The BPS LIMIT of AdS BLACK HOLE THERMODYNAMICS and its MICROSCOPIC COUNTERPART

Davide Cassani INFN Padova

Theories of the Fundamental Interactions
INFN meeting,

Torino, 22 October 2019

Black hole microstate counting

Black holes are "theoretical laboratories" useful to test any theory of quantum gravity

Thermodynamic properties

$$S = rac{ ext{Area}}{4}$$

Microscopic statistical derivation?

Major achievement of string theory:

to provide the microstates for classes of supersymmetric black holes.

asymptotically flat Strominger, Vafa '96 ...

asymptotically locally AdS Benini, Hristov, Zaffaroni '15, ...

General picture for BPS black holes in AdS

Entropy: Legendre transform of a *simple* function of chemical potentials

We focus on rotating BH's that are *asymptotically AdS*

asymptotics	charges	BPS entropy	"log grand-canonical partition function"
M, AdS ₄ x S ⁷	$J,\ Q_1,Q_2,Q_3,Q_4$	$S=S(J_i,Q_I)$	$I=-rac{i}{2G}rac{\sqrt{arphi^{1}arphi^{2}arphi^{3}arphi^{4}}}{\omega}$
IIB, AdS ₅ x S ⁵	$J_1, J_2, \; Q_1, Q_2, Q_3$		$I=rac{\pi}{4G}rac{arphi^1arphi^2arphi^3}{\omega_1\omega_2}$
IIA, AdS ₆ x _w S ⁴	$J_1,J_2,\;\;Q$		$I=rac{\pii}{3G}rac{arphi^3}{\omega_1\omega_2}$
M, AdS ₇ x S ⁴	$J_1, J_2, J_3, \; Q_1, Q_2$		$I=-rac{\pi^3}{128G}rac{arphi_1^2arphi_2^2}{\omega_1\omega_2\omega_3}$

complex constraint $\sum \omega_i - \sum \varphi_I = 2\pi i$

Hosseini, Hristov, Zaffaroni '17, '18; Choi, Hwang, Kim, Nahmgoong '18

In this talk

- Derivation of macroscopic I in gravity
 - in all cases, I is a supersymmetric on-shell action
 - complexified solution,
 new BPS limit of black hole thermodynamics
- This will also define the microscopic computation via AdS/CFT
 - will discuss the AdS₅/CFT₄ case in some detail

```
1810.11442, 1904.05865 with A. Cabo-Bizet, D. Martelli, S. Murthy
1906.10148 with L. Papini
```

Supersymmetric black holes in AdS₅

Supersymmetric black holes in AdS₅ have been known for 15 years

Gutowski, Reall '04, Chong, Cvetic, Lu, Pope '05, Kunduri, Lucietti, Reall '06

1/16 BPS, carry angular momentum & electric charge

→ replace S⁵ with more general M₅ → SO(6) broken to just U(1) → E, J_1 , J_2 , Q

Supersymmetric black holes in AdS₅

Bekenstein-Hawking entropy
$$S=rac{ ext{Area}}{4}=\pi\sqrt{3Q^2-8c(J_1+J_2)}$$
 $c=rac{\pi\ell^3}{8G_N}$

$$c=rac{\pi\ell^3}{8G_N}$$

microscopic origin ?? use AdS/CFT!

Supersymmetric black holes in AdS₅

$$S = rac{ ext{Area}}{4} = \pi \sqrt{3Q^2 - 8c(J_1 + J_2)} \qquad c = rac{\pi \ell^3}{8G_N}$$

$$c=rac{\pi\ell^3}{8G_N}$$

microscopic origin ?? use AdS/CFT!

type IIB on AdS₅ x S⁵ \iff $\mathcal{N} = 4$ SYM,

replace S⁵ with more general M₅ \iff $\mathcal{N} = 1$ SCFT₄, e.g. conifold theory

microstates: 1/16 BPS states with assigned angular momenta and charge

Task: count them at large N and see if there is $O(N^2)$ degeneracy. Attempts in the past unsuccessful

Difficulties on field theory side

Why failed?

natural quantity to consider: superconformal index

Kinney, Maldacena, Minwalla, Raju '05

$$\mathcal{I}(\omega_1, \omega_2) = \underbrace{\operatorname{Tr}(-1)^F \mathrm{e}^{-\beta\{Q, \bar{Q}\} + \omega_1(J_1 + \frac{1}{2}Q) + \omega_2(J_2 + \frac{1}{2}Q)}}_{\text{Witten index}}$$
 Witten index commute with supercharge \mathcal{Q}

 ω_1, ω_2 chemical potentials, taken real

At large N, $\mathcal{I}(\omega_1, \omega_2) \sim \mathcal{O}(1) \rightarrow \text{cannot reproduce } \mathcal{O}(N^2)$ entropy

reason: many cancellations between bosonic and fermionic states

Difficulties on gravity side

Black hole thermodynamics:

