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Research Interests

® Quantum Information Theory: Quantum Computation & Quantum

Communication
m Quantum Many-Particle Systems

m Machine Learning
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ML for data analysis, data interpolation, stochastic optimization
m Deep Neural Networks: TensorFlow, Julia (KNet, Flux)
m Random Forests
m XGBoost
m Gaussian Process Regression
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Information Theory

m Coding theory: best theoretical (de)compression strategies
m Amount of information quantified by the entropy H

D,
2

Theoretical limit (supervised learning)

residual information between X and Y not captured by X
Dis = H(X, Y|X)
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Restricted Boltzmann Machines (unsupervised learning)
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Learning as following the renormalization group flow
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Problem in ML
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Problem in ML

effectively model a complex mapping between huge dimensional
spaces using few trainable parameters

Analogy: variational methods for quantum many-body systems
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ML as a tool to probe and control Quantum Systems

Example applications:

m Extract relevant features of a quantum system from carefully
chosen measurements

m Quantum theory is probabilistic: optimising the dynamics of a
quantum system requires stochastic optimization (ML)

m Prediction of quantum dynamics via recurrent neural networks
m Optimal tomography via gaussian process regression

® Quantum Control via reinforcement learning
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QUANTUM COMPUTING

“Near-Term” Quantum Devices

m Available nowadays (Google, IBM, etc.)
m Circuit based vs sampling devices (D-Wave, boson samplers)
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“Full” Quantum Computer

m Can run proper quantum algoritms (Shor, etc.)
m Requires error correction (104 — 105 qubits)
m Up to exponential speedups for solving certain problems




QUANTUM MACHINE LEARNING




CL. DATA, Q. ALGORITHM, CL. MODEL

Quantum Neural Networks classical trainable parameters {6;}

U(6)=UL(0)Up—1(61—1)...U1(61)

Ok for near-term devices

X Possible speedups not known
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Unsupervised learning with quantum samplers
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v Ok for near-term devices

X Speedups might be expected, but not well justified
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A quantum computer can solve a linear system

y = Ax
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HHL algorithm

A quantum computer can solve a linear system
y = Ax
using O(log(N)) operations. This is an exponential speedup

Many applications in ML

m Quantum Principal Component Analysis

m Quantum Support Vector Machines

®m Quantum Recommendation Systems (“Netflix problem”)
Summary:
v A quantum computer can speedup ML algorithms

X Too difficult for near-term devices




SUMMARY

m Physical theories (information theory, RG-flow, etc.) can help us to
understand why ML works

m ML as a tool to probe and optimize quantum systems
® Quantum correlations as “inspiration” to define new ML models

m Quantum sampling devices for classically hard distributions

m Quantum algorithms provide exponential speedups to some ML
problems
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