The fate of the circular Wilson Loop in $\mathcal{N}=4$ defect theory

Sara Bonansea

University of Florence Department of Physics and Astronomy

October $23^{\text {th }} 2019$
TFI 2019 -Torino

Istituto Nazionale di Fisica Nucleare SEZIOHEDI FREMZE
based on "The fate of circular Wilson loops in $N=4 S Y M$ with defect: phase transitions, double scaling limit and OPE expansion"
S.B, Silvia Davoli, Luca Griguolo, Domenico Seminara arXiv[1910.xxxx]

Outline

- Motivations

- Description of the set-up

Outline

- Motivations
- Description of the set-up
- Results on the gravity side (strong coupling)

1. Boundary conditions
2. Parameters space
3. Structure of the solutions

Outline

- Motivations
- Description of the set-up
- Results on the gravity side (strong coupling) 1. Boundary conditions

[^0]
Outline

- Motivations
- Description of the set-up
- Results on the gravity side (strong coupling)

1. Boundary conditions
2. Parameters space
3. Structure of the solutions

Outline

- Motivations
- Description of the set-up
- Results on the gravity side (strong coupling)

1. Boundary conditions
2. Parameters space
3. Structure of the solutions

- Conclusions

Motivations for Defect Conformal Field Theories

- Introducing a defect reduces the amount of symmetry in QFT
- dCFTs with holographic duals constitute an interesting new arena for precision tests of the AdS/CFT correspondence
- Non-vanishing one-point functions already at tree level
- Interesting applications to integrability

dCFT: Field theory picture

```
    Defect version of \mathcal{N}=4 SYM theory
[DeWolfe,Freedman,Ooguri, 2003; Gaiotto,Witten, 2008; Buhl-Mortensen et al. 2017]
```

- A codimension one defect is inserted at $x_{3}=0$, separating two vacua of $\mathcal{N}=4$ SYM:
- Higgsing: 3 scalars acquire an x_{3}-dependent VEV: $(i=1,2,3)$

$$
\left\langle\phi_{i}(x)\right\rangle_{c l}=-\frac{1}{x_{3}} t_{i} \oplus 0_{(N-k) \times(N-k)} \quad x_{3}>0
$$

t_{i} : k-dimensional irr. repr. of the $S U(2)$ algebra

- The VEV originates from the b.c. on the defect preserving $1 / 2$ of the original supersymmetry
- The superconformal symmetry $\operatorname{PSU}(2,2 \mid 4)$ of $\mathcal{N}=4$ SYM is broken down to its subgroup $\operatorname{OSp}(4 \mid 4)$. In particular the original bosonic sector $S O(4,2) \times S O(6)$ resuces to

$$
\underset{\text { Res. Conf. symm. }}{S O(3,2)} \times \underset{\text { R-symmetry }}{S O(3) \times S O(3)}
$$

dCFT Holographic dual: String theory picture

D3-D5 brane configuration

[Karch, Randall, 2001; Gaiotto, Witten, 2008; Nagasaki, Tanida, Yamaguchi, 2012]

- D5 \rightarrow probe brane in $A d S_{5} \times S^{5}$

	0	1	2	3	4	5	6	7	8	9
D3	O	O	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	\times
D5	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times

- The D5 has a profile that spans $A d S_{4} \times S^{2}$ in the presence of a background flux of k units through the S^{2}
$\Rightarrow \mathrm{k}$ out of the N D3 branes get dissolved in the D5 brane:

Double-scaling limit:

An (unexpected) window on the weak coupling regime
[Nagasaki, Tanida, Yamaguchi, 2012]

- Compared to the usual AdS/CFT scenario, in this theory we have an extra parameter k that controls the VEV of the scalar fields
- one can consider the double scaling limit: $\frac{\lambda}{k^{2}}$
- sugra computations (valid for large λ) \rightarrow considered for large k in such a way that λ / k^{2} is kept small
- the results on both side of the correspondence are found to be expressible in powers of λ / k^{2}
\Rightarrow weak/strong computations are comparable