Gibbons, Hawking

entropy S and on-shell gravity action are related as

$$I(\beta, \Omega_i, \Phi) = \beta E - S - \beta \Omega_i J_i - \beta \Phi Q$$

Quantum Statistical Relation

$$E = \frac{\partial I}{\partial \beta}, \quad J_i = -\frac{1}{\beta} \frac{\partial I}{\partial \Omega_i}, \quad Q = -\frac{1}{\beta} \frac{\partial I}{\partial \Phi}$$

$$\beta = T^{-1}$$

Difficulties on gravity side

Black hole thermodynamics:

Gibbons, Hawking

entropy S and on-shell gravity action are related as

$$I(\beta, \Omega_i, \Phi) = \beta E - S - \beta \Omega_i J_i - \beta \Phi Q$$

Quantum Statistical Relation

$$E = \frac{\partial I}{\partial \beta}$$
, $J_i = -\frac{1}{\beta} \frac{\partial I}{\partial \Omega_i}$, $Q = -\frac{1}{\beta} \frac{\partial I}{\partial \Phi}$

$$\beta = T^{-1}$$

- Thermodynamics for supersymmetric black holes is subtle : $\beta \to \infty$
 - what are the relevant chemical potentials for $\beta \to \infty$? $\Omega_i \to 1, \Phi \to 3/2$ frozen!
 - How do these match ω_1, ω_2 on the field theory side?

Let us clarify the issues on the gravity side first

The non-BPS solution

Five-dimensional minimal gauged supergravity

$$\mathcal{L} = (R+12)*1 - rac{2}{3}F \wedge *F + rac{8}{27}F \wedge F \wedge A$$

The non-BPS solution

Five-dimensional minimal gauged supergravity

$$\mathcal{L} = (R+12)*1 - rac{2}{3}F \wedge *F + rac{8}{27}F \wedge F \wedge A$$

Non-supersymmetric, non-extremal black hole solution

Chong, Cvetic, Lu, Pope

$$r_+$$
 , a , b , q

4 independent charges E, J_1, J_2, Q

$$E\,,\,J_1\,,\,J_2\,,\,Q$$

4 independent chemical pot. β , Ω_1 , Ω_2 , Φ

$$I(\beta, \Omega_i, \Phi) = \beta E - S - \beta \Omega_i J_i - \beta \Phi Q$$

We want to take susy & extremal limit $\beta \to \infty$

The BPS limit

- many possible limits towards susy & extremal BH
- supersymmetry is :

$$q = -ab + (1 + a + b) r_{+}^{2} \pm \sqrt{-r_{+}^{2}(r_{+}^{2} - r_{*}^{2})^{2}}$$

reality requires $\ r_+ = r_*$

$$r_* = \sqrt{a+b+ab}$$

susy & extremal horizon radius

- → tune two parameters
- → in the Lorentzian causally meaningful solution, susy implies extremality.

The BPS limit

- many possible limits towards susy & extremal BH
- supersymmetry is :

$$q = -ab + (1 + a + b) r_{+}^{2} \pm \sqrt{-r_{+}^{2}(r_{+}^{2} - r_{*}^{2})^{2}}$$

reality requires $\ r_+ = r_*$

$$r_* = \sqrt{a+b+ab}$$

susy & extremal horizon radius

- → tune two parameters
- → in the Lorentzian causally meaningful solution, susy implies extremality.
- lacktriangle impose susy and only later $eta o\infty$.
- \rightarrow allow q to be complex \rightarrow 3-param family of complexified, susy solutions at finite β

$$a~,~b~,~r_+$$
 \downarrow
 $J_1~,~J_2~,~Q$
 \downarrow
 $E=J_1+J_2+rac{3}{2}Q$ follows from superalgebra $\{\mathcal{Q},\overline{\mathcal{Q}}\}=E-J_1-J_2-rac{3}{2}Q$
 \downarrow
 $\beta~,~\Omega_1~,~\Omega_2~,~\Phi$
 $\beta~(1+\Omega_1+\Omega_2-2\Phi)=2\pi i$

constraint on chemical potentials

- chemical potentials are complex!
- physical meaning?

regularity condition ensuring the Killing spinor is antiperiodic along the shrinking thermal circle

crucial that we have not taken $\beta \to \infty$ yet $\infty \cdot 0 = ?$

Define difference between the chemical potentials and their BPS values

$$\omega_1=eta(\Omega_1-1)\;, \qquad \omega_2=eta(\Omega_2-1)\;, \qquad arphi=eta(\Phi-rac{3}{2})$$
 Silva

