Machine Learning
exercise

Lukas Layer



ldea of the exercise

Focus on practical application - as little math as possible

Use some of the most popular industrial libraries - more
powerful (and more fun) than ROOT TMVA

Learn how to convert ROOT Trees to pandas frames -
apply machine learning - convert back to ROOT

Next time: hyper-parameter optimization, cross-fold
validation, multi-class classification



Why ML for S/B classification ?

rectangular cuts non linear

—> Better separation between signal and background

—> Potentially improves sensitivity of your analysis



Signal/Background classification

Train on Signal and Background Monte-Carlo
=»learn the separation between S and B distribution
Apply on test sample
Apply on data

Note: instead of classifiying 0 or 1, can regress !

AUC : Area Under the (ROC) Curve
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Events / 0.17

HEP analysis example

Boosted Decision Tree (BDT) using ~dozen of high level variables
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SUPERVISED LEARNING

> h(x; w) > Loss
Function with Function
adjustable
parameters Compare
prediction — > Loss
with true
True labels: label
Higgs =1 >
Bkg =0

Loss function: evaluate how well your algorithm models your dataset

If predictions are bad: loss function will output a higher number.

If predictions are good: lower number. 4
Loss tells you if your model improves during training »
5
: _ A N2
e.g. Mean Squared Error: L@@) = Z(y,- — ¥i)
I

Steps



Overfitting and how to prevent it

Training Set

Train and tune your models
(using cross-validation)

Test Set

Don’t touch this
until the very end.

TMVA overtraining check for classifier: BDTG1
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e Split the data into train and test samples

e Check the score on train and test sample

TMVA overtraining check for classifier: BDTG1
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WoO-flow (S,B): (0.0, 0.0)% /(0.0, 0.0)%



Early stopping

Error

Validation

~—— Training

Stop training Number of epochs

 Easy way to prevent overfitting

* Monitor the loss on a validation set and stop when it gets
worse



Decision Tree

Objective function: training loss (predictive power) and
regularization term (complexity):

obj(8) = L(6) + Q(6)
eg.-MSE:  L(0)= ) (i — 1)’

Input: age, gender, occupation, ... Like the computer game X
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Boosted Decision Trees (BDT)

tree1

tree2

e Boosted trees - less prone to overfitting

e BDTs are widely used in HEP

 Simpler than NNs + good out of the box results + feature importance



dmilc

XGBoost

e Powerful, fast industrial library

e (Good out of the box results

Important parameters to control complexity/overfitting and
some of my experiences:

* Number of trees [10 - 1000] higher values -> more complex
e Learning rate [10e-6 - 0.3] higher values -> faster but can overfit
* Tree depth [2 - 15] higher values -> more complex

e min_child_weight [1 - 10] higher values -> reduces complexity



Neural Networks

Multiple layers: output of previous layer is fed forward to next layer
after applying non-linear activation function g’; = p(Wy; 07 + bjj

Fully connected: many independent weights

Learning: Use analytic derivatives and
stochastic gradient descent to find optimal

weights

Outputs

Colors shows
data, neuron and !
weight values.

idden layers



More important terms...

Activation Functions

y=9g(00+X70 )

* Example: sigmoid function
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Activation function: sigmoid, tanh, relu
Epochs: number of times the data is exposed to the NN
Batch size: number of samples until weights are updated [10 - 1000]

Optimizer: algorithm to optimize the loss: SGD, Adam...



Keras

e Simple but very powerful deep-learning library

* Tensorflow based - most popular choice for many DL applications

Important parameters for a simple feed-forward NN:
e | earning rate (important!) [10e-6 - 0.1]

e Hidden layers [2-8] higher values -> more complex

e Units layers [10-100] higher values -> more complex

e Dropout [0 - 0.9] higher values -> reduces overfitting



ML in HEP

Difference to data science: Data/MC agreement is crucial

e Simulations imperfect —> although ML performance on MC is great
doesn’t mean it is true for Data

* In the end you care about the sensitivity of your analysis

—> Understand your input!

Exercise: discriminate singletop events from tt events

Run on SWAN: https://swan.web.cern.ch

Repo: https://github.com/llayer/ml_exercise


https://swan.web.cern.ch/

