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Black hole microstate counting

¢ Black holes are “theoretical laboratories”
useful to test any theory of quantum gravity

Thermodynamic properties

Area
4

Microscopic statistical derivation ?

*’» Major achievement of string theory: ’@, ({P .fr )

to provide the microstates for classes of supersymmetric black holes.

asymptotically flat Strominger, Vafa "96

asymptotically locally AAS Benini, Hristov, Zaffaroni ‘15,



General picture for BPS black holes in AdS

Entropy : Legendre transform of a simple function of chemical potentials

We focus on rotating BH’s that are asymptotically AdS

“log grand-canonical
partition function”

asymptotics charges BPS entropy
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In this talk

¢ Derivation of macroscopic I in gravity

¢ in all cases, I is a supersymmetric on-shell action

4 complexified solution,

new BPS limit of black hole thermodynamics

¢ This will also define the microscopic computation via AdS/CFT

¢ will discuss the AdSs/CFT4 case in some detalil

1810.11442, 1904.05865 with A. Cabo-Bizet, D. Martelli, S. Murthy

1906.10148 with L. Papini



Supersymmetric black holes in AdSs

® Supersymmetric black holes in AdSs have been known for 15 years

Gutowski, Reall ‘04, Chong, Cvetic, Lu, Pope ‘05, Kunduri, Lucietti, Reall ‘06
1/16 BPS, carry angular momentum & electric charge

start from type IIB on AdSs x S5

| \

SO(2,4) x SO(6) symmetry

| |

breakto R x U(1)2 x U(1)3

| |

EaJlaJZ Q17Q29Q3

¢ replace S5with more general Ms = SO(6) brokento just U(1) = E, J,, J3, Q



Supersymmetric black holes in AdSs

Bekenstein-Hawking ~ Area

_ 2 _
entropy S=— = 7T\/3Q 8c(J1 + J2)

microscopic origin ?? use AdS/CFT!

=




Supersymmetric black holes in AdSs

Bekenstein-Hawking ~ Area

_ 2 _
entropy S=— = 77\/3Q 8c(J1 + J2)

microscopic origin ?? use AdS/CFT!

S

type IBon AdSsx S5 < N =4 SYM,

replace S5 with more general Ms < N =1 SCFT4, e.g. conifold theory

microstates: 1/16 BPS states with assigned angular momenta and charge

Task: count them at large N and see if there is O(N2) degeneracy.

Attempts in the past unsuccessful




Difficulties on field theory side

Why failed?

= o

® natural quantity to consider: superconformal index Romelsberger ‘05

Kinney, Maldacena, Minwalla, Raju ‘05

. - -
Witten index commute with supercharge O

w1,w2 chemical potentials, taken real

Atlarge N, Z(w1i,w2) ~ O(1) = cannot reproduce @(IN?) entropy

® reason: many cancellations between bosonic and fermionic states



Difficulties on gravity side

- )
Black hole thermodynamics: Gibbons, Hawking

entropy S and on-shell gravity action are related as

I1(3,Q;,®) =pBE —S—3Q;J; — 3PQ Quantum Statistical Relation
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Difficulties on gravity side

- )
Black hole thermodynamics: Gibbons, Hawking

entropy S and on-shell gravity action are related as

I1(3,Q;,®) =pBE —S—3Q;J; — 3PQ Quantum Statistical Relation

ol 1 01 1 01
E_

_3_5, Ji:_gaﬂi’ Q:_BB_@ B=T""1

® Thermodynamics for supersymmetric black holes is subtle : 8 — oo

¢ what are the relevant chemical potentials for 3 —occ ? Q; -1, ® — 3/2

frozen!
€ How do these match w1,w2 on the field theory side?



Let us clarify the issues on the gravity side first



The non-BPS solution

® Five-dimensional minimal gauged supergravity

L=(R+12)x1—2FAxF+ SFAFAA



The non-BPS solution

® Five-dimensional minimal gauged supergravity

L=(R+12)x1—2FAxF+ SFAFAA

® Non-supersymmetric, non-extremal black hole solution

Chong, Cvetic, Lu, Pope
4 parameters T+, a,b,q

!

