

Modeling and Simulation of Active Plasma Lenses for High Brightness Electron Beams

Emanuele Brentegani

PhD Supervisors: Prof. Stefano Atzeni, Dr. Enrica Chiadroni

19 Nov 2018

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI FRASCATI

Contents

- 1. Active plasma lenses in accelerator physics
 - 1.1 Active plasma lenses in accelerator physics
 - 1.2 Real device
 - 1.3 Issues related to active plasma lenses
- 2. Numerical model for capillary discharges
 - 2.1 Numerical model for capillary discharges
 - 2.2 Accurate transport parameters
 - 2.3 Semi-implicit algorithm
- 3. Simulation results
 - 3.1. Comparison with electron density measurements
 - 3.2. Comparison with beam focusing measurements
 - 3.3. 1mm diameter *Vs* 1.2mm diameter capillary
- 4. Conclusion and outlook

1.1. Active plasma lenses in accelerator physics

What is an active plasma lens*?

It is a device which can focus an electron beam, thanks to an azimuthal magnetic field generated by a discharge current induced in a gas-filled capillary

*W.K.H. Panofsky and W.R. Baker, Rev. Sci. Instr. 21, 445 (1950)

1.1. Active plasma lenses in accelerator physics

- Interesting features:
 - Magnetic field gradients even higher than those achievable in permanent magnet quadrupoles, up to several kT/m
 - Compact and capable of focusing a beam in both transverse planes
 - The focusing strength, K, scales as $1/\gamma$

- Promising because...
 - High focusing gradient → deliver small spot (...matched) beams to accelerators of new conception
 - Compact and symmetric \rightarrow miniaturization of accelerators \rightarrow cost reduction
 - K, scales as $1/\gamma \rightarrow$ Better than solenoids (scaling as $1/\gamma^2$) competing with quadrupoles

1.2. Real device

- Made of *printed plastic* or *sapphire* (with external support of printed plastic) •
- Filled with hydrogen (≈10⁻⁶-10⁻⁷g/cm³) •
- Typical dimensions: •

- At SPARC_LAB electron density measurement (exploiting Stark Broadening effect) is ٠ implemented
- * F. Filippi et al, J. Instrum, 11(09), C09015 (2016)

19 Nov 2018

1.3. Issues related to active plasma lenses

$$ightarrow$$
 Focusing strength in APL is: $k\propto rac{B(r)}{r}$

- For a radially uniform k (desirable condition) we need magnetic field with linear dependence on r.
- > This is often not the case!

- Reason:
 - Capillary walls have cooling effect
 - Plasma is hotter on axis
 - > Plasma electrical resistivity: $\eta \propto rac{1}{T^{3/2}}$
 - Current density concentrates on axis
 - Magnetic field has a dropping profile

1.3. Issues related to active plasma lenses

- Undesired passive plasma lensing may occur.
 - If the electron density is in certain ranges, beam emittance grows significantly
 - This is very likely to happen on the plasma plums coming from the capillary extremities¹

- Scattering of beam electrons with plasma ions and neutrals may be important (emittance growth), depending on the gas density and atomic number.
- 1. A. Marocchino et al, Appl. Phys. Lett, 111(18):184101, (2017)

2.1. Numerical model for capillary discharges

Simulating (conic) capillary discharges:

- 2D axially symmetric geometry
- Fluid approach (\rightarrow kinetic approach is impractical)
- Local thermodynamic equilibrium conditions
- Description:
 - Lagrangian (grid cells moving with the fluid) \rightarrow **DUED**¹:

Preliminary results obtained³

- Eulerian (fluid moving through grid cells) \rightarrow **PLUTO**²

- Hydrodynamic model
- Ohmic heating due to curren flow
- Current density computed with *static current flow* approximation
- Resistive magnetohydrodynamic model

