The Mu2e calorimeter laser system

MUSE WP3: Muon Laser Calibration System

<u>C.Ferrari</u>

INO-CNR and INFN, Pisa, Italy

M. Cordelli, S. Miscetti, D. Pasciuto

Laboratori Nazionali di Frascati, INFN, Italy

MUSE General Meeting 23th-25th Oct 2019

INO-CNR

NAZIONALE DI

ISTITUTO

OTTICA

Primary distribution system

Secondary distribution system

Test with SiPMs

Test on Monitors

Mu2e Laser System Scheme

3 C. Ferrari – MUSE General Meeting

Primary distribution system

🛾 🛟 Fermilab

Primary distribution system – spare laser

Secondary Light distribution system

Local monitor

SiPM + Crystal

24th Sept 2019

‡Fermilab

7

Neutral filters

Energy budget	Component	Transmission	
	Laser	9.5 μJ/pulse	
The estimated overall	Neutral filter = 1.3	5%	
transmission is $1 = 10^{\circ}$	Mirror + cube 50:50	52%	
We need 3000	Mirror+Lens+Splitting+ Collimator+1m Fiber	5%	
photoelectrons/photosensor	70 m fiber	60%	
	Optical feedthrough	70%	
=> The laser must provide	10 m fiber	90%	
3 ^w 10 ¹⁰ photons/pulse	Integrating sphere	0.003%	
@ 500 nm 1 photon = 0.4 aJ	Neutral filter = 1.3	5%	
	Fiber bundle	98%	
=> The laser must provide 12	Crystal	50%	
nJ/pulse	SiPM collection area	18%	

SiPM PDE 20%

Filter wheel scan

Filter wheel	Th trans.	Out after FW	Trans. %	Fiber out
pos	%	(mW)		(mW)
1	100	1263	100	52.5
2	80.6	1083	85.7	44.5
3	64.5	866	68.6	34.7
4	50.8	697	55.2	27.8
5	39.0	526	41.6	20.4
6	31.6	410	32.5	16.1
7	25.0	341	27.0	13.3
8	16.1	223	17.7	8.4
9	10.1	140	11.1	5.33
10	5.05	76.9	6.09	2.91
11	2.52	35.9	2.84	1.35
12	0.96	10.73	0.85	0.39

SiPM waveforms

10 C. Ferrari – MUSE General Meeting

Persistency plot 600 waveforms

Photodiodes

SiPMs

Pk-to-pk amplitude

12 C. Ferrari – MUSE General Meeting

24th Sept 2019

‡ Fermilab

Distributions

Mean and the standard deviation

FW	Ph LM	sd	Ph SM	sd	SiPM #1	sd	SiPM #2	sd
1	1.605E-1	5.623E-4	6.126E-1	1.266E-3	-5.687E-1	2.780E-2	-3.365E-1	2.371E-2
2	1.314E-1	4.224E-4	4.996E-1	8.856E-4	-4.643E-1	2.245E-2	-2.666E-1	1.877E-2
3	1.054E-1	4.717E-4	3.976E-1	1.118E-3	-3.632E-1	2.133E-2	-2.074E-1	1.603E-2
4	8.571E-2	4.605E-4	3.217E-1	5.678E-4	-2.732E-1	1.570E-2	-1.567E-1	1.373E-2
5	6.329E-2	3.449E-4	2.378E-1	5.602E-4	-2.243E-1	1.402E-2	-1.291E-1	1.225E-2
6	4.991E-2	3.483E-4	1.855E-1	5.064E-4	-1.666E-1	1.181E-2	-9.554E-2	1.050E-2
7	4.086E-2	3.489E-4	1.531E-1	4.704E-4	-1.320E-1	1.074E-2	-7.579E-2	8.596E-3
8	2.652E-2	3.568E-4	1.013E-1	3.943E-4	-8.444E-2	7.730E-3	-4.900E-2	7.640E-3
9	1.666E-2	3.336E-4	6.316E-2	3.911E-4	-5.439E-2	6.446E-3	-3.219E-2	5.732E-3
10	9.300E-3	3.176E-4	3.420E-2	3.579E-4	-2.972E-2	5.129E-3	-1.742E-2	4.560E-3
11	4.612E-3	3.184E-4	1.571E-2	3.262E-4	-1.326E-2	3.040E-3	-8.181E-3	2.982E-3

Graphs

Laser stability

0.5 %/hour drift: laser or Ph+electronics

16 C. Ferrari – MUSE General Meeting

SiPMs bias scan

Tree filter wheel positions (3 = 68%, 6=32%, 9=11%)

🗕 🛟 Fermilab

Setup for fibers length measurements

Connect the fiber to the collimator and to the SM sphere

The time delay introduced by the 1 m long fiber is $\delta t = 5.25$ ns.

As the refraction index of pure Silica is 1.461 (@ 532 nm), the expected value would be 4.87 ns

- Test the optical feedthrough (just delivered at FNAL)
- Test again photodiodes stability
- Select photodiode (Hamamtsu, mod. s1226 or s12698); waiting for gamma irradiation test
- DAQ & TDAQ integration

SPARE

Fiber bundle transmission

24th Sept 2019

‡Fermilab

End point of the light distribution chain

Distribution in the Disk

Figure 6: (Left) Positioning of spheres in the outer disk and (right) disk transversal view.

There will be 8 60 meters (400 um diameter) fused silica lqunching fibers going from the DAQ room to the IFB. Through Optical Feed-throughs other 8 "10" m fibers will arrive to the Disks to 8 Diffusing Spheres. **They will be routed in the same path of LV/HV services**

Option to move the sphere at higher height down to lower position is being studied (with the CAD) in order not to interfere with Tracker alignment.

Routing of the fiber bundles in the Back disk is also under study. It will be completed once the routing of FEE cables will be frozen.

TDAQ integration

We will receive from the TDAQ one copy of the encoded clock and a Control Optical Link. <u>Our plan is to drive the laser system at very low frequency (0.1-0.2 Hz) and synchronize the arrival time of the calibration signals in a beam off period</u>. Specific markers can be sent by the T-DAQ in the beam-off period and will be used for this synchronization. Special runs in the beam-ON period are foreseen to study the effect of the beam flash on the gain.

In order to acquire the data from the monitoring box (4 Photodiodes) in the T-DAQ room we will use <u>1 calorimeter like ROC</u> so that we will receive here in input: (1) one system Clock Fiber and (2) one Control Optical Fiber. In output, we will provide 1 data fiber for readout. During calibration runs, we will acquire also another <u>"special" calorimeter like</u> ROC to read-out the 8 monitoring Pin Diodes inside the DS.

- \rightarrow The combination of rate and power makes the Laser a CLASS 3B
- \rightarrow It has to be enclosed (Laser, Wheel, Primary Distribution)
- → Fiber end on the SiPM will have a peak power of few pJ .. so no problem here
- → The only problem will be in the IFB region (feed-throughs)
 Here the output light of the 8 launching fibers will be very high.
 Appropriate signage is needed here.

Primary Distribution system