Circular Wilson loop in $\mathcal{N}=4$ defect theory

- We consider a circular Wilson Loop of radius \boldsymbol{R} placed on a plane parallel to the defect at a distance L from it: [Aguilera-Damia, Correa, Giraldo-Rivera, 2017]

$$
\begin{aligned}
& W(C)=\operatorname{Tr} P \exp \left\{\oint_{C} d \tau\left(i A_{\mu} \dot{x}^{\mu}-|\dot{x}|\left(\phi_{3} \sin \chi+\phi_{6} \cos \chi\right)\right)\right\} \\
& x^{\mu}=(0, R \cos \tau, R \sin \tau, L) \quad \chi \in\left[0, \frac{\pi}{2}\right]
\end{aligned}
$$

- $\chi=0$ BPS point, the operator + the defect preserve $\mathbf{1} / \mathbf{4}$ of the supercharges
- conformal invariance $\rightarrow\langle W\rangle$ depends on R and L only through the ratio R / L
- In this talk we will explore the interaction of the WL with the defect in the strong coupling limit \rightarrow non-perturbative computations in the string theory side

String Theory setting:

- $\operatorname{AdS}_{5} \times \mathbf{S}^{\mathbf{5}}$ metric (Poincaré patch):

$$
d s^{2}=\frac{1}{y^{2}}\left(-d t^{2}+d r^{2}+r^{2} d \phi^{2}+d x_{3}^{2}+d y^{2}\right)+\left(d \theta^{2}+\sin ^{2} \theta d \Omega_{(1)}^{2}+\cos ^{2} \theta d \tilde{\Omega}_{(2)}^{2}\right)
$$

$d \Omega_{(i)}^{2}(i=1,2)$ represents two spheres inside S^{5}.

- The $D 5$-brane wraps the first of the two S^{2} and has the form:

$$
y=\frac{1}{\kappa} x_{3} \quad \theta=\frac{\pi}{2} \quad \tilde{\theta}=\tilde{\theta}_{0} \quad \tilde{\phi}=\tilde{\phi}_{0}
$$

$\left(\tilde{\phi}_{0}, \tilde{\theta}_{0}\right)$ fixed point in the second $S^{2} ; \theta=\frac{\pi}{2}$ is the equator of the S^{5}.

String Theory setting:

- $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ metric (Poincaré patch):

$$
d s^{2}=\frac{1}{y^{2}}\left(-d t^{2}+d r^{2}+r^{2} d \phi^{2}+d x_{3}^{2}+d y^{2}\right)+\left(d \theta^{2}+\sin ^{2} \theta d \Omega_{(1)}^{2}+\cos ^{2} \theta d \tilde{\Omega}_{(2)}^{2}\right)
$$

$d \Omega_{(i)}^{2}(i=1,2)$ represents two spheres inside S^{5}.

- The $D 5$-brane wraps the first of the two S^{2} and has the form:

$$
y=\frac{1}{\kappa} x_{3} \quad \theta=\frac{\pi}{2} \quad \tilde{\theta}=\tilde{\theta}_{0} \quad \tilde{\phi}=\tilde{\phi}_{0}
$$

($\tilde{\phi}_{0}, \tilde{\theta}_{0}$) fixed point in the second $S^{2} ; \theta=\frac{\pi}{2}$ is the equator of the S^{5}.

- Two competing classical string solutions for the circular WL parallel to the defect:
- spherical dome: dominant for $\frac{L}{R} \gg 1$, it does not move on the S^{5}

$$
y(\sigma)^{2}+r(\sigma)^{2}=R^{2} \quad \phi=\tau
$$

- minimal surface describing a fundamental string stretching from the boundary to the D5-brane \rightarrow dominant for $\frac{L}{R} \ll 1$

