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• Measure	ra@o	of	conversions	to	muon	captures:	

• Highly	suppressed	in	SM	(	rate	<10-50)	

•  There	is	an	observable	rate	in	many	new	physics	models	

Mo7va7on


•  Search	for	neutrinoless	conversion	of	
muon	to	electron,	in	vicinity	of	a	nucleus	

• Observa@on	would	be	a	viola@on	of	
charged	lepton	flavour		

•  Evidence	of	physics	beyond	the	SM	

​𝑅↓𝜇𝑒 = ​​𝜇↑− +𝐴(𝑍,𝑁)​→𝑒↑− +𝐴(𝑍,𝑁) /​𝜇↑− +𝐴(𝑍,𝑁)→​𝜈↓𝜇 +𝐴(𝑍−1,𝑁) 	
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Ee(Al)=Mµ-Eb –Erecoil



    =105 MeV




Mu2e Concept


•  Stop	pulsed	beam	of	muons	in	thin	Al	foils	and	form	muonic	27Al	atoms	

• Wait	for	decays	
•  Normalisa7on:	61%	undergo	muon	capture	reac@on	
•  Prompt	background:	39%	decay	in	orbit	(muon	to	electron	and	2	neutrinos)		
•  CLFV	signal:	<10-12	muon	to	electron	conversion	(monoenerge@c	electrons	at	
105MeV)	
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Simula(on	showing	DIO	
background	(blue)	and	
CLFV	signal	(red)	for	a	
conversion	rate	of	10-16	
and	3	years	of	running	



Mu2e Concept


•  Stop	pulsed	beam	of	muons	in	thin	Al	foils	and	form	muonic	27Al	atoms	

• Wait	for	decays	
•  Normalisa7on:	61%	undergo	muon	capture	reac@on	
•  Prompt	background:	39%	decay	in	orbit	(muon	to	electron	and	2	neutrinos)		
•  CLFV	signal:	<10-12	muon	to	electron	conversion	(monoenerge@c	electrons	at	
105MeV)	

MUSE	General	Mee@ng 	 	 	ljh@liverpool.ac.uk	

	



Mu2e Apparatus


Stopping	target:		
• Muon	stopping	target	consists	of	17	thin	aluminium	
discs	along	the	axis	of	the	detector	solenoid	
•  1010	muons	stopped	per	second	in	Al	target	
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Mu2e STM


• When	muon	stops	in	Al,	it	quickly	(1	fs)	cascades	to	1s	ground	state	

•  Emits	X-rays	at	characteris@c	energies	that	can	be	used	to	monitor	

number	of	stopped	muons	–	aim	of	the	STM	
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Mu2e STM


•  STM	located	34m	from	aluminium	target	(where	muons	are	
captured)	
•  Collima@on	and	a	sweeper	magnet	reduce	background	rate	at	the	
HPGe	detector	
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Mu2e STM


• Need	excellent	resolu@on	at	high	rate	(90	kHz/cm2	photons)	

•  Photons	of	interest	from	347	keV	to	1809	keV	

•  Large	bremsstrahlung	background,	neutrons	
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•  Gamma-ray	detectors:	HPGe,	Si(Li),	CZT,	NaI,	BGO,	LaBr3	
•  	Detector	proper@es:	energy	resolu@on,	detec@on	efficiency,	@me	

resolu@on,	count-rate	capabili@es	

Gamma-ray spectroscopy
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HPGe detector produc7on
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•  Detector	specifica@ons	

•  High	quality	supplier	of	zone	refined	germanium	

•  Cut	and	shape	the	crystal	with	specific	

crystallographic	axis	orienta@on	

•  Contact	the	crystal	

•  Design	and	build	the	cryostat	

•  Select	and	integrate	preamplifier	

•  Integrate	with	collimator	and	DAQ	system	

•  Characterisa@on	

Manufacturer	
(Ortec/Ametek)	

UK	team:	UoL,	
UoM,	UCL	

UK	team:	UoL,	
UoM,	UCL	



HPGe detector design


• Efficiency	and	peak-to-total:	Size	and	shape	of	crystal,	size	and	loca@on	
of	collimator	aperture	(energy	dependence)	
• Energy	resolu7on:	Size	and	shape	of	crystal,	signal	processing	and	
radia@on	damage	
• Rate:	size	and	shape	of	crystal,	size	and	loca@on	of	collimator	aperture,	
preamplifier	and	signal	processing		
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STM challenges
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•  Incomplete	energy	collec@on	in	the	detector	(degrading	signal	to	noise)	

•  High	levels	of	prompt	bremsstrahlung	radia@on	(electrons	produced	at	

produc@on	tungsten	transported	to	the	stopping	target)	

•  Radia@on	damage	expected	from	high	neutron	flux	

•  Rates	will	be	high,	detector	preamplifiers	will	need	to	be	able	to	quickly	

recover,	as	governed	by	the	pulse	structure	

•  Collima@on	systems	will	be	required	to	reduce	the	rates	

•  Small	footprint	available	for	STM	



STM challenges
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• Gamma-rays	that	deposit	only	a	

frac@on	of	their	energy	in	the	

detector	contribute	to	background	

• Maximise	Peak	to	Compton	ra@o	

	σphoto	~	Z4-5	

	σcompton	~	Z	

	σpair	~	Z2	

	

Varies	as	a	func@on	of	energy!	