1 Atzeni et al., Comput. Phys. Commun. 169 (2005) 153 2 Mignone et al., Astrophys J Suppl S, Vol. 170, Iss. 1 (2007), pp. 228-242 3 Brentegani et al., NIM – A, 909, (2018), pp 404-407

2.1. Numerical model for capillary discharges

Capillary walls \rightarrow **Eulerian** description to avoid grid pathologies (PLUTO)

Mass conservation

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \mathbf{v}) = 0,$$

Momentum conservation

$$\frac{\partial}{\partial t}(\rho \mathbf{v}) + \boldsymbol{\nabla} \cdot (\rho \mathbf{v} \mathbf{v}) = \frac{1}{\mu_0} (\boldsymbol{\nabla} \times \mathbf{B}) \times \mathbf{B} - \boldsymbol{\nabla} p,$$

- Equation of state for $p \leftrightarrow T \leftrightarrow \varepsilon_i$
- Saha's eq. for ionization degree

Energy conservation

$$\begin{split} \frac{\partial \epsilon}{\partial t} + \boldsymbol{\nabla} \cdot (\epsilon \mathbf{v}) &= - \,\boldsymbol{\nabla} \cdot (p \mathbf{v}) + \boldsymbol{\nabla} \cdot (\kappa \boldsymbol{\nabla} T), \\ &- \boldsymbol{\nabla} \cdot \left[\left(\frac{\eta}{\mu_0^2} \boldsymbol{\nabla} \times \mathbf{B} \right) \times \mathbf{B} \right], \\ &+ \frac{1}{\mu_0} \boldsymbol{\nabla} \cdot \left[\mathbf{B} \left(\mathbf{B} \cdot \mathbf{v} \right) \right], \end{split}$$

Magnetic field evolution

$$\frac{\partial \mathbf{B}}{\partial t} = \mathbf{\nabla} \times (\mathbf{v} \times \mathbf{B}) - \mathbf{\nabla} \times \left[\frac{\eta}{\mu_0} (\mathbf{\nabla} \times \mathbf{B})\right].$$

 $\rho: mass density$ $\mathbf{v}: fluid velocity$ p: thermal pressure $\epsilon: total energy density$ $\kappa: thermal conductivity$ T: plasma temperature $\eta: electrical resistivity$ $\mathbf{B}:magnetic field$

2.2. Accurate transport parameters

The transport parameters have been computed with a rigorous approach^{1,2,3}

1. R. S. Devoto, Phys. Fluids 9, 1230 (1966)

2. J. F. J. Janssen, PhD, Department of Applied Physics, Eindhoven (2016)

3. M. Capitelli, D. Bruno, A. Laricchiuta, 'Fundamental Aspects of Plasma Chemical Physics: Transport' vol 74, Springer(2013) 4. Bobrova, N. A., et al., Simulations of a hydrogen-filled capillary discharge waveguide. Phys. Rev. E, 65 (2001), 016407

19 Nov 2018

10

2.2. Accurate transport parameters

- The transport parameters have dramatic effects on the plasma behavior
- Changes in the temperature field are responsible for differences in the electrical resistivity
- The magnetic field profile changes dramatically

4. Bobrova, N. A., et al., Simulations of a hydrogen-filled capillary discharge waveguide. Phys. Rev. E, 65 (2001), 016407

2.3. Semi-implicit algorithm

MHD system:		Numerical method:			
 Mass Momentum Energy 	Advection	→ Finite volumes (HLL + RK II)			
 Magnetic field Magnetic field diff. 	+	→ Strang splitting			
• Thermal conduction	Diffusion	Alternating direction implicit method (ADI)			
Douglas Rachford method*: $\frac{\hat{\Psi}^{n+1} - \Psi^n}{\Delta t} + D_r(\hat{\Psi}^{n+1}) + D_z(\Psi^n) = 0$					
$\frac{\Psi^{n+1} - \Psi^n}{\Delta t} + D_r(\hat{\Psi}^{n+1}) + D_z(\Psi^{n+1}) = 0$					
Ψ^n ———	$\hat{\Psi}^{n+1}$ –	$\longrightarrow \Psi^{n+1}$			
Explicit step in z + Implicit step in r Explicit step in r + Implicit step in z					

Solution of non-tridiagonal systems is not required!