These are conjugate to J_1 , J_2 , Q if one takes time translations to be generated by the susy Hamiltonian $\{Q,\overline{Q}\}=E-J_1-J_2-\frac{3}{2}Q$ (as in the index)

Define difference between the chemical potentials and their BPS values

$$\omega_1=eta(\Omega_1-1)\;,\qquad \omega_2=eta(\Omega_2-1)\;,\qquad arphi=eta(\Phi-rac{3}{2})$$
 Silva

These are conjugate to J_1 , J_2 , Q if one takes time translations to be generated by the susy Hamiltonian $\{Q,\overline{Q}\}=E-J_1-J_2-\frac{3}{2}Q$ (as in the index)

The constraint $\beta (1 + \Omega_1 + \Omega_2 - 2\Phi) = 2\pi i$ becomes:

$$\omega_1 + \omega_2 - 2\varphi = 2\pi i$$

on-shell action
$$I=\frac{16}{27}\,\frac{\varphi^3}{\omega_1\omega_2}\,c$$
 \rightarrow matches the entropy function!

on-shell action
$$I(\omega_i, \varphi) = rac{16}{27} rac{arphi^3}{\omega_1 \omega_2} c$$

constraint
$$\omega_1 + \omega_2 - 2\varphi = 2\pi i$$

using $E = J_1 + J_2 + \frac{3}{2}Q$ Quantum Statistical Relation becomes :

$$I = -S - \omega_1 J_1 - \omega_2 J_2 - \varphi Q$$

Now take extremal limit $\,r_+
ightarrow r_*$

$$\beta \to \infty$$
 but $\omega_1, \omega_2, \varphi$ remain finite \rightarrow the limit is smooth

→ these relations define a BPS black hole thermodynamics

Entropy:
$$S = \pi \sqrt{3Q^2 - 8c(J_1 + J_2)} = \frac{\text{Area}}{4}$$
 upon requiring reality of Legendre transform

Other dimensions

A similar derivation holds for the other cases

DC, Papini '19, for AdS7 also Kantor, Papageorgakis, Richmond

(explicitly proven for restricted sets of charges)

asymptotics	charges	BPS entropy	"log grand-canonical partition function"
M, AdS ₄ x S ⁷	$J,\ Q_1,Q_2,Q_3,Q_4$	$S=S(J_i,Q_I)$	$I=-rac{i}{2G}rac{\sqrt{arphi^{1}arphi^{2}arphi^{3}arphi^{4}}}{\omega}$
IIB, AdS ₅ x S ⁵	$J_1, J_2, \; Q_1, Q_2, Q_3$		$I=rac{\pi}{4G}rac{arphi^1arphi^2arphi^3}{\omega_1\omega_2}$
IIA, AdS ₆ x _w S ⁴	$J_1,J_2,\;\;Q$		$I=rac{\pii}{3G}rac{arphi^3}{\omega_1\omega_2}$
M, AdS ₇ x S ⁴	$J_1, J_2, J_3, \; Q_1, Q_2$		$I=-rac{\pi^3}{128G}rac{arphi_1^2arphi_2^2}{\omega_1\omega_2\omega_3}$

complex constraint
$$\sum \omega_i - \sum \varphi_I = 2\pi i$$

From gravity to field theory

Now that we have gained insight on the gravity side

let's see how the dual field theory computation is defined.

From gravity to field theory

AdS/CFT master equation (at large N)

$$Z_{
m gravity} \simeq {
m e}^{-I_{
m on\,shell}} = Z_{
m CFT}$$

AdS₅ gravity boundary conditions ⇔ CFT₄ background fields

Take $\mathcal{N}=4$ SYM, or a Lagrangian $\mathcal{N}=1$ SCFT, such as the conifold theory

The partition function, Z, can be computed as a path integral.

- need to specify
- lacktriangle background fields (ds^2 and A)
- boundary conditions on the dynamical fields

Localization computation

in the regular Euclidean section, boundary fields are:

 S^3

$$A = i \Phi d au$$

complexify chemical pot,
$$\beta(1+\Omega_1+\Omega_2-2\Phi)=2\pi i n$$
, $n\in\mathbb{Z}$

black hole requires $n = \pm 1$

for n odd, supercharge is antiperiodic

dynamical fields are: periodic bosons, antiperiodic spinors

Localization computation

A localization computation gives the exact partition function:

$$Z(\omega_1, \omega_2, \varphi) = e^{-\mathcal{F}(\omega_1, \omega_2, \varphi)} \mathcal{I}(\omega_1, \omega_2, \varphi)$$

where again
$$\,\omega_1=eta(\Omega_1-1)\,\,,\qquad \omega_2=eta(\Omega_2-1)\,\,,\qquad \varphi=eta(\Phi-{3\over 2})\,$$
 with $\,\omega_1+\omega_2-2\varphi=2\pi i\,n$

