Leonardo Banchi

UNIVERSITY OF FLORENCE

1 Oct 2019

ABOUT ME

- RTD-B @ UniFi (Rita Levi Montalcini)
- INFN Projects: SFT, ML

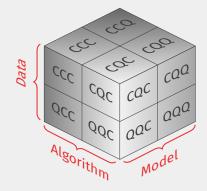
ABOUT ME

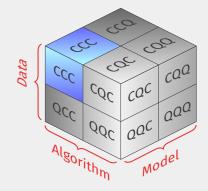
- RTD-B @ UniFi (Rita Levi Montalcini)
- INFN Projects: SFT, ML

Research Interests

- Quantum Information Theory: Quantum Computation & Quantum Communication
- Quantum Many-Particle Systems
- Machine Learning

		Algorithm	
		classical	quantum
Data	classical	CC	CQ
	quantum	QC	QQ





ML for data analysis, data interpolation, stochastic optimization Deep Neural Networks: TensorFlow, Julia (KNet, Flux)

ML for data analysis, data interpolation, stochastic optimization

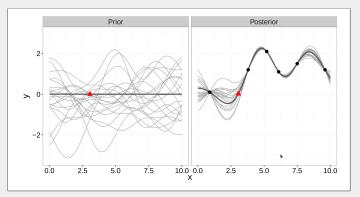
- Deep Neural Networks: TensorFlow, Julia (KNet, Flux)
- Random Forests

ML for data analysis, data interpolation, stochastic optimization

- Deep Neural Networks: TensorFlow, Julia (KNet, Flux)
- Random Forests
- XGBoost

ML for data analysis, data interpolation, stochastic optimization

- Deep Neural Networks: TensorFlow, Julia (KNet, Flux)
- Random Forests
- XGBoost
- Gaussian Process Regression



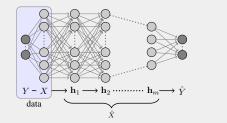
Information Theory

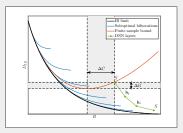
- Coding theory: best theoretical (de)compression strategies
- Amount of information quantified by the entropy H

Information Theory

Coding theory: best theoretical (de)compression strategies

Amount of information quantified by the entropy H





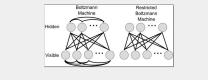
Theoretical limit (supervised learning)

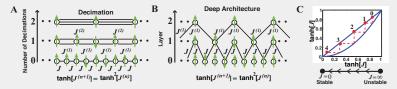
residual information between X and Y not captured by \hat{X} $D_{\rm IB} = H(X, Y | \hat{X})$

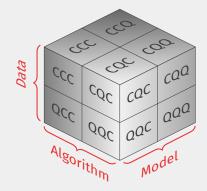
Restricted Boltzmann Machines (unsupervised learning)

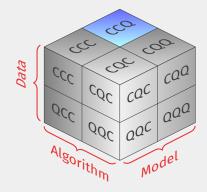
$$p(\{s_j\}) \propto e^{-eta \left[\sum_{ij} J_{ij} s_i s_j + \sum_i h_i s_i\right]}$$

Learning as following the renormalization group flow









Problem in ML

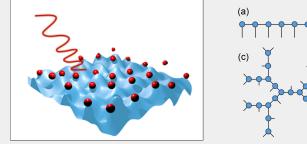
effectively model a complex mapping between huge dimensional spaces using few trainable parameters

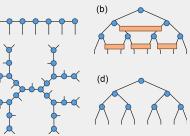
Problem in ML

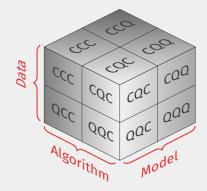
effectively model a complex mapping between huge dimensional spaces using few trainable parameters

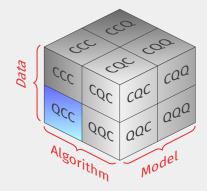
Analogy: variational methods for quantum many-body systems