Connected surface

- Ansatz: The solution moves both in $A d S_{5}$ and $S^{5}[0 \leq \sigma \leq \tilde{\sigma} \quad 0 \leq \tau<2 \pi]$:

$$
y=y(\sigma) \quad r=r(\sigma) \quad x_{3}=x_{3}(\sigma) \quad \phi=\tau \quad \theta=\theta(\sigma)
$$

- Boundary Conditions: Fundamental string \rightarrow stretched from the boundary ($\sigma=0$) to the D5 $(\sigma=\tilde{\sigma})$

- boundary conditions in $\sigma=0$:

$$
\begin{array}{lr}
r(0)=R & y(0)=0 \\
x_{3}(0)=L & \theta(0)=\chi
\end{array}
$$

- boundary conditions in $\tilde{\sigma}$:

$$
\begin{array}{ll}
C_{1} \equiv y(\tilde{\sigma})-\frac{1}{\kappa} x_{3}(\tilde{\sigma})=0 & \theta(\tilde{\sigma})=\frac{\pi}{2} \\
C_{2} \equiv y^{\prime}(\tilde{\sigma})+\kappa x_{3}^{\prime}(\tilde{\sigma})=0 & C_{3} \equiv r^{\prime}(\tilde{\sigma})=0
\end{array}
$$

Equations of motion

Minimizing the Polyakov action we get the following equations:

- Equations of motion for $\theta(\sigma)$ and $x_{3}(\sigma)$:

$$
x_{3}^{\prime}(\sigma)=-c y^{2}(\sigma) \quad \theta^{\prime}(\sigma)=j
$$

- Equations of motion for $r(\sigma)$ and $y(\sigma)$:

$$
y y^{\prime \prime}+r^{\prime 2}+r^{2}-y^{\prime 2}+c^{2} y^{4}=0 \quad y r^{\prime \prime}-2 r^{\prime} y^{\prime}-y r=0 .
$$

- and in addition the VC constraint

$$
\mathcal{V}(\sigma) \equiv \frac{r^{2}-y^{\prime 2}-r^{\prime 2}}{y^{2}}-c^{2} y^{2}=j^{2}
$$

Here j and c are integration constants.

General solution of the e.o.m.

The general solution of the e.o.m. can be given in terms of only one unknown function $g(\sigma) \equiv \frac{r(\sigma)}{y(\sigma)}$

$$
y(\sigma)=\frac{\sqrt{\epsilon_{0}}}{c} \frac{1}{\sqrt{1+g^{2}(\sigma)}} \operatorname{sech}[v(\sigma)-\eta] \quad r(\sigma)=\frac{\sqrt{\epsilon_{0}}}{c} \frac{g(\sigma)}{\sqrt{1+g^{2}(\sigma)}} \operatorname{sech}[v(\sigma)-\eta]
$$

$$
x_{3}(\sigma)=x_{0}-\frac{\sqrt{\epsilon_{0}}}{c} \tanh [v(\sigma)-\eta] \quad \theta(\sigma)=j \sigma+\theta_{0}
$$

Here $v(\sigma)$ is defined by $v^{\prime}(\sigma)=\frac{\sqrt{\varepsilon_{0}}}{1+g^{2}(\sigma)}$ with the b.c. $v(\sigma)=0$, while $g(\sigma)$ obeys

$$
g^{\prime}(\sigma)^{2}+\left(j^{2}-1\right) g(\sigma)^{2}-g(\sigma)^{4}=-\varepsilon_{0}-j^{2}
$$

where $\varepsilon_{0} \geq 0, x_{0}, \theta_{0}$ and η are new integration constants. In $A d S_{5}$ the solution draws a sub-manifold

$$
\left(x_{3}-x_{0}\right)^{2}+y^{2}+r^{2}=\frac{\varepsilon_{0}}{c^{2}}
$$

Imposing boundary conditions:

The boundary conditions in $\sigma=0$ allows us to determine the integration constants c, x_{0} and θ_{0}

$$
x_{3}(0)=L \Rightarrow x_{0}=L-R \sinh \eta
$$

$$
\theta(0)=\chi \Rightarrow \theta_{0}=\chi
$$

The boundary conditions at $\sigma=\tilde{\sigma}$ allows us to determine the maximal value $\tilde{\sigma}$ of the world-sheet coordinate σ

$$
\theta(\tilde{\sigma})=\frac{\pi}{2} \Rightarrow \tilde{\sigma}=\frac{1}{j}\left(\frac{\pi}{2}-\chi\right)
$$

A suitable combination of the remaining three b.cs. fixes η in terms of L / R

$$
\eta=\operatorname{arcsinh} \frac{L}{R}
$$

Remaining boundary conditions at $\tilde{\sigma}$

- We are left with two independent boundary conditions to impose

$$
\begin{array}{llrl}
C_{1}: \operatorname{arcsinh} \frac{L}{R} & =v(\tilde{\sigma})+\operatorname{arctanh}\left(-\frac{1}{\sqrt{\epsilon_{0}}} \frac{g^{\prime}(\tilde{\sigma})}{g(\tilde{\sigma})}\right) & \\
C_{2}: & \kappa & =-\frac{g^{\prime}(\tilde{\sigma})}{\sqrt{j^{2}+\epsilon_{0}-g^{2}(\tilde{\sigma})}} & \kappa \equiv \frac{\pi k}{\sqrt{\lambda}}
\end{array}
$$

- Explicit form for $g(\sigma)$

$$
g(\sigma)=\sqrt{\frac{j^{2}-1}{m+1}} \mathrm{~ns}\left(\sqrt{\frac{j^{2}-1}{m+1}} \sigma, m\right) \quad m \equiv \frac{j^{2}-1-\sqrt{\left(j^{2}+1\right)^{2}+4 \varepsilon_{0}}}{j^{2}-1+\sqrt{\left(j^{2}+1\right)^{2}+4 \varepsilon_{0}}}
$$

The range for the modulus m is either $-1 \leq m \leq 0$ if $j^{2} \geq 1$ or $m \leq-1$ if $0 \leq j^{2} \leq 1$.

Allowed regions for the parameters

We find convenient to use m as an independent integration constant instead of ε_{0}.

- Positivity of $\varepsilon_{0}+$ allowed ranges for m select two regions in the (j, m) plane: REGION (A): $-1 \leq m \leq 0$ and $j^{2} \geq-\frac{1}{m} \quad$ REGION (B): $m \leq-1$ and $j^{2} \leq-\frac{1}{m}$.

Our goal is now to solve the boundary conditions C_{1} for the distance L and C_{2} for the flux κ to determine
the last two integration constants (j, m) as functions of $\kappa, \frac{L}{R}$ and χ
Instead of j^{2} we prefer to use the auxiliary variable $x=\sqrt{\frac{j^{2}-1}{j^{2}(m+1)}}$. We shall solve the b.c. for the flux to determine x as function of m, χ, κ

- Positivity of the flux $\kappa>0+$ positivity of $g(\sigma) \Rightarrow$ constraints on the range of x

$$
\begin{aligned}
& \operatorname{REGION}(\mathrm{A}): 1 \leq x \leq \operatorname{Min}\left(\frac{1}{\sqrt{1+m}}, \frac{\mathbb{K}(m)}{\left(\frac{\pi}{2}-\chi\right)}\right) \\
& \text { REGION }(\mathrm{B}): 1 \leq x \leq \frac{\mathbb{K}(m)}{\left(\frac{\pi}{2}-\chi\right)}
\end{aligned}
$$

Allowed regions for the parameters

- The requirement that the intervals for x are not empty \Rightarrow the region bounded by the red curve
- Moreover the equation for the flux

$$
\kappa=-\frac{g^{\prime}(\tilde{\sigma})}{\sqrt{j^{2}+\epsilon_{0}-g^{2}(\tilde{\sigma})}}
$$

cannot be solved for a generic choice of the parameters in the region (A)

Our family of solutions coincides with the class of exact solutions discussed by Correa et al.