The index

$$\mathcal{I}(\omega_1,\omega_2,arphi)$$

Can be expressed as

$$\mathcal{I}(\omega_1, \omega_2, \varphi) = \operatorname{Tr}(-1)^F e^{-\beta \{Q, \overline{Q}\} + (\omega_1 - 2\pi i n)(J_1 + \frac{1}{2}Q) + \omega_2(J_2 + \frac{1}{2}Q)}$$
$$= \mathcal{I}(\omega_1 - 2\pi i n, \omega_2)$$

→ superconformal index with a shifted chemical potential

Non-trivial as the shift is *not* an invariance of the index! Introduces extra phases

Cardy limit of the index

• limit of large charges (at finite N) : $\omega_1, \omega_2 \rightarrow 0$

$$\varphi = \frac{1}{2}(\omega_1 + \omega_2 - 2\pi i \, n)$$
 remains finite when $n = \pm 1$

Choi, J. Kim, S. Kim, Nahmgoong; Honda; Arabi Ardehali; CCMM '19; J. Kim, S. Kim, Song; Amariti, Garozzo, Lo Monaco

Cardy limit of the index

limit of large charges (at finite N) : $\omega_1, \omega_2 \rightarrow 0$

$$\varphi = \frac{1}{2}(\omega_1 + \omega_2 - 2\pi i \, n)$$
 remains finite when $n = \pm 1$

Choi, J. Kim, S. Kim, Nahmgoong; Honda; Arabi Ardehali; CCMM '19; J. Kim, S. Kim, Song; Amariti, Garozzo, Lo Monaco

universal saddle point controlled by anomalies.

Dominant under some assumptions

$$-\log \mathcal{I} \sim rac{8arphi^3}{27\omega_1\omega_2} \left(5a-3c
ight) + rac{8\pi^2arphi}{3\omega_1\omega_2} \left(a-c
ight)$$
 $n=\pm 1$ version of Di Pietro, Komargodski

at large N : $a = c \rightarrow$ matches grand can. fct. $I \rightarrow$ Bekenstein-Hawking entropy

holds at finite N -> prediction for quantum black hole entropy!

Entropy from the index

■ large N limit of the SCFT₄ index
 Benini, Milan
 Cabo-Bizet, Murthy

There is evidence that the SCFT₄ index counts O(N²) states for suitable complexified chemical potentials

the same appears to be true in other dimensions

• e.g. SCFT₃

```
Choi, Hwang, S. Kim;
Bobev, Crichigno;
Nian, Pando Zayas;
Benini, Gang, Pando Zayas 2019.
```

The prefactor

localization gives

$$\mathcal{F}=-rac{16}{27}rac{arphi^3}{\omega_1\omega_2}\,c$$

at large N

$$arphi=rac{1}{2}(\omega_1+\omega_2-2\pi i\,n)$$

$$n=0 \ o \ {\cal F}=-rac{2}{27}rac{(\omega_1+\omega_2)^3}{\omega_1\omega_2} c \qquad ext{susy Casimir energy}$$

Assel, DC, Martelli '14

- Legendre transform = $0 \rightarrow no$ entropy
- $n=1 \rightarrow \mathcal{F} = -\frac{2}{27} \frac{(\omega_1 + \omega_2 2\pi i)^3}{(\omega_1 \omega_2)^3} c \rightarrow$ matches
 - Legendre transform of $-\mathcal{F}$ is the Bekenstein-Hawking entropy

$$S = \pi \sqrt{3Q^2 - 8c(J_1 + J_2)} = rac{ ext{Area}}{4}$$

Summary

$$S(J_i,Q)=\pi\sqrt{3Q^2-8c(J_1+J_2)}$$

Legendre transform

$$I(\omega_i, arphi) = rac{16}{27} rac{arphi^3}{\omega_1 \omega_2} c \qquad \omega_1 + \omega_2 - 2arphi = 2\pi i$$

Hosseini, Hristov, Zaffaroni

BPS limit

supergravity on-shell action (at finite β)

$$I(\beta, \Omega_i, \Phi) = \beta E - S - \beta \Omega_i J_i - \beta \Phi Q$$

CCMM

SCFT partition function

$$\mathcal{Z}(\omega_1, \omega_2, n) = e^{-\mathcal{F}(\omega_1, \omega_2, n)} \mathcal{I}(\omega_1, \omega_2, n)$$

variant of Casimir energy modified index

Two open questions

Why is I encoded both in prefactor and index?

4d Cardy formula relating degeneracy of states to vacuum energy?

 subleading corrections to Bekenstein-Hawking entropy localization in supergravity?

thanks for your attention!