Germanium	



HPGe detectors
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Single	HPGe	large	volume	

detector	performance	

	

•  Rela@ve	efficiency:		

	p-type	≤	150%,	n-type	≤	100%	

•  Peak	to	Compton	ra@o:		

	p-type	≤	80%,	n-type	≤	60%	
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Radia7on Damage
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•  Fast	neutrons	can	dislocate	ge	atoms	from	their	laqce	posi@on	
•  Hole	traps	uniformly	distributed	through	crystal	

•  Most	interac@ons	closer	to	outer	
contact,	so	holes	have	shorter	average	
collec@on	path	in	n-type	than	p-type	

•  p-type	an	order	of	magnitude	more	

sensi@ve	to	radia@on	damage	
•  Degraded	energy	resolu@on	arer	
~2x109	ncm-2	

•  Hole	traps	can	be	moved	by	annealing	
the	detector	

n-type:	holes	collected	at	outer	p+	contact	



Radia7on Damage
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•  Germanium	crystal	annealed	for	several	days	at	100-120°C	

•  Detector	heated	in	cryostat	via	the	cold	finger	

•  Cryostat	under	vacuum	pump	to	avoid	surface	contamina@on	

•  Crystal	temperature	can	be	measured	with	a	PT100	resister	at	the	cold	

finger	

•  Cold	components	of	preamp	could	be	damaged	by	annealing	

•  Most	of	detector	performance	recoverable	



Rate Capabili7es
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•  Up	to	150kHz	rates	expected	for	Mu2e	STM	detectors	

•  gELBE	Bremsstrahlung	facility	at	HZDR	used	to	study	performance	of	

a	HPGe	detector	in	high	beam	pulse	occupance	(up	to	80kHz)	

•  gELBE	pulse	separa@on	2.4µs	close	to	Mu2e	1.7µs	



gELBE Beam


•  6-16	MeV	e-	beam	onto	2cm	

diameter	niobium	target	behind	

cave	wall	(in	accelerator	hall)		

•  Bremsstrahlung	produced	

•  Use	an	aluminum	beam	hardener	

to	suppress	the	low	energy	

Bremsstrahlung	photons	

•  End-point	energy	between	9	and	

18MeV	
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gELBE Beam


•  Bremsstrahlung	beam	collimated	by	

2.6m	long	high-purity	aluminum	

tube	

•  108/MeV	Brem	photons	per	second	

at	the	secondary	target	posi@on	

•  Beam	rate	constant	over	@me,	

controlled	by	ELBE	

•  137Cs	and	60Co	sources	placed	close	

to	detector	
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Rate Studies
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Data	Acquired	
• HPGe	and	beam	signal	into	CAEN	V1724	
digi@zer	(100	MHz	14	bit	ADC)	
• NaI	and	beam	signal	into	CAEN	V1724	digi@zer	
• Digi@sed	traces	and	@mestamps	
• Energy	spectra		

Analysis	
• Analysis	of	spectroscopic	performance	from	energy	spectra	
• Calcula@on	of	energies	from	digi@sed	traces	using	various	
algorithms	
• Rise@me	analysis	of	traces	
• Timestamp	correla@ons	with	beam	pulses	



Rate Studies
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511keV	from	beam	

1172	and	1332	keV	
from	60Co	

662	keV	
from	137Cs	



Rate Studies


MUSE	General	Mee@ng 	 	 	ljh@liverpool.ac.uk	

	

511keV	from	beam	

662,	1172	and	1332	keV	
from	137Cs,	60Co	

Varying	beam	
current	



Rate Studies
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Rate Studies
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Rate Studies
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Posi@on	B	lower	
avg	energy	due	to	
less	HPGe	in	path	



Rate Studies
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Fixed	beam	
current	



Rate Studies


MUSE	General	Mee@ng 	 	 	ljh@liverpool.ac.uk	

	

• Calculated	the	difference	in	@me	stamps	
between	subsequent	events,	tsn	–	tsn-1	=	△ts	

• First	1k	events	in	file	
• 10𝜇s	beam	pulsing	data	
• △ts	shows	beam	freq	
• Events	between	beam	
are	background	and	
source	events	



Rate Studies
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• Calculated	the	difference	in	@me	stamps	
between	subsequent	events,	tsn	–	tsn-1	=	△ts	

• 9.85𝜇s	frequency	
• Beam	pulse	~	+/-	20	
samples	wide	(~	400ns)	
• Background/source	



Rate Studies
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• Energy	spectra	gated	+/-	200ns	around	beam	pulse	



Selected detector

•  70%	efficiency	n-type	detector	
•  X-COOLER3	with	umbilical	cord	
•  Internal	heater	for	annealing	
•  Delivered	August	2019	
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Summary


• Mu2e	is	a	search	for	the	coherent	conversion	of	a	muon	to	an	electron	

in	the	field	of	an	aluminium	nucleus	

• Observa@on	would	be	evidence	of	physics	beyond	the	standard	model	

• The	UK	team	of	Uni	of	Liverpool,	Uni	of	Manchester	and	UCL	are	

building	the	STM:	HPGe	detector	and	collimator	system	with	DAQ	

• The	detectors	have	been	delivered	to	Liverpool	and	will	be	

commissioned	at	Fermilab	early	2020.	
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