The fate of the circular Wilson Loop in $\mathcal{N} = 4$ defect theory

Sara Bonansea

University of Florence Department of Physics and Astronomy

> October 23^{th} 2019 TFI 2019 -Torino

based on "The fate of circular Wilson loops in N=4 SYM with defect: phase transitions, double scaling limit and OPE expansion"

S.B, Silvia Davoli, Luca Griguolo, Domenico Seminara arXiv[1910.xxxx]

- Motivations
- Description of the set-up
- Results on the gravity side (strong coupling)
 - 1. Boundary conditions
 - 2. Parameters space
 - 3. Structure of the solutions
- Conclusions

- Motivations
- Description of the set-up
- Results on the gravity side (strong coupling)
 - 1. Boundary conditions
 - 2. Parameters space
 - Structure of the solutions
- Conclusions

- Motivations
- Description of the set-up
- Results on the gravity side (strong coupling)
 - 1. Boundary conditions
 - 2. Parameters space
 - Structure of the solutions
- Conclusions

- Motivations
- Description of the set-up
- Results on the gravity side (strong coupling)
 - 1. Boundary conditions
 - 2. Parameters space
 - 3. Structure of the solutions
- Conclusions

- Motivations
- Description of the set-up
- Results on the gravity side (strong coupling)
 - 1. Boundary conditions
 - 2. Parameters space
 - 3. Structure of the solutions
- Conclusions

Motivations for Defect Conformal Field Theories

- Introducing a defect reduces the amount of symmetry in QFT
- dCFTs with holographic duals constitute an interesting new arena for precision tests of the AdS/CFT correspondence
- Non-vanishing one-point functions already at tree level
- Interesting applications to integrability

dCFT: Field theory picture

Defect version of N = 4 SYM theory

[DeWolfe, Freedman, Ooguri, 2003; Gaiotto, Witten, 2008; Buhl-Mortensen et al. 2017]

- A codimension one defect is inserted at $x_3 = 0$, separating two vacua of $\mathcal{N} = 4$ SYM:
- **Higgsing**: 3 scalars acquire an x_3 -dependent VEV: (i = 1, 2, 3)

$$\langle \phi_i(x) \rangle_{cl} = -\frac{1}{x_3} t_i \oplus 0_{(N-k)\times(N-k)} \quad x_3 > 0$$

 t_i : k-dimensional irr. repr. of the SU(2) algebra

• The superconformal symmetry PSU(2,2|4) of $\mathcal{N}=4$ SYM is broken down to its subgroup OSp(4|4). In particular the original bosonic sector $SO(4,2) \times SO(6)$ resuces to

$$SO(3,2) \times SO(3) \times SO(3)$$
 Res. Conf. symm. R-symmetry

dCFT Holographic dual: String theory picture

D3-D5 brane configuration

[Karch, Randall, 2001; Gaiotto, Witten, 2008; Nagasaki, Tanida, Yamaguchi, 2012]

• D5 \rightarrow probe brane in $AdS_5 \times S^5$

	0									
D3 D5	0	0	0	0	×	×	×	×	×	×
D5	0	0	0	×	0	0	0	×	×	×

- The ${f D5}$ has a profile that spans $AdS_4 \times S^2$ in the presence of a background flux of k units through the S^2
 - ⇒ k out of the N D3 branes get dissolved in the D5 brane:

Double-scaling limit:

An (unexpected) window on the weak coupling regime

[Nagasaki, Tanida, Yamaguchi, 2012]

- Compared to the usual AdS/CFT scenario, in this theory we have an extra parameter k that controls the VEV of the scalar fields
- one can consider the double scaling limit: $\frac{\lambda}{k^2}$
 - sugra computations (valid for large λ) \to considered for large k in such a way that λ/k^2 is kept small
 - the results on both side of the correspondence are found to be expressible in powers of λ/k^2
 - ⇒ weak/strong computations are comparable

Circular Wilson loop in $\mathcal{N} = 4$ defect theory

We consider a circular Wilson Loop of radius R placed on a plane parallel
to the defect at a distance L from it: [Aguilera-Damia, Correa, Giraldo-Rivera, 2017]

$$W(C) = \operatorname{Tr} P \exp \left\{ \oint_C d\tau \left(iA_\mu \dot{x}^\mu - |\dot{x}| \left(\phi_3 \sin \chi + \phi_6 \cos \chi \right) \right) \right\}$$
$$x^\mu = (0, R \cos \tau, R \sin \tau, L) \qquad \chi \in \left[0, \frac{\pi}{2} \right]$$

