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Figure 9.61. Picture of the ThorLab IS-200 integrating sphere (left); and the sphere’s reflectivity 

dependence on wavelength. 

There is not a stringent requirement on the laser pulse width, since the APD readout 

electronics has a rise time between 6 to 8 ns, thus setting an upper limit on the width of 

10 ns. Similarly, the pulse frequency is not strongly constrained since, as shown in the 

prototype test, running at 1 Hz provides better than per-mil statistical precision in one 

hour of data-taking. It is instead mandatory to synchronize the laser pulse with an 

external trigger to allow the light to reach the detector at the correct time relative to the 

proton beam pulse so that laser data can be taken during the time when the calorimeter is 

acquiring physics data as well as during the gaps between beam when the calorimeter is 

quiet. The laser pulse energy is strongly attenuated by the distribution system. However, 

the laser signal is required to simulate a 100 MeV energy deposition. For BaF2 this 

corresponds to ~10,000 p.e. in each photosensor. This roughly translates to a 10-20 nJ 

energy source. A safety factor of 20 is designed into the system to account for the 

eventual degradation of the signal transmission with time, resulting in an energy pulse 

requirement of ~ 0.5 mJ.  

 

There is a stringent requirement on the fibers. They should have high transmission at 

200-260 nm, a small attenuation coefficient and they must be radiation hard up to O(100 

krad). The best choice is fused silica fibers, both for their transmission properties (see 

Figure 9.62, left), a nearly flat wavelength dependence down to 150 nm, a long 

attenuation length and high radiation tolerance. 

9.12.1 Laser monitor prototype for the LYSO crystals 

The setup used for the transmission test and for the calibration of the LYSO calorimeter 

prototype is shown in Figure 9.62 (right).  The light source was an STA-01 solid-state 

pulsed laser emitting at 532 nm with a pulse energy of 0.5 mJ, a pulse width < 1 ns, good 

pulse-to-pulse stability (3%), and synchronization to an external trigger for frequencies 

up to 100 kHz. Table 9.7 summarizes the performance of equivalent STA-01 lasers 
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Primary distribution system
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The Laser station is composed by:

1. Laser primary distribution system 

2. Digitizer board 

3. Pulse generator 

4. Scope 

5. Personal computer

Laser 3B Class
The whole system is closed in a locked box
Light coming out from the fibers (if 
accidentally broken) is Class 1 (filters are 
present in the distribution system)
More info DocDb 27067



Secondary distribution system
Main components (8x whole calorimeter)
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1. Sphere: Thorlabs, IS200-4

2. Filter (2x): Thorlabs, SM05L03 + NE513B

3. Fiber connector (3x): Thorlabs, IS200-4

4. Photodiode (2x): Hamamatsu, S1226-18BK

5. FEE board (2x)

6. Faraday cage 

7. Fiber in

8. Fiber bundle out (2x)
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Constraints
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o Short term fiber bending radius: 25 mm

o Long term fiber bending radius: 50 mm

o Fit between two crates (0 and 1)

o Leave space for Tracker alignment system

o Protection from radiation

o Dissipate heat (0.35 W per FEE)

o Vacuum ok (no virtual leak, vacuum material)

o FEE electrically isolated

o FEE easy to mount-dismount during maintenance

o Easy to rout



Mounting solution
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Mounting solution
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Tungsten shield
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Spheres holes
M4 CSK

Al Ring 
holes M5

Target 
hole

8 mm 
thick

80 mm high

M3

No virtual
leak

Step to easy 
mounting



FEE board assembly
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Copper
Faraday cageFEE

PEEK PD 
holder

Photodiode

FEE 
connector

o PEEK PD holder fit inside the sphere hole

o Leaves space to outgas the sphere

o Helps fitting the FEE assembly for mounting 

o Protect the Photodiodes from hits

o Isolates electrically the FEE assembly from the calorimeter



FEE Faraday cage mounting
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Trim this
edge!

Hex Key

Pear holes:
Push and turn 

mounting

Hex key
holes

Through holes

o Assembling offsite

o Mounting without screwing 
(worse thermal conductance, 
better access)

o Mounting screwing (better 
thermal conductance, worse 
access)

(to decide in advance -> presence 
spring)

Glued with 
epoxy

Spring



Cabling
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FEE 
cables

Fibers Out

Fibers In

o Fibers bending radius 50 mm



Cabling
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Readout
cables

container

Cable tie



Connection
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Spheres
connected
to Crates 2

Spheres
connected
to Boards 2

o Symmetrical for half disk

o Same for both disks

o 2/4 connector of a cable (the others are not 
connected)

o PDs of the same sphere are connected to two 
different boards (sensor 1 and sensor 2)



See of Sight
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Tracker
Target See

of Sight

o All cables are 
fixed  or 
contained

o No spare 
cables in that 
region
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Thanks for your attention


