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Motivations for Defect Conformal Field Theories

e Introducing a defect reduces the amount of symmetry in QFT

dCFTs with holographic duals constitute an interesting new arena for precision
tests of the AdS/CFT correspondence

e Non-vanishing one-point functions already at tree level

e Interesting applications to integrability
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dCFT: Field theory

Defect version of N =4 SYM theory

[DeWolfe,Freedman,Ooguri, 2003; Gaiotto,Witten, 2008; Buhl-Mortensen et al. 2017]

e A codimension one defect is inserted at Ned sy
x3 = 0, separating two vacua of N =4 SYM:

()
e Higgsing: 3 scalars acquire an xz3-dependent S
VEV: (i =1,2,3) o e

<¢;>=0 <¢;>#0

1
(pi(2)) oy = Tl @0k x(v-k) T3>0

=0 x
t;: k-dimensional irr. repr. of the SU(2) algebra
e The VEV originates from the b.c. on the defect preserving 1/2 of the original
supersymimetry
e The superconformal symmetry PSU(2,2|4) of N = 4 SYM is broken down to its
subgroup OSp(4|4). In particular the original bosonic sector SO(4,2) x SO(6)

resuces to
SO(3,2)  x SO(3) x SO(3)

Res. Conf. symm. R—symmetry
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ographic dual: String theory

D3-D5 brane configuration

[Karch, Randall, 2001; Gaiotto,Witten, 2008; Nagasaki, Tanida, Yamaguchi, 2012]

e D5 — probe brane in AdSs x S°
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e The D5 has a profile that spans AdSs x S? in the presence of a background
flux of k units through the S2

= k out of the N D3 branes get dissolved in the D5 brane:

D5
D3

N-k N
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Double-scaling limit:

An (unexpected) window on the weak coupling regime
[Nagasaki, Tanida, Yamaguchi, 2012]

e Compared to the usual AdS/CFT scenario, in this theory we have an extra
parameter k that controls the VEV of the scalar fields

A

e one can consider the double scaling limit:

- sugra computations ( valid for large A ) — considered for large k in such
a way that \/k? is kept small

- the results on both side of the correspondence are found to be expressible
in powers of \/k?

= weak/strong computations are comparable
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Circular Wilson loop in N = 4 defect theory

e We consider a circular Wilson Loop of radius R placed on a plane parallel
to the defect at a distance L from it: [Aguilera-Damia, Correa, Giraldo-Rivera, 2017]

W(C) = Tr Pexp {?{C dr 1Azt — |&| (¢3sin x + ¢ cos X))}

z# = (0, RcosT, RsinT, L) X € [O,g}

e x =0 BPS point, the operator + the defect preserve 1/4 of the supercharges

e conformal invariance — (W) depends on R and L only through the ratio R/L

e In this talk we will explore the interaction of the WL with the defect in the
strong coupling limit — non-perturbative computations in the string theory
side
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String Theory setting:

e AdSs x S® metric (Poincaré patch):

1 -
ds? = = (=dt* + dr® + r?d¢? + da3 + dy?) +(d0” + sin® 0dQ, ) + cos” 0dQY)
5

AdSs S
dQ(Qi) (i = 1, 2) represents two spheres inside S5.
e The D5—brane wraps the first of the two S? and has the form:
1 T O - -
y= —x3 0=— 0 = 6o @ =¢o
K 2

™

(<;~50, éo) fixed point in the second S2%; 0 = % is the equator of the 8.
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String Theory setting:

e AdSs x S® metric (Poincaré patch):

1 -
ds? = = (=dt* + dr® + r?d¢? + da3 + dy?) +(d0” + sin® 0dQ, ) + cos” 0dQY)
AdSs 85

2
ds?,

) (i = 1, 2) represents two spheres inside S5.
e The D5—brane wraps the first of the two S? and has the form:

1 T ~ ~
y= —x3 0=— 0 =6 ¢ = o
K 2

(<;~50, éo) fixed point in the second S2%; 0 = % is the equator of the 8.
e Two competing classical string solutions for the circular WL parallel to
the defect:
e spherical dome: dominant for % >> 1, it does not move on the S°

y(0) +r(0) =R g=rt

e minimal surface describing a fundamental string stretching from the bound-
ary to the D5—brane — dominant for % <<1

