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Quantum Machine Learning
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Cl. Data, Cl. Algorithm, Cl. Model

ML for data analysis, data interpolation, stochastic optimization
Deep Neural Networks: TensorFlow, Julia (KNet, Flux)

Random Forests
XGBoost
Gaussian Process Regression
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Opening the black box: why ML works?

Information Theory

Coding theory: best theoretical (de)compression strategies
Amount of information quanti�ed by the entropy H
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Suboptimal bifurcations

Finite sample bound

DNN layers

Theoretical limit (supervised learning)
residual information between X and Y not captured by X̂

DIB = H(X, Y|X̂)
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X̂

data
R

D
I
B

Ŷ
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Opening the black box: why ML works?

Restricted Boltzmann Machines (unsupervised learning)

p({sj}) ∝ e−β[
∑

ij Jijsisj+
∑

i hisi]

Learning as following the renormalization group �ow
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Cl. Data, Cl. Algorithm, Q. Model

Problem in ML
e�ectively model a complex mapping between huge dimensional
spaces using few trainable parameters

Analogy: variational methods for quantum many-body systems

EGS . min
θ
〈ψ(θ)|H |ψ(θ)〉
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Q. Data, Cl. Algorithm, Cl. Model

ML as a tool to probe and control Quantum Systems

Example applications:

Extract relevant features of a quantum system from carefully
chosen measurements

Quantum theory is probabilistic: optimising the dynamics of a
quantum system requires stochastic optimization (ML)

Prediction of quantum dynamics via recurrent neural networks

Optimal tomography via gaussian process regression

Quantum Control via reinforcement learning
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Quantum Computing

“Near-Term” Quantum Devices
Available nowadays (Google, IBM, etc.)
Circuit based vs sampling devices (D-Wave, boson samplers)

“Full” Quantum Computer

Can run proper quantum algoritms (Shor, etc.)
Requires error correction (104 − 105 qubits)
Up to exponential speedups for solving certain problems

11 17



Quantum Machine Learning

CCC
CQC

QCC
QQC

Da
ta

Algorithm

CQQ

CQC

QQQ

QQC

Mod
el

CCQ

CQQCCC

CQC

12 17



Cl. Data, Q. Algorithm, Cl. Model

Quantum Neural Networks classical trainable parameters {θj}

Ok for near-term devices

Possible speedups not known
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Cl. Data, Q. Algorithm, Cl. Model

Unsupervised learning with quantum samplers
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Ok for near-term devices
Speedups might be expected, but not well justi�ed
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Quantum algorithms for ML

HHL algorithm
A quantum computer can solve a linear system

y = Ax

using O(log(N)) operations. This is an exponential speedup

Many applications in ML
Quantum Principal Component Analysis
Quantum Support Vector Machines
Quantum Recommendation Systems (“Net�ix problem”)

Summary:

A quantum computer can speedup ML algorithms

Too di�cult for near-term devices
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Summary

Physical theories (information theory, RG-�ow, etc.) can help us to
understand why ML works

ML as a tool to probe and optimize quantum systems

Quantum correlations as “inspiration” to de�ne new ML models

Quantum sampling devices for classically hard distributions

Quantum algorithms provide exponential speedups to some ML
problems

Thank you for your
attention!
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