$$
m_{0} \Rightarrow \chi=\frac{\pi}{2}-\mathbb{K}\left(m_{0}\right)
$$

- Fixed χ and κ, there exists a critical value m_{c} such that $m \geq m_{c} \Rightarrow$ no solution

Geometrical interpretation of m_{c} : the distance L / R vanishes as $m \rightarrow m_{c}$ \Rightarrow The WL touches the defect

- The set of coloured curves \Rightarrow the value of m_{c} as function of the angle χ for different values of κ^{2}
- Allowed region for m for fixed κ^{2} : on the left of the relevant coloured curve

Behavior of the distance with m

The final step is to determine m as a function of χ, κ and L / R by exploiting the boundary condition for the distance

$$
\eta=\operatorname{arcsinh} \frac{L}{R}=v(\tilde{\sigma})+\operatorname{arctanh}\left(-\frac{1}{\sqrt{\epsilon_{0}}} \frac{g^{\prime}(\tilde{\sigma})}{g(\tilde{\sigma})}\right)
$$

- For fixed χ and κ, m can span the interval $\left[m_{0}, m_{c}\right]$: in this interval we can uniquely solve m in terms of L / R only if the r.h.s. is a monotonic function of m.
We study the behavior of $\left.\frac{\partial \eta}{\partial m}\right|_{\chi, \kappa}$ for $m \rightarrow m_{c}$ and $m \rightarrow m_{0}$
- $\left.\frac{\partial \eta}{\partial m}\right|_{m=m_{c}}=-\frac{c_{0}}{\sqrt{m_{c}-m}}+O\left(m-m_{c}\right)$
- $\left.\frac{\partial \eta}{\partial m}\right|_{m=m_{0}} \Rightarrow$ finite term function of κ^{2} and m_{0}

Behavior of the distance with m

- Exist a critical angle $\chi_{s} \simeq 0.331147$ that separates two dinstinct phases:

$$
0<\chi<\chi_{\substack{x \\ x=0.0707694}}
$$

- $\left.\frac{\partial \eta}{\partial m}\right|_{m=m_{0}}$: always negative unless $\Rightarrow \kappa^{2}<\kappa_{s}^{2}$
- $\kappa^{2} \geq \kappa_{s}^{2} \Rightarrow$ the distance is a monotonic function of m
- $\kappa^{2}<\kappa_{s}^{2} \Rightarrow$ the distance is not monotonic in $m \Rightarrow$ the same behavior holds for $\chi_{s} \leq \chi \leq \frac{\pi}{2}$
- Presence of a non-monotonic behavior (for a certain range of parameters) \Rightarrow existence of different branches of solutions

Maximal distance

- In both regions determined by χ_{s} there is a maximal distance after which the connected solution does not exist
- $L_{\max } \Rightarrow$ determined analitically when $0<\chi<\chi_{s}$ and $\kappa^{2} \geq \kappa_{s}^{2}$

$$
L_{\max }=R \sqrt{\frac{\kappa^{2} m_{0}}{m_{0}-1}}
$$

- For the other values of χ and κ we determined $L_{\text {max }}$ numerically

- Dashed curves \Rightarrow maximal distance determined analitically
- Continuous curves \Rightarrow
- $x^{2}=40$
- $x^{2}=20$
— $x^{2}=10$
- $k^{2}=1$ maximal distance determined numerically
- The maximal distance grows both with χ and κ^{2}

Regularized area of the connected extremal surfaces

The renormalized area is given in terms of incomplete elliptic integral of the second kind $[E(\Phi, \tilde{m})]$

$$
S_{\mathrm{ren} .}=\sqrt{\lambda n}\left(\sqrt{n} \tilde{\sigma}-E(\operatorname{am}(\sqrt{n} \tilde{\sigma} \mid m) \mid m)-\frac{\operatorname{cn}(\sqrt{n} \tilde{\sigma} \mid m) \operatorname{dn}(\sqrt{n} \tilde{\sigma} \mid m)}{\operatorname{sn}(\sqrt{n} \tilde{\sigma} \mid m)}\right) \equiv \sqrt{\lambda} \hat{S}_{\mathrm{ren}}
$$

Since $\left.\quad \frac{\partial \hat{S}_{\text {ren. }}}{\partial m}\right|_{\kappa, \chi}=\left.\sqrt{-(n+1)(m n+1)} \frac{\partial \eta}{\partial m}\right|_{\kappa, \chi}$, the area and the distance possess a similar behavior as functions of m for fixed κ and χ.