University of Florence




Connected surface

e Ansatz: The solution moves both in AdSs5 and S® [0 <o <& 0< 7T < 27
y=ylo) r=r() az=ax3(c) od=7 O6=0(c)

e Boundary Conditions: Fundamental string — stretched from the boundary
(o0 =0) to the D5 (0 = &)

y s

\ F-string
l z.
> 3

— F-string

e boundary conditions e boundary conditions in &:
ino=0:
L 1 . . T
r(0)=R y(0) =0 C1 =y(o) — ;@3(‘7) =0 0(6) = 5
z3(0) =1L 0(0) = x Cy=9y'(6) +ra5(5) =0 C3=r'(6)=0
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Equations of motion

Minimizing the Polyakov action we get the following equations:
e Equations of motion for 6(c) and z3(o):

23(0) = —cy*(0) 0'(0) =

e Equations of motion for (o) and y(o):

yy// T 7‘/2 + ,,,2 _ y/2 + c2y4 -0 yr” _ 2r'y' —yr = 0.

e and in addition the VC constraint

—cy =g
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General solution of the e.o.m.

The general solution of the e.o.m. can be given in terms of only one unknown

function g(o) = ZEZ;
Ve Vo  g(o)
y(o) = %msech[v(@ - | re) = %msech[v(o) —

z3(0) =20 — @ tanh([v(o) — 7] 0(c) = jo + 6o

Here v(0) is defined by v/(o) = T% with the b.c. v(o) = 0, while g(o) obeys

g'(0)* + (52 = 1)g(0)? — g(0)* = —e0 — 52,

where 9 > 0,x0,60 and 1 are new integration constants. In AdSs the solution

draws a sub-manifold o

(23 —x0)® +y° +7° = 5
C
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Imposing boundary conditions:

The boundary conditions in ¢ = 0 allows us to determine the integration constants
¢, xo and fg

23(0) =L = z¢o =L — Rsinhnp 0(0)=x = 0o=x

r(0) =0 = c= \/—Ijosechn

The boundary conditions at o = & allows us to determine the maximal value & of
the world-sheet coordinate o

9(&):% = &:l(f—x)

A suitable combination of the remaining three b.cs. fixes n in terms of L/R

L
= arcsinh —
K R
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Remaining boundary conditions at &

e We are left with two independent boundary conditions to impose

L 1 g'(c
C4 : arcsinh— =v(¢) + arctanh (77 g (?)>
R Veo 9(o)
(& k
Cy: K =*% K==
3%+ €0 — g%(5) 2

e Explicit form for g(o)

\/a‘z—l \/J’2—1 2 =1-/G2+ D% + e
g(o) = ns ,m m=
32— 1+44/(G2 + 1) + 4e0

The range for the modulus m is either —1 < m < 0if 52 > 1 or m < —1 if
0<% <1
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Allowed regions for the parameters

We find convenient to use m as an independent integration constant instead of eg.
e Positivity of eg + allowed ranges for m select two regions in the (j, m) plane:

1 1
REGION (A): —1<m <0 and j2 > —— REGION (B): m < —1 and j2 < ——.
m m

Our goal is now to solve the boundary conditions C for the distance L and Cs for
the flux k to determine

the last two integration constants (j,m) as functions of k, % and x

Instead of j2 we prefer to use the auxiliary variable z = ]2](27)177-:1) ‘We shall solve

the b.c. for the flux to determine z as function of m, x, xk

e Positivity of the flux k > 0 4 positivity of g(0) = constraints on the range

of x
. 1 K (m)
REGION (A): 1 <z < Min | ——, ——~
Wrses <v1+m (Q—X)>
REGION (B): 1<z < M
5-x)
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Allowed regions for the parameters

e The requirement that the intervals for z are not empty = the region bounded
by the red curve

e Moreover the equation for the flux

_ 9'(%)
k==
Vi* +e0 —g%(5)
cannot be solved for a generic choice of the parameters in the region (A)

m=tana

: n e Fixed x and k, there exists a critical value
|Region (B) ae[-30] me such that m > m. = no solution

— k=0

| — =t

Geometrical interpretation of m.:
i the distance L/R vanishes as m — m.
_::0 = The WL touches the defect

e The set of coloured curves = the value of

m. as function of the angle x for different
values of k2

: 2.
Our family of solutions coincides with the class e Allowed region for m for fixed £=: on the

of exact solutions discussed by Correa et al. left of the relevant coloured curve
my = x= %—]K(m“)
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Behavior of the distance with m

