
Machine Learning
exercise

Lukas Layer

Idea of the exercise

• Focus on practical application - as little math as possible

• Use some of the most popular industrial libraries - more
powerful (and more fun) than ROOT TMVA

• Learn how to convert ROOT Trees to pandas frames -
apply machine learning - convert back to ROOT

• Next time: hyper-parameter optimization, cross-fold
validation, multi-class classification

Why ML for S/B classification ?

—> Better separation between signal and background

—> Potentially improves sensitivity of your analysis

Signal/Background classification

HEP analysis example

• Loss function: evaluate how well your algorithm models your dataset

• If predictions are bad: loss function will output a higher number.

• If predictions are good: lower number.

• Loss tells you if your model improves during training

• e.g. Mean Squared Error:

Overfitting and how to prevent it

• Split the data into train and test samples

• Check the score on train and test sample

Early stopping

• Easy way to prevent overfitting

• Monitor the loss on a validation set and stop when it gets
worse

Decision Tree
Objective function: training loss (predictive power) and
regularization term (complexity):

e.g. MSE:

Boosted Decision Trees (BDT)

• Boosted trees - less prone to overfitting

• BDTs are widely used in HEP

• Simpler than NNs + good out of the box results + feature importance

• Powerful, fast industrial library

• Good out of the box results

Important parameters to control complexity/overfitting and
some of my experiences:

• Number of trees [10 - 1000] higher values -> more complex

• Learning rate [10e-6 - 0.3] higher values -> faster but can overfit

• Tree depth [2 - 15] higher values -> more complex

• min_child_weight [1 - 10] higher values -> reduces complexity

Neural Networks

More important terms…

• Activation function: sigmoid, tanh, relu

• Epochs: number of times the data is exposed to the NN

• Batch size: number of samples until weights are updated [10 - 1000]

• Optimizer: algorithm to optimize the loss: SGD, Adam…

• Simple but very powerful deep-learning library

• Tensorflow based - most popular choice for many DL applications

Important parameters for a simple feed-forward NN:

• Learning rate (important!) [10e-6 - 0.1]

• Hidden layers [2-8] higher values -> more complex

• Units layers [10-100] higher values -> more complex

• Dropout [0 - 0.9] higher values -> reduces overfitting

ML in HEP
Difference to data science: Data/MC agreement is crucial

• Simulations imperfect —> although ML performance on MC is great
doesn’t mean it is true for Data

• In the end you care about the sensitivity of your analysis

—> Understand your input!

Exercise: discriminate singletop events from tt events

Run on SWAN: https://swan.web.cern.ch

Repo: https://github.com/llayer/ml_exercise

https://swan.web.cern.ch/