 $E_{
m GS} \lesssim \min_{ heta} raket{\psi(heta)} H \ket{\psi(heta)}$





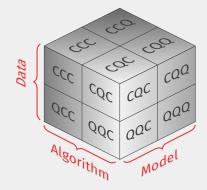




ML as a tool to probe and control Quantum Systems

Example applications:

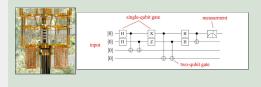
- Extract relevant features of a quantum system from carefully chosen measurements
- Quantum theory is probabilistic: optimising the dynamics of a quantum system requires stochastic optimization (ML)
- Prediction of quantum dynamics via recurrent neural networks
- Optimal tomography via gaussian process regression
- Quantum Control via reinforcement learning



QUANTUM COMPUTING

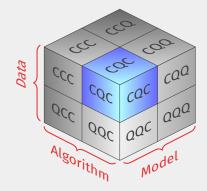
"Near-Term" Quantum Devices

- Available nowadays (Google, IBM, etc.)
- Circuit based vs sampling devices (D-Wave, boson samplers)



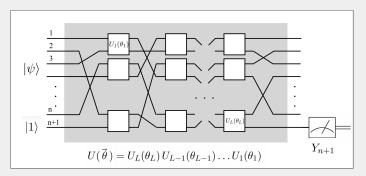
"Full" Quantum Computer

- Can run proper quantum algoritms (Shor, etc.)
- **Requires error correction (** $10^4 10^5$ **qubits)**
- Up to **exponential speedups** for solving certain problems



Quantum Neural Networks

classical trainable parameters $\{\theta_j\}$

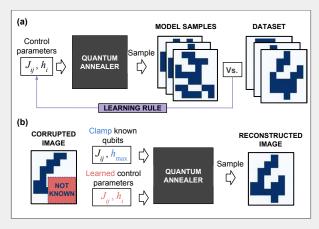


✓ Ok for near-term devices

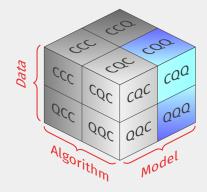
× Possible speedups not known

Cl. Data, Q. Algorithm, Cl. Model

Unsupervised learning with quantum samplers



✓ Ok for near-term devices➤ Speedups might be expected, but not well justified



QUANTUM ALGORITHMS FOR ML

HHL algorithm

A quantum computer can solve a linear system

y = Ax

using $\mathcal{O}(\log(N))$ operations. This is an **exponential speedup**

QUANTUM ALGORITHMS FOR ML

HHL algorithm

A quantum computer can solve a linear system

y = Ax

using $\mathcal{O}(\log(N))$ operations. This is an **exponential speedup**

Many applications in ML

- Quantum Principal Component Analysis
- Quantum Support Vector Machines
- Quantum Recommendation Systems ("Netflix problem")

16

QUANTUM ALGORITHMS FOR ML

HHL algorithm

A quantum computer can solve a linear system

y = Ax

using $\mathcal{O}(\log(N))$ operations. This is an **exponential speedup**

Many applications in ML

- Quantum Principal Component Analysis
- Quantum Support Vector Machines
- Quantum Recommendation Systems ("Netflix problem")

Summary:

✓A quantum computer can speedup ML algorithms

× Too difficult for near-term devices

16

SUMMARY

- Physical theories (information theory, RG-flow, etc.) can help us to understand why ML works
- ML as a tool to probe and optimize quantum systems
- Quantum correlations as "inspiration" to define new ML models
- Quantum sampling devices for classically hard distributions
- Quantum algorithms provide exponential speedups to some ML problems

SUMMARY

- Physical theories (information theory, RG-flow, etc.) can help us to understand why ML works
- ML as a tool to probe and optimize quantum systems
- Quantum correlations as "inspiration" to define new ML models
- Quantum sampling devices for classically hard distributions
- Quantum algorithms provide exponential speedups to some ML problems

Thank you for your attention!