The final step is to determine m as a function of x,x and L/R by exploiting the

boundary condition for the distance

L e
7 = arcsinh— = v(&) + arctanh (_ g (if))
. Ve 9()

e For fixed x and s, m can span the interval [mg, mc]: in this interval we can
uniquely solve m in terms of L/R only if the r.h.s. is a monotonic function of

m.
We study the behavior of 68777]1 for m — m¢ and m — mg
X,
On —___¢c% —
® om m=me — Vme—m +0(m —me)
On = finite term function of k2 and mq

om m=mg
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Behavior of the distance with m

e Exist a critical angle xs ~ 0.331147 that separates two dinstinct phases:

0<x<xs
° g—” : always negative unless = k2 < K2
™ Im=mg

o k2 > k2 = the distance is a monotonic function of m

e k2 < k2 = the distance is not monotonic in m = the same behavior holds
for xs < x < %

e Presence of a non-monotonic behavior (for a certain range of parameters) =
existence of different branches of solutions

University of Florence




Taximal distan

e In both regions determined by xs there is a maximal distance after which
the connected solution does not exist

e Luax = determined analitically when 0 < x < xs and k2 > ng

| K2mg
Lmax =R -
mo — 1
e For the other values of x and x we determined Lmax numerically

e Dashed curves = maximal
distance determined analitically

e Continuous curves =
T maximal distance determined

— ka0 numerically
— =1

e The maximal distance grows
both with x and x?2
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Regularized area of the connected extremal surfaces

The renormalized area is given in terms of incomplete elliptic integral of the
second kind [E(®,m)]

Suen. = Vo1 (m — B (am (vi6im) |m) — S /E2Im) dn (W"’”)) = VRSren

sn (y/na|m)

=+v—-(n+1)(mn+1) %
K

Since 9Sren.
om

, the area and the distance pos-

sess a similar behavior as functions of m for fixed x and x.
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Behavior of the area with m

0<x<xs

Xe0165059

e k2 > k2 The area, as the distance, monotonically increases when m is lowered
from m. to mg

o k2% < k2 the curve displays a maximum for the same value of m of the distance
= the same behavior holds for xs < x < 5

e Close to m. the area diverges for all values of x?

o Independently of x2 all the curves terminate on the same point
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Transition: connected solution vs dome

e To understand when the connected solution becomes dominant with respect
to the dome = plot the area as a function of the distance from the brane
0<x<xs

X=0.250737

| -osot — =5

~ e

s 22175656
K2=05

05 70 15 R

-4 -059
0502

5| [T

e k2 > k2 : the area is a monotonic function of the distance

e K2 < n§ : two families of extremal surfaces when the distance is decreased
from its maximal value, the upper branch is always subdominant = the
same behavior holds for xs < x < w/2

e There is a critical distance for which the area of the dome is equal to the
area of the connected solution

e The connected solution becomes dominant below the critical distance =

phase transition of Gross-Ooguri type

e The transition is of the first order since the area is continuous but not its first
derivative
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Double-scaling limit

We want to match the string computation with the field theory result:
— possibile because of k = we can organize the expression for Sren as

A

a series in o2

Strong coupling regime: expand our classical solution in power of % =
large value of the flux

We require that the distance L/R of the Wilson loop from the defect remains
finite

First two terms in the expansion

LA A 1 m sin 2y in? v+ L\?
sin — —x— sin —=
XT1m2k2 cosd x \ 2 X 2 X R

s
Sren =
L

“o (5]

perfect agreement with the perturbative computation
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BPS Configuration

x=0

e The admissible region for m shrinks to a point = m =0

e The solution collapses to a point and no regular connected solution exists
for the BPS configuration

e Weak coupling analysis = the first non-trivial BPS perturbative contribution
is evaluated in terms of hypergeometric functions

e Its large k expansion does not scale in a way to match the string solution = not
possible to recover the large k limit from the equivalent asymptotic expansion
of the x # 0 case
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Conclusions

e We analyzed the Circular Wilson loop operator in the N = 4 SYM theory with
the insertion of a defect

e String Theory side:

- we solved a non-trivial boundary conditions problem

- we are left with three independent parameters x, x, m and we analyzed
their allowed region of variation

- we have studyed the possible structure of the connected solution

- we have shown that taking the x — oo limit, we recover the perturbative
computation for the expectation value of the Wilson loop for any value of
the angle x and the distance %
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Thank you for the attention!!
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