- $\chi = 0$ BPS point, the operator + the defect preserve 1/4 of the supercharges
- conformal invariance $\rightarrow \langle W \rangle$ depends on R and L only through the ratio R/L
- In this talk we will explore the interaction of the WL with the defect in the strong coupling limit → non-perturbative computations in the string theory side

String Theory setting:

• AdS₅ × S⁵ metric (Poincaré patch):

$$ds^2 = \frac{1}{y^2} \left(-dt^2 + dr^2 + r^2 d\phi^2 + dx_3^2 + dy^2 \right) + (d\theta^2 + \sin^2 \, \theta d\Omega_{(1)}^2 + \cos^2 \theta \, d\tilde{\Omega}_{(2)}^2)$$
 AdS₅

 $d\Omega_{(i)}^2$ (i=1,2) represents two spheres inside S^5 .

• The D5-brane wraps the first of the two S^2 and has the form:

$$y = \frac{1}{\kappa} x_3$$
 $\theta = \frac{\pi}{2}$ $\tilde{\theta} = \tilde{\theta}_0$ $\tilde{\phi} = \tilde{\phi}_0$

 $(\tilde{\phi}_0, \tilde{\theta}_0)$ fixed point in the second S^2 ; $\theta = \frac{\pi}{2}$ is the equator of the S^5 .

- Two competing classical string solutions for the circular WL parallel to the defect:
 - spherical dome: dominant for $\frac{L}{R} >> 1$, it does not move on the S^5

$$y(\sigma)^2 + r(\sigma)^2 = R^2$$
 $\phi = \tau$

• minimal surface describing a fundamental string stretching from the boundary to the $D5-brane \rightarrow$ dominant for $\frac{L}{D} << 1$

String Theory setting:

• AdS₅ × S⁵ metric (Poincaré patch):

$$ds^2 = \frac{1}{y^2} \left(-dt^2 + dr^2 + r^2 d\phi^2 + dx_3^2 + dy^2 \right) + (d\theta^2 + \sin^2 \, \theta d\Omega_{(1)}^2 + \cos^2 \theta \, d\tilde{\Omega}_{(2)}^2)$$
 AdS₅

 $d\Omega^2_{(i)}$ (i=1,2) represents two spheres inside S^5 .

• The D5-brane wraps the first of the two S^2 and has the form:

$$y = \frac{1}{\kappa} x_3$$
 $\theta = \frac{\pi}{2}$ $\tilde{\theta} = \tilde{\theta}_0$ $\tilde{\phi} = \tilde{\phi}_0$

 $(\tilde{\phi}_0, \tilde{\theta}_0)$ fixed point in the second S^2 ; $\theta = \frac{\pi}{2}$ is the equator of the S^5 .

- Two competing classical string solutions for the circular WL parallel to the defect:
 - spherical dome: dominant for $\frac{L}{R} >> 1$, it does not move on the S^5

$$y(\sigma)^2 + r(\sigma)^2 = R^2$$
 $\phi = \tau$

• minimal surface describing a fundamental string stretching from the boundary to the D5-brane \rightarrow dominant for $\frac{L}{B} << 1$

Connected surface

• Ansatz: The solution moves both in AdS_5 and S^5 $[0 \le \sigma \le \tilde{\sigma} \quad 0 \le \tau < 2\pi]$:

$$y = y(\sigma)$$
 $r = r(\sigma)$ $x_3 = x_3(\sigma)$ $\phi = \tau$ $\theta = \theta(\sigma)$

• Boundary Conditions: Fundamental string \rightarrow stretched from the boundary $(\sigma = 0)$ to the D5 $(\sigma = \tilde{\sigma})$

$$r(0) = R y(0) = 0$$

$$x_3(0) = L \theta(0) = \chi$$

• boundary conditions in $\tilde{\sigma}$:

$$C_1 \equiv y(\tilde{\sigma}) - \frac{1}{\kappa} x_3(\tilde{\sigma}) = 0 \qquad \theta(\tilde{\sigma}) = \frac{\pi}{2}$$

$$C_2 \equiv y'(\tilde{\sigma}) + \kappa x_3'(\tilde{\sigma}) = 0 \qquad C_3 \equiv r'(\tilde{\sigma}) = 0$$

Equations of motion

Minimizing the Polyakov action we get the following equations:

• Equations of motion for $\theta(\sigma)$ and $x_3(\sigma)$:

$$x_3'(\sigma) = -cy^2(\sigma)$$
 $\theta'(\sigma) = j$

• Equations of motion for $r(\sigma)$ and $y(\sigma)$:

$$yy'' + r'^2 + r^2 - y'^2 + c^2y^4 = 0$$
 $yr'' - 2r'y' - yr = 0.$

• and in addition the VC constraint

$$V(\sigma) \equiv \frac{r^2 - y'^2 - r'^2}{y^2} - c^2 y^2 = j^2$$

Here j and c are integration constants.

