- 8-quark operators
- 8-quark operators plus initial-state gluon
- 8-quark operators plus final-state gluon
- matching coefficients define the jet functions

FACTORIZATION OF WEAK ANNIHILATION AMPLITUDES

Step 2: matching onto SCET-2

- relevant operators:
- 6-quark operators
- 6-quark operators plus final-state gluon
- 8-quark operators
- 8-quark operators plus initial-state gluon
- 8-quark operators plus final-state gluon
- matching coefficients define the jet functions

FACTORIZATION OF WEAK ANNIHILATION AMPLITUDES

Step 2: matching onto SCET-2

- relevant operators:
- 6-quark operators
- 6-quark operators plus final-state gluon
- 8-quark operators
- 8-quark operators plus initial-state gluon
- 8-quark operators plus final-state gluon
- matching coefficients define the jet functions

FACTORIZATION OF WEAK ANNIHILATION AMPLITUDES

Step 2: matching onto SCET-2

- another relevant operator:
- endpoint configuration, where one of the kaons contains a soft quark
- needed to cancel the endpoint divergences of other operators in the sum over all contributions!

endpoint configuration

FACTORIZATION OF WEAK ANNIHILATION AMPLITUDES

Step 2: matching onto SCET-2

- relevant hadronic quantities:
- 2- and 3-particle LCDAs (twist-2 and twist-3) of the kaons
- leading 2-particle LCDA of the B meson A.G. Grozin, MN(1996)
- 4- and 5-particle DAs of the B meson, with field localized on two different light cones
- soft $B \rightarrow K$ form factor for the endpoint contribution
- multi-particle B-meson amplitudes and soft form factor are new objects!

CONCLUSIONS

- first systematic extension of QCD factorization in nonleptonic B-meson decays to $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$
- endpoint divergences can be regularized and removed using the approach developed by us in 2019-2020
- SCET framework allows for resummation of all large logarithms based on RG equations (not discussed here)
- at NLP several new soft functions appear - DAs and form factors which so far have not been studied
- expect that same soft functions will arise in NLP factorization theorems for other $B \rightarrow M_{1} M_{2}$ decay amplitudes

Thank you!