Behavior of the area with m

- $\kappa^{2} \geq \kappa_{s}^{2}$ The area, as the distance, monotonically increases when m is lowered from m_{c} to m_{0}
- $\kappa^{2}<\kappa_{s}^{2}$ the curve displays a maximum for the same value of m of the distance \Rightarrow the same behavior holds for $\chi_{s} \leq \chi \leq \frac{\pi}{2}$
- Close to m_{c} the area diverges for all values of κ^{2}
- Independently of κ^{2} all the curves terminate on the same point

Transition: connected solution vs dome

- To understand when the connected solution becomes dominant with respect to the dome \Rightarrow plot the area as a function of the distance from the brane

$$
0<\chi<\chi_{s}
$$

- $\kappa^{2} \geq \kappa_{s}^{2}$: the area is a monotonic function of the distance
- $\kappa^{2}<\kappa_{s}^{2}$: two families of extremal surfaces when the distance is decreased from its maximal value, the upper branch is always subdominant \Rightarrow the same behavior holds for $\chi_{s} \leq \chi \leq \pi / 2$
- There is a critical distance for which the area of the dome is equal to the area of the connected solution
- The connected solution becomes dominant below the critical distance \Rightarrow phase transition of Gross-Ooguri type
- The transition is of the first order since the area is continuous but not its first derivative

Double-scaling limit

- We want to match the string computation with the field theory result: \rightarrow possibile because of $k \Rightarrow$ we can organize the expression for $S_{\text {ren }}$ as
a series in $\frac{\lambda}{k^{2}}$
- Strong coupling regime: expand our classical solution in power of $\frac{1}{\kappa^{2}} \Rightarrow$ large value of the flux
- We require that the distance L / R of the Wilson loop from the defect remains finite
- First two terms in the expansion

$$
\begin{aligned}
& S_{\mathrm{ren}} \simeq-\frac{\pi k R}{L}\left[\sin \chi+\frac{\lambda}{4 \pi^{2} k^{2}} \frac{1}{\cos ^{3} \chi}\left(\frac{\pi}{2}-\chi-\frac{\sin 2 \chi}{2}\right)\left(\sin ^{2} \chi+\left(\frac{L}{R}\right)^{2}\right)\right. \\
& \left.+O\left(\frac{\lambda^{2}}{\pi^{4} k^{4}}\right)\right]
\end{aligned}
$$

- perfect agreement with the perturbative computation

BPS Configuration

$$
\chi=0
$$

- The admissible region for m shrinks to a point $\Rightarrow m=0$
- The solution collapses to a point and no regular connected solution exists for the BPS configuration
- Weak coupling analysis \Rightarrow the first non-trivial BPS perturbative contribution is evaluated in terms of hypergeometric functions
- Its large k expansion does not scale in a way to match the string solution \Rightarrow not possible to recover the large k limit from the equivalent asymptotic expansion of the $\chi \neq 0$ case

Conclusions

- We analyzed the Circular Wilson loop operator in the $\mathcal{N}=4$ SYM theory with the insertion of a defect
- String Theory side:
- we solved a non-trivial boundary conditions problem
- we are left with three independent parameters χ, κ, m and we analyzed their allowed region of variation
- we have studyed the possible structure of the connected solution
- we have shown that taking the $\kappa \rightarrow \infty$ limit, we recover the perturbative computation for the expectation value of the Wilson loop for any value of the angle χ and the distance $\frac{L}{R}$

Thank you for the attention!!

[^0]: - Conclusions