General solution of the e.o.m.

The general solution of the e.o.m. can be given in terms of only one unknown function $g(\sigma) \equiv \frac{r(\sigma)}{u(\sigma)}$

$$y(\sigma) = \frac{\sqrt{\epsilon_0}}{c} \frac{1}{\sqrt{1 + g^2(\sigma)}} \operatorname{sech}[v(\sigma) - \eta]$$

$$y(\sigma) = \frac{\sqrt{\epsilon_0}}{c} \frac{1}{\sqrt{1 + g^2(\sigma)}} \operatorname{sech}[v(\sigma) - \eta] \qquad r(\sigma) = \frac{\sqrt{\epsilon_0}}{c} \frac{g(\sigma)}{\sqrt{1 + g^2(\sigma)}} \operatorname{sech}[v(\sigma) - \eta]$$

$$x_3(\sigma) = x_0 - \frac{\sqrt{\epsilon_0}}{c} \tanh[v(\sigma) - \eta] \qquad \theta(\sigma) = j\sigma + \theta_0$$

Here $v(\sigma)$ is defined by $v'(\sigma) = \frac{\sqrt{\varepsilon_0}}{1+\sigma^2(\sigma)}$ with the b.c. $v(\sigma) = 0$, while $g(\sigma)$ obeys

$$g'(\sigma)^2 + (j^2 - 1)g(\sigma)^2 - g(\sigma)^4 = -\varepsilon_0 - j^2,$$

where $\varepsilon_0 \geq 0, x_0, \theta_0$ and η are new integration constants. In AdS_5 the solution draws a sub-manifold

$$(x_3 - x_0)^2 + y^2 + r^2 = \frac{\varepsilon_0}{c^2}$$

Imposing boundary conditions:

The boundary conditions in $\sigma = 0$ allows us to determine the integration constants c, x_0 and θ_0

$$x_3(0) = L \implies x_0 = L - R \sinh \eta$$

$$\theta(0) = \chi \implies \theta_0 = \chi$$

$$r(0) = 0 \implies c = \frac{\sqrt{\epsilon_0}}{R} \operatorname{sech} \eta$$

The boundary conditions at $\sigma = \tilde{\sigma}$ allows us to determine the maximal value $\tilde{\sigma}$ of the world-sheet coordinate σ

$$\theta(\tilde{\sigma}) = \frac{\pi}{2} \implies \tilde{\sigma} = \frac{1}{j} \left(\frac{\pi}{2} - \chi \right)$$

A suitable combination of the remaining three b.cs. fixes η in terms of L/R

$$\eta = \mathrm{arcsinh} \frac{L}{R}$$

Remaining boundary conditions at $\tilde{\sigma}$

• We are left with two independent boundary conditions to impose

$$C_1 : \operatorname{arcsinh} \frac{L}{R} = v(\tilde{\sigma}) + \operatorname{arctanh} \left(-\frac{1}{\sqrt{\epsilon_0}} \frac{g'(\tilde{\sigma})}{g(\tilde{\sigma})} \right)$$

$$C_2 : \qquad \kappa = -\frac{g'(\tilde{\sigma})}{\sqrt{j^2 + \epsilon_0 - g^2(\tilde{\sigma})}} \qquad \kappa \equiv \frac{\pi k}{\sqrt{\lambda}}$$

• Explicit form for $g(\sigma)$

$$g(\sigma) = \sqrt{\frac{j^2 - 1}{m+1}} \operatorname{ns} \left(\sqrt{\frac{j^2 - 1}{m+1}} \sigma, m \right) \qquad m \equiv \frac{j^2 - 1 - \sqrt{(j^2 + 1)^2 + 4\varepsilon_0}}{j^2 - 1 + \sqrt{(j^2 + 1)^2 + 4\varepsilon_0}}$$

The range for the modulus m is either $-1 \le m \le 0$ if $j^2 \ge 1$ or $m \le -1$ if $0 < j^2 < 1$.

