

Results on ω_a fit

Matteo Sorbara on behalf of the ω_a Europa Group MUSE General Meeting 24th October 2019

Overview

- Building the wiggle plot
 - (Gain Corrections)
 - Pileup subtraction
 - R-wave correction
- Fitting for ω_a
 - From 5 parameters to full fit
 - Asymmetry weighted fit
 - Main systematics analysis
- (Blinded!) Result

Building the wiggle plot

Calorimeters measure time and energy* of the incoming positrons. We integrate all positrons above our threshold energy

 $E_{th} = 1.68 \ GeV$, or $E_{th} = 1.10 \ GeV$ for the A-Method, and construct the wiggle plot.

- Based on the shadow window method
- All events in the ADT window are merged together, then look for events in the shadow window
- The singles and doubles that are constructed with time:

$$t_d = \frac{t_1 e_1 + (t_2 - t_G) e_2}{e_1 + e_2} + t_{shift}$$

• t_{shift} is used to match the phase of t_1 and t_2 events.

Pileup subtraction:

The constructed doubles histograms are then subtracted from the data histograms and singles are added back:

 $H = S - \alpha D$

where α is a scaling factor to optimise the correction. To get the optimal α value, a scan of this parameter is performed and the minimum χ^2 value is used.

R-wave correction

- Due to beam bunching the per calorimeters fit presents a "wave"
- A first correction to this effect is choosing a time binning of 149.1 ns (same as the fast rotation period)
- The fit still presents the wave, so a random shift is applied to each event in the range of $\pm \frac{149.1}{2}$ ns to remove residual fast rotation effects.

Wiggle Plot

The ω_a fit

• The wiggle plot is fitted with a decay exponential modulated by the precession frequency:

 $f_5(t) = N_0 e^{-t/\tau} [1 - A \cos(\omega_a t + \phi)]$

- The 5 parameters function presents peaks in the residuals FFT due to beam dynamics effects
- Increasing the number of corrections in order to remove peaks from the FFT residuals

The ω_a fit: corrections

23 parameters function:

 $N(t) = N_0 e^{-t/\tau} [1 - A\cos(\omega_a t + \phi)] \cdot C(t) \cdot \Lambda(t) \cdot V(t)$

From trackers data:

C(t): variable CBO correction V(t): vertical oscillations terms From calorimeters coincidences (and tracker cuts)

$$\Lambda(t) = 1 - K_{LM} \int_0^t e^{\frac{t'}{\tau}} L(t') dt': \text{lost muons}$$

100

200

300

400

500

600

t(µs)

Lost Muons

- Based on the detection of Minimum Ionizing Particles in the calorimeters
- Triple (+ 4 + 5) coincidences in consecutive calorimeters with timing $\Delta t = 6.2 ns$
- Tracker identification is used to build energy distribution of the lost muons

Asymmetry weighted fit

- Get a lower threshold weighting events with their asymmetry value
- Improve the statistical uncertainty
- The pileup subtracted histogram is binned in energy (30 MeV) and each bin is separately fitted.
 Asymmetry is then extracted and the A-weighted histogram is constructed

Systematics: pileup

- The pileup amplitude uncertainty is estimated taking the variation corresponding to a unit of χ^2 around the minimum (green)
- The green band gives the interval in which R varies due to the pileup multiplier choice (blue)

Systematics: pileup (2)

- The systematic uncertainty related to the t_{shift} is evaluated scanning this time in the interval $[0, t_G]$
- For now the uncertainty is taken as the variation on R in a $\pm 3 ns$ interval around $t_G/2$ (chosen as our optimal t_{shift})
- Further analyses are ongoing to determine which is the optimal t_{shift} and the associated uncertainty.

Systematics: Gain

• IFG correction is applied to all crystal (i) hits:

$$E_i \to E_i \cdot \frac{1}{1 - A_i e^{-t/\tau_i}}$$

- Where A_i and τ_i are evaluated with the laser system and depend on the crystal
- The systematic effect of this correction is evaluated scanning the A parameter in the interval [0, 2A].

The systematic uncertainty estimation for the IFG correction is evaluated taking 40% (see Sam Grant's talk) of the variation on R per unit multiplier.

First result: 60h relative unblinding

- 1. Cornell
- 2. Washington
- 3. Boston
- 4. Shangai
- 5. Europa
- 6. Kentucky

Conclusions

- Run 1 analysis is ongoing
- The overall fitting framework is ready
- Still few topics under investigation:
 - Optimal *t*_{shift}
 - Pileup systematics
 - IFG
- Path to publication will be the main topic of the collab. Meeting (end of November)