* Douglas, J. and Rachford, H. H. Transactions of the American mathematical Society, 82 (1956), 421

19 Nov 2018

3.1. Comparison with electron density measurements

/home/ema/Dottorato/tesi/discussione/presentazione/ne_evolution_withI.mp4

3.1. Comparison with electron density measurements

1. Filippi, Ph.D. thesis, Università di Roma la Sapienza (2017).

3.1. Comparison with electron density measurements

1. Filippi, Ph.D. thesis, Università di Roma la Sapienza (2017).

3.2. Comparison with beam focusing measurements

Reproducing experimental electron beam focusing by 90A-peak discharge¹

Capillary				
Diameter	1 mm			
Length	3 cm			
Initial gas pressure	~ 100 mbar			
Current profile	90A-peak, 1µs duration			
Electron bunch				
Charge	50 pC			
Energy	126 MeV			
Energy spread (rms)	50 keV			
Norm. rms emittance	1 mm mrad			
Duration	1.1 ps			
Spot at capillary entra	<i>nce (rms)</i> 130 μm			

1. R. Pompili et al, Appl. Phys. Lett, 110(10):104101, (2017)

3.2. Comparison with beam focusing measurements

Reproducing experimental electron beam focusing by 90A-peak discharge¹

1. R. Pompili et al, Appl. Phys. Lett, 110(10):104101, (2017)

3.3. 1mm diameter Vs 1.2mm diameter capillary

	Case (a)	Case (b)
Diameter	1 mm	1.2 mm
Length	1.2 cm	1.2 cm
Initial gas density	2.5·10 ⁻⁷ g/cm ³	2.5·10 ⁻⁷ g/cm ³
Current profile	Flat top, 500 A	Flat top, 720 A
Electron bunch	as before: 50 pC, 126 MeV, 50 keV, 1 mm	mrad, 1.1 ps,130 µm

• **Result:** lower emittance growth for (b)

4. Conclusion and outlook

- I have shown the working principle of an active plasma lens
 - Active plasma lenses are promising technologies
 - Issues: magnetic field quality, passive focusing, beam scattering
- The need for 2D simulations is being addressed
 - Hydrodynamic, Lagrangian model with joule heating driven by a static current flow
 - Magneto-hydrodynamic model with Eulerian approach
 - With semi-implicit numerical method
 - Use of accurate **transport parameters** is necessary
- Main results:
 - Successful comparison of computed electron density with Stark-Broadening measurements
 - Successful comparison with experiment of beam focusing with an APL
 - First studies on the effect of capillary geometrical properties on the beam quality preservation

• SLIDE INTENZIONALMENTE VUOTA

APPENDIX: preliminary results with DUED

• In the approximation of thin lens, what matters for the focusing is average magnetic field:

$$\langle B(r) \rangle = \frac{\int_{-\infty}^{+\infty} B_{\theta}(r, z) \mathrm{d}z}{L_{\mathrm{cap}}}$$

- We can compare the integrated field at time 650ns (45A) with a field previously experimentally inferred, for the very same discharge[*] and for the timing corresponding to a current of 45A with descending slope.
- It is clear that the profiles do not match**

- Possible explanations:
 - The lack of the treatment of a self consistent magnetic field
 - > The choice of both the initial (flat) profile of gas density distribution in the simulation
 - Plasma electrical resistivity, thermal conductivity not accurate enough
 - Not included the passive lensing effect

*. R.Pompili et al., Appl. Phys. Lett. 110, 104101 (2017)

**. E. Brentegani, et al.. NIM-A, ttps://doi.org/10.1016/j.nima.2018.03.012 (2018), In Press.

19 Nov 2018