Allowed regions for the parameters

We find convenient to use m as an independent integration constant instead of ε_0 .

• Positivity of ε_0 + allowed ranges for m select two regions in the (j,m) plane:

REGION (A):
$$-1 \le m \le 0$$
 and $j^2 \ge -\frac{1}{m}$ REGION (B): $m \le -1$ and $j^2 \le -\frac{1}{m}$.

Our goal is now to solve the boundary conditions C_1 for the distance L and C_2 for the flux κ to determine

the last two integration constants (j,m) as functions of $\kappa, \frac{L}{R}$ and χ

Instead of j^2 we prefer to use the auxiliary variable $x = \sqrt{\frac{j^2 - 1}{j^2(m+1)}}$. We shall solve the b.c. for the flux to determine x as function of m, χ, κ

• Positivity of the flux $\kappa > 0 +$ positivity of $g(\sigma) \Rightarrow$ constraints on the range of x

REGION (A):
$$1 \le x \le \min\left(\frac{1}{\sqrt{1+m}}, \frac{\mathbb{K}(m)}{\left(\frac{\pi}{2} - \chi\right)}\right)$$

REGION (B): $1 \le x \le \frac{\mathbb{K}(m)}{\left(\frac{\pi}{2} - \chi\right)}$

Allowed regions for the parameters

- The requirement that the intervals for x are not empty ⇒ the region bounded by the red curve
- Moreover the equation for the flux

$$\kappa = -\frac{g'(\tilde{\sigma})}{\sqrt{j^2 + \epsilon_0 - g^2(\tilde{\sigma})}}$$

cannot be solved for a generic choice of the parameters in the region (A)

Our family of solutions coincides with the class of exact solutions discussed by Correa et al.

$$m_0 \Rightarrow \chi = \frac{\pi}{2} - \mathbb{K}(m_0)$$

• Fixed χ and κ , there exists a critical value m_c such that $m \geq m_c \Rightarrow \text{no solution}$

Geometrical interpretation of m_c : the distance L/R vanishes as $m \to m_c$ \Rightarrow The WL touches the defect

- The set of coloured curves ⇒ the value of m_c as function of the angle χ for different values of κ²
- Allowed region for m for fixed κ^2 : on the left of the relevant coloured curve

Behavior of the distance with m

The final step is to determine m as a function of χ, κ and L/R by exploiting the boundary condition for the distance

$$\eta = \mathrm{arcsinh} \frac{L}{R} = v(\tilde{\sigma}) + \mathrm{arctanh} \left(-\frac{1}{\sqrt{\epsilon_0}} \frac{g'(\tilde{\sigma})}{g(\tilde{\sigma})} \right)$$

• For fixed χ and κ , m can span the interval $[m_0, m_c]$: in this interval we can uniquely solve m in terms of L/R only if the r.h.s. is a monotonic function of m.

We study the behavior of $\frac{\partial \eta}{\partial m}\Big|_{\chi,\kappa}$ for $m \to m_c$ and $m \to m_0$

•
$$\frac{\partial \eta}{\partial m}\Big|_{m=m_c} = -\frac{c_0}{\sqrt{m_c-m}} + O(m-m_c)$$

• $\frac{\partial \eta}{\partial m}\Big|_{m=m_0}$ \Rightarrow finite term function of κ^2 and m_0

Behavior of the distance with m

• Exist a critical angle $\chi_s \simeq 0.331147$ that separates two dinstinct phases:

$$0<\chi<\chi_s$$

- $\frac{\partial \eta}{\partial m}\Big|_{m=m_0}$: always negative unless $\Rightarrow \kappa^2 < \kappa_s^2$
- $\kappa^2 > \kappa_s^2 \Rightarrow$ the distance is a monotonic function of m
- $\kappa^2 < \kappa_s^2 \Rightarrow$ the distance is **not monotonic** in $m \Rightarrow$ the same behavior holds for $\chi_s < \chi < \frac{\pi}{2}$
- Presence of a non-monotonic behavior (for a certain range of parameters) ⇒ existence of different branches of solutions

Maximal distance

- In both regions determined by χ_s there is a maximal distance after which the connected solution does not exist
- $L_{\max} \Rightarrow \text{determined analitically when } 0 < \chi < \chi_s \text{ and } \kappa^2 \geq \kappa_s^2$

$$L_{\max} = R\sqrt{\frac{\kappa^2 m_0}{m_0 - 1}}$$

• For the other values of χ and κ we determined L_{max} numerically

- Dashed curves ⇒ maximal distance determined analitically
- Continuous curves ⇒ maximal distance determined numerically
- The maximal distance grows both with χ and κ^2

Regularized area of the connected extremal surfaces

The **renormalized area** is given in terms of incomplete elliptic integral of the second kind $[E(\Phi, \tilde{m})]$

$$S_{\rm ren.} = \sqrt{\lambda n} \left(\sqrt{n} \tilde{\sigma} - E \left(\operatorname{am} \left(\sqrt{n} \tilde{\sigma} | m \right) | m \right) - \frac{\operatorname{cn} \left(\sqrt{n} \tilde{\sigma} | m \right) \operatorname{dn} \left(\sqrt{n} \tilde{\sigma} | m \right)}{\operatorname{sn} \left(\sqrt{n} \tilde{\sigma} | m \right)} \right) \equiv \sqrt{\lambda} \hat{S}_{\rm ren}$$

Since $\frac{\partial \hat{S}_{\text{ren.}}}{\partial m}\Big|_{\kappa,\chi} = \sqrt{-(n+1)(mn+1)} \left. \frac{\partial \eta}{\partial m} \right|_{\kappa,\chi}$, the area and the distance possess a similar behavior as functions of m for fixed κ and χ .

Behavior of the area with m

- $\kappa^2 \geq \kappa_s^2$ The area, as the distance, monotonically increases when m is lowered from m_c to m_0
- $\kappa^2 < \kappa_s^2$ the curve displays a maximum for the same value of m of the distance \Rightarrow the same behavior holds for $\chi_s \le \chi \le \frac{\pi}{2}$
- Close to m_c the area diverges for all values of κ^2
- Independently of κ^2 all the curves terminate on the same point

Transition: connected solution vs dome

To understand when the connected solution becomes dominant with respect
to the dome ⇒ plot the area as a function of the distance from the brane

- $\kappa^2 \geq \kappa_s^2$: the area is a monotonic function of the distance
- $\kappa^2 < \kappa_s^2$: two families of extremal surfaces when the distance is decreased from its maximal value, the upper branch is always subdominant \Rightarrow the same behavior holds for $\chi_s \le \chi \le \pi/2$
- There is a **critical distance** for which the area of the dome is equal to the area of the connected solution
- The connected solution becomes dominant below the critical distance ⇒
 phase transition of Gross-Ooguri type
- The transition is of the first order since the area is continuous but not its first derivative

Double-scaling limit

- We want to match the string computation with the field theory result:
 → possibile because of k ⇒ we can organize the expression for S_{ren} as
 a series in λ/k2
- Strong coupling regime: expand our classical solution in power of $\frac{1}{\kappa^2} \Rightarrow$ large value of the flux
- We require that the distance L/R of the Wilson loop from the defect remains finite
- First two terms in the expansion

$$\begin{split} S_{\rm ren} &\simeq -\frac{\pi k R}{L} \left[\sin \chi + \frac{\lambda}{4\pi^2 k^2} \, \frac{1}{\cos^3 \chi} \left(\frac{\pi}{2} - \chi - \frac{\sin 2\chi}{2} \right) \left(\sin^2 \chi + \left(\frac{L}{R} \right)^2 \right) \right. \\ &+ O\left(\frac{\lambda^2}{\pi^4 k^4} \right) \right] \end{split}$$

• perfect agreement with the perturbative computation

BPS Configuration

$$\chi = 0$$

- The admissible region for m shrinks to a point $\Rightarrow m = 0$
- The solution collapses to a point and no regular connected solution exists for the BPS configuration
- Weak coupling analysis ⇒ the first non-trivial BPS perturbative contribution is evaluated in terms of hypergeometric functions
- Its large k expansion does not scale in a way to match the string solution \Rightarrow not possible to recover the large k limit from the equivalent asymptotic expansion of the $\chi \neq 0$ case

Conclusions

- We analyzed the Circular Wilson loop operator in the N = 4 SYM theory with the insertion of a defect
- String Theory side:
 - we solved a non-trivial boundary conditions problem
 - we are left with three independent parameters χ , κ , m and we analyzed their allowed region of variation
 - we have studyed the possible structure of the connected solution
 - we have shown that taking the $\kappa \to \infty$ limit, we recover the perturbative computation for the expectation value of the Wilson loop for any value of the angle χ and the distance $\frac{L}{R}$

Thank you for the attention!!