4 independent charges E,Ji,J2,Q

!

4 independent chemical pot. 3, Q;, Q5, ®

1(8,Q;,®) =BE—S—p0J; —p3Q ¢

We want to take susy & extremal limit 3 — oo



The BPS limit

® many possible limits towards susy & extremal BH \

& supersymmetry is : . \

g=—ab+ (1+a+b)r2 + \/—ri(ri — )"

susy

W
reality requires 74 = 7

T, = \/a b+ ab
susy & extremal horizon radius

=¥ tune two parameters

=» in the Lorentzian causally meaningful solution, susy implies extremality.



The BPS limit

® many possible limits towards susy & extremal BH \

& supersymmetry is : . \

g=—ab+ (1+a+b)r2 + \/—ri(ri — )"

susy

W
reality requires 74 = 7

T, = \/a b+ ab
susy & extremal horizon radius

=¥ tune two parameters

=» in the Lorentzian causally meaningful solution, susy implies extremality.

4 impose susy and only later 3 — oo..

=» allow g to be complex =» 3-param family of complexified, susy solutions at finite 3




BPS limit of BH thermodynamics

: )
a, b s T4
!
Ji, Ja, Q E=J +Jp+30 follows from superalgebra
1 2 = Jq o o o
9¢9 2 {QaQ}:E_Jl—Jz—%Q

B,ﬂl,ﬂz,q) ,B(].—|—Ql—|-ﬂz—2(I))=2ﬂ"L

-
constraint on chemical potentials /

€ chemical potentials are complex!

¢ physical meaning?

regularity condition ensuring the Killing spinor is
antiperiodic along the shrinking thermal circle

- )

crucial that we have nottaken 3 —+occ yet oo0-0 =7




BPS limit of BH thermodynamics

Define difference between the chemical potentials and their BPS values

w1 =B —1), w2 = B(N22 —1) , o=p06(®—3 Silva

These are conjugate to J; , J>, Q if one takes time translations
to be generated by the susy Hamiltonian {Q,Q}=E — J; — J> — 3Q

(as in the index)



BPS limit of BH thermodynamics

Define difference between the chemical potentials and their BPS values

w1 =B —1), w2 = B(N22 —1) , o=p06(®—3 Silva

These are conjugate to J; , J>, Q if one takes time translations
to be generated by the susy Hamiltonian {Q,Q}=E — J; — J> — 3Q

(as in the index)

The constraint 3 (1 + Q1 + Q2 — 2®) = 22 becomes:

w1+ wo — 2¢p = 2m1

16 3

on-shell action I = c -» matches the entropy function!
27 Wi , ,




BPS limit of BH thermodynamics

( )

_ 16 ¢°
on-shell action I(w;,p) = LA
27 Wi

constraint wi + w2 — 2¢p = 271

using E = J; + J2 + 3Q Quantum Statistical Relation becomes :
I=—-S—wiJi —w2ds—pQ
Now take extremal limit 4 — 7,

B — oo but wi, w2, @ remain finite =¥ the limitis smooth

=>» these relations define a BPS black hole thermodynamics

Area upon requiring reality
Entropy: — \/ 2 _ _
Py- 5 ™y 3Q SC(Jl T J2) 4 of Legendre transform

. J




Other dimensions

A similar derivation holds for the other cases
DC, Papini ‘19, for AdS7 also Kantor, Papageorgakis, Richmond

(explicitly proven for restricted sets of charges)

“log grand-canonical
partition function”

asymptotics charges BPS entropy

M, AdS4XS7 Ja Q19Q29Q39Q4
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complex constraint Y w; — » ¢y = 2mi



From gravity to field theory

Now that we have gained insight on the gravity side

let’'s see how the dual field theory computation is defined.



From gravity to field theory

. AdS/CFT master equation (at large N) A

Io

Zgravity ~ e “onstell = ZcopT

AdSs gravity boundary conditions <= CFT4 background fields

Take N =4 SYM, or a Lagrangian N =1 SCFT, such as the conifold theory

The partition function, Z, can be computed as a path integral.

-» need to specify @ background fields ( ds* and A )

¢ boundary conditions on the dynamical fields



Localization computation

® in the regular Euclidean section, boundary fields are:

ds? = dr? + d6? + sin?0 (dp1 — i Q21d7)? + cos?0 (dpa — i QadT)?

¥» S3 fibered over S1

A=1ddr

complexify chemical pot, 3(1 + Q1 + Qs — 2®) =27win, n €%

N\

black hole requires n = =1

( )

for n odd, supercharge is antiperiodic

=» dynamical fields are: periodic bosons, antiperiodic spinors




Localization computation

® Alocalization computation gives the exact partition function:

[ Z (w1, wsz,p) = e T W1w2:@) Ty o, ) ]

where again w1 =8(21 —1), w2 =p06(22—1), p=0B(P -3

with w1 +ws — 20 = 2mn



[ I(w19w2790) ]

® Can be expressed as

I(wlaw29 90) = Tr (—]_)F e_'B{Q’Q}‘|‘(w1—27Tin)(J1-|-%Q)_|_w2(J2+%Q)

=Z(wy — 2min, wsy)

=» superconformal index with a shifted chemical potential

Non-trivial as the shift is not an invariance of the index! Introduces extra phases

———————




Cardy limit of the index

® Ilimitof large charges (at finite N) : w31, w2 — 0

Y = %(wl + ws — 2mwem)  remains finite when n = +1

Choi, J. Kim, S. Kim, Nahmgoong; Honda; Arabi Ardehali;
CCMM ‘19; J. Kim, S. Kim, Song; Amariti, Garozzo, Lo Monaco



Cardy limit of the index

® Ilimitof large charges (at finite N) : w31, w2 — 0

Y = %(wl + ws — 2mwem)  remains finite when n = +1

Choi, J. Kim, S. Kim, Nahmgoong; Honda; Arabi Ardehali;
CCMM ‘19; J. Kim, S. Kim, Song; Amariti, Garozzo, Lo Monaco

® universal saddle point controlled by anomalies.

Dominant under some assumptions

(- 5 ) )
8 87
—logZ ~ L (5a — 3c) - L (a —c)
27w ws 3wiwa
U J

n = +1 version of
Di Pietro, Komargodski

atlarge N : a = ¢ =» matches grand can. fct. I =» Bekenstein-Hawking entropy

holds at finite N =» prediction for quantum black hole entropy !

E—




Entropy from the index

® large N limit of the SCFTsindex  Benini, Milan Cabo-Bizet, Murthy

¢ There is evidence that the SCFT4 index counts O(N2) states
for suitable complexified chemical potentials

%> the same appears to be true in other dimensions

Choi, Hwang, S. Kim;
¢ e.g. SCFT3 Bobeyv, Crichigno;
Nian, Pando Zayas;
Benini, Gang, Pando Zayas 2019.



The prefactor

4 )
localization qi F 16 _¢° t large N
ocalization aives — C al large

J 27 Wi J

p = %(wl + wo — 27 N)

2 (w1 + ws)3
¢ n=0 = F = (©r 2) c susy Casimir energy

27 Wi
Assel, DC, Martelli ‘14

=» Legendre transform =0 =» no entropy

2 (w Wo — 271)3 matches
27 W1Wo minus 1

=» Legendre transform of —JF is the Bekenstein-Hawking entropy

Area
4

S == 7T\/3Q2—80(J1—|—J2) p—



( )

tro
e S(Ji, Q) = 77\/3Q2—80 Jy + Jo)
19 — 1 2

| Legendre transform .
16 (’03 Hosseini,

Hews 9) = 27 wiws Wi t+wa — 2 = 2m Zj;ifsc::c:/;i
BPS limit
supergravity on-shell action (at finite 3)
1(B8,9;,®) =BE — S — 3Q;J; — B2Q CCMM

SCFT partition function

Z(wi,wa,n) = e_F(“’l"”’")I(wl, Wo, M)

Vol L\
variant of Casimir energy modified index




Two open questions

® Why is I encoded both in prefactor and index?

4d Cardy formula relating degeneracy of states to vacuum energy?

® subleading corrections to Bekenstein-Hawking entropy

localization in supergravity?

\0 New window into quantum gravity



thanke for your attention !



