Machine Learning
exercise

Lukas Layer

ldea of the exercise

Focus on practical application - as little math as possible

Use some of the most popular industrial libraries - more
powerful (and more fun) than ROOT TMVA

Learn how to convert ROOT Trees to pandas frames -
apply machine learning - convert back to ROOT

Next time: hyper-parameter optimization, cross-fold
validation, multi-class classification

Why ML for S/B classification ?

rectangular cuts non linear

—> Better separation between signal and background

—> Potentially improves sensitivity of your analysis

Signal/Background classification

Train on Signal and Background Monte-Carlo
=»learn the separation between S and B distribution
Apply on test sample
Apply on data

Note: instead of classifiying 0 or 1, can regress !

AUC : Area Under the (ROC) Curve

1" JSignal ' | ' | = 0.9
18 777 Background 1 & os
1.6 4 2

= allp 1 g
bl S 1 4 .B0os

L) N
120 % L 4 < 0.5

i, -)
0.8 ;— / ' E 0.3 i
0.6 ;_ a _; . : it
04 F e TN . o1 | M
0.: .‘,. o2 4//’//4///&'4%7- | 0'5;;%%.1 02 03 04 05 06 07 08 091
-0.8 =U. -0 0.2 0.4 O-GSC&% S€au, ui 11 cv 1u, vuna BaCkground eff- 3

Events / 0.17

HEP analysis example

Boosted Decision Tree (BDT) using ~dozen of high level variables

R I | I | | | | | | | | | I | I | | | |

10% E Viep®hac VBF —e— Data _

- _ 1 — H(125) (u=1.4) -

E \E -_— 8 TeV, 203 fb _____ H(125) (u=1) 7]
3| ATLAS B Z— Tt
10 B Others
W Fake t

2 . Uncert. Higgs evidence
10 E

-1 -0.5 0) 0.5 1
BDT output

SUPERVISED LEARNING

> h(x; w) > Loss
Function with Function
adjustable
parameters Compare
prediction — > Loss
with true
True labels: label
Higgs =1 >
Bkg =0

Loss function: evaluate how well your algorithm models your dataset

If predictions are bad: loss function will output a higher number.

If predictions are good: lower number. 4
Loss tells you if your model improves during training »
5
: _ A N2
e.g. Mean Squared Error: L@@) = Z(y,- — ¥i)
I

Steps

Overfitting and how to prevent it

Training Set

Train and tune your models
(using cross-validation)

Test Set

Don’t touch this
until the very end.

TMVA overtraining check for classifier: BDTG1

6 -'Sldna'l (t;ast'sa‘nplle)' T T e 'Sldna'l (t;'alrllinb s;am'ple') e '—_
://// Background (test sample) | |L®
5 HKolmogorov-Smirnov test: signal (background) probability = 0 (0.047) =]

Background (training sample)]

-0.2 0 0.2
BDTG1 response

e Split the data into train and test samples

e Check the score on train and test sample

TMVA overtraining check for classifier: BDTG1

; 4.5

; 4 ' // Background (test sample) ‘ ‘0 Background (training sample)

i35

3

Signal (fest sample) -

" I'e sighal (traifing sample)

Kolmogorov-Smirnov test: signal (background) probability = 0(0)

2.5 &4

2 N

1.5

1

0.5
0

-0.8 -0.6

-04 -02 0

02 04 06 08
BDTG1 response

WoO-flow (S,B): (0.0, 0.0)% /(0.0, 0.0)%

Early stopping

Error

Validation

~—— Training

Stop training Number of epochs

 Easy way to prevent overfitting

* Monitor the loss on a validation set and stop when it gets
worse

Decision Tree

Objective function: training loss (predictive power) and
regularization term (complexity):

obj(8) = L(6) + Q(6)
eg.-MSE: L(0)=) (i — 1)’

Input: age, gender, occupation, ... Like the computer game X

'|,' }|||
.%k /
"a.___ P r
/ + 2 '1

prediction score in each leaf

Boosted Decision Trees (BDT)

tree1

tree2

e Boosted trees - less prone to overfitting

e BDTs are widely used in HEP

 Simpler than NNs + good out of the box results + feature importance

dmilc

XGBoost

e Powerful, fast industrial library

e (Good out of the box results

Important parameters to control complexity/overfitting and
some of my experiences:

* Number of trees [10 - 1000] higher values -> more complex
e Learning rate [10e-6 - 0.3] higher values -> faster but can overfit
* Tree depth [2 - 15] higher values -> more complex

e min_child_weight [1 - 10] higher values -> reduces complexity

Neural Networks

Multiple layers: output of previous layer is fed forward to next layer
after applying non-linear activation function g’; = p(Wy; 07 + bjj

Fully connected: many independent weights

Learning: Use analytic derivatives and
stochastic gradient descent to find optimal

weights

Outputs

Colors shows
data, neuron and !
weight values.

idden layers

More important terms...

Activation Functions

y=9g(00+X70)

* Example: sigmoid function

9/'
1
) / g(z)=0(z)=1+e_z

Inputs Weights Sum Non-Lineanty Output

™
l
\

Activation function: sigmoid, tanh, relu
Epochs: number of times the data is exposed to the NN
Batch size: number of samples until weights are updated [10 - 1000]

Optimizer: algorithm to optimize the loss: SGD, Adam...

Keras

e Simple but very powerful deep-learning library

* Tensorflow based - most popular choice for many DL applications

Important parameters for a simple feed-forward NN:
e | earning rate (important!) [10e-6 - 0.1]

e Hidden layers [2-8] higher values -> more complex

e Units layers [10-100] higher values -> more complex

e Dropout [0 - 0.9] higher values -> reduces overfitting

ML in HEP

Difference to data science: Data/MC agreement is crucial

e Simulations imperfect —> although ML performance on MC is great
doesn’t mean it is true for Data

* In the end you care about the sensitivity of your analysis

—> Understand your input!

Exercise: discriminate singletop events from tt events

Run on SWAN: https://swan.web.cern.ch

Repo: https://github.com/llayer/ml_exercise

https://swan.web.cern.ch/

