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Cosmological Colliders

Fluctuations during inflation gave rise to the universe we see today!

Today we can measure correlations of density fluctuations:
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In the sky there is infinite amount of information!




Cross section (nb)

Cosmological Colliders

Fluctuations during inflation gave rise to the universe we see today!
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Like in LHC new particles produced

during inflation leave a clear imprint

on the density fluctuations TODAY!
Inflationary Spectroscopy

Can we bootstrap such imprints? Time without time!



Flat Space Amplitudes

Singularities fix observables (important but hard problem)
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Dispersion relations:
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Under mild analyticity assumptions Amplitudes are entirely fixed by the structure of their singularities
(...up to some possible ambiguities)



Tree-level discontinuities

At tree level discontinuities are tied to the concept of Harmonic functions:
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Hk ~ m DlSCk.Q [Hk] ~ 5(k2 — mz)
propagator
Harmonic function: Q () ~ [ddk etk 5(k2 — m2) ,
Put internal leg

. 5(k2 _mg) on-shell
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It turns out that this picture can be generalized to constant curvature backgrounds (both AdS and dS)
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Ambient Space
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(Euclidean AdS)

(Lorentzian dS)

X? = R?
\l

Flat space can be foliated by AdS and dS
hypersurfaces (Ambient space methods)
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Moschella et al.

Ambient space has the advantage of putting on the same footing (A)dS and flat space physics



EAdS & CPW

The concept of partial wave admits a straightforward generalization from flat to (A)dS:
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\__, Bulk to boundary propagator

Split representation



EAdS & CPW

Y Its useful to think purely in terms of boundary observables:
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This is a formidable integral! How do we read off it some physics? (Mellin!)
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Bootstrapping AdS exchanges

In AdS imposing a b.c. is achieved projecting out the unwanted residues: t
d—20— T T
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Unphysical b.c. in AdS (non-unitary CFT operator)

CPW are the basic objects fixed by conformal symmetry! However they fail to satisfy
_ Generalisation of Legendre
standard boundary conditions

/ Polynomials
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the pole singularities

bootstrap



From EAdS to dS (momentum space)
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A function of 4 variables requires in general 4 Mellin variables!

The z representation follows directly as an integral representation of boundary Mellin delta-function!
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L Bulk reconstruction
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In the z-variable representation one can consider the following split CPW:

F= (2, 2lsilki k) = 0(]2] 2 [2])27 27 F(silki; k)



From EAdS to dS (momentum space)

One therefore arrives to the following split form of the CPW:

F=2(2, 2lsilki k) = 0(|2| = [2])27 2% F(sq|kis k)
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From EAdS to dS (momentum space)

An advantage of momentum space is that bulk (time-)ordering is associated to a simple splitting of the CPW
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Causality & boundary conditions can be e 28K a(~in. k) + +
implemented by appropriate analytic

continuation in both AdS & dS



From EAdS to dS (momentum space)

An advantage of momentum space is that bulk (time-)ordering is associated to a simple splitting of the CPW

F=(z, 2lsilkis k) = 0(]2] 2 |2])27 2% F(si|ki; k)
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Analytic continuation to dS along the

. various branches in-in contour
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N.B. The phases which arise cannot be fixed by conformal symmetry alone! They are entirely fixed by
causality & b.c. while the momentum dependent part factorises.

Contact terms are generated because of the relative phase between the two terms! Contact term ambiguity



dS Exchange:
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Weighted convolution of 3pt CFT 3pt functions in Mellin space



dS Exchange:
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Spinning 3pt correlators

Mellin independent polarization factor

Spinning 3pt correlators in Mellin space can be written as polynomials in the Mellin variables:
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“Mack-like polynomials” in momentum space: To be decomposed into helicities
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Differential Relations: »

Sleight 2016
Mellin space makes manifest a plethora of recursion/differential relations between 3pt/4pt correlators:
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Basic relation valid for each Mellin polynomial:
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New weight shifting relations (which extend also to 4pt):
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Soft Limit
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We take the soft limit of a
massless leg to break
conformal symmetry

A4=d—€

Generic configuration of momenta

Soft limit k4 — 0

We get the Mellin

k3 _83+
( ) ( I ) - O(E) representation of the 3pt
N~ Inflationary correlator!
~1

Shift symmetric EFT (Adler zero)
up to fine tuned contact terms



Soft Limit & squeezed limit

S1 S22 k 83

Reduces to simple instances of

Signature of new particles:
| and |l Barnes Lemma

important to compute the

phase and the modulus of the
coefficient

The Mellin space representation automatically generates an asympotitc expansion in k3/k1. The result includes
also the EFT contribution!



Squeezed |limit

The general result is a rather complicated functions of the spectral parameters:
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Which nicely reduces to known expressions (Arkani-hamed, Maldacena):
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Generalisations to spinning external legs also available!



Conclusions & Outlook

* The discontinuity of dS exchanges has been bootstrapped and the full
exchange amplitude has been shown to be fully specified from it

* Our formalism clearly generalize beyond tree level! Can we
understand the singularity structure of CFT correlators dual to
Inflation at one loop?

e Can we generalize analytic bootstrap methods to dS? Role of crossing
decomposition?

* Program: classify singularities of (Euclidean) CFT correlators dual to dS
beyond tree-level (CPW=discontinuity fix the full answer up to b.c.)






Some properties of CPW

CPW is the simplest object with well defined crossing decomposition!
(conformal blocks have incompatible branch-cut singularities under crossing...)

(t).Fq-,E(uvv) = Z At gantone(u,v) + Z A?L,E 0gan+ton o(u,v)
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CPW is the simplest combination of conformal blocks which is single valued in
Euclidean region (compatible with standard CFT singularities on light-cones)

FT,E(ua U) ~ #97’,4’?(“5 U) + #gd—’r—%,ﬁ(ua U)

CPW are the basic objects fixed by conformal symmetry! However they fail to satisfy ,
standard boundary conditions 12
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Unphysical b.c. in AdS (non-unitary CFT operator)



Mellin

Mellin space allows to efficiently deal with quite cumbersome functions of cross ratios
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Poles have physical interpretation: some fixed by conformal
symmetry, others fixed by b.c.
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Only for a few values of Delta there exist explicit representations! (plus recursion relations)



