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Main Motivation: Alexei Zamolodchikov’s unpublished paper
”Generalized Mathieu equation and Liouville TBA”-2000
Our result can be thought of as a natural extension of Alexei
Zamolodchikov’s conjecture relating Floquet exponent of Mathieu
equation to Baxter’s T function in c = 25 Liouville CFT.
& Very helpful papers:
R. Poghossian JHEP 1104:033,2011 generalizing the equation that defines the
Seiberg-Witten curve for Ω background in NS limit.
F.Fucito, J. F. Morales, R.Poghossian, D. Ricci Pacifici

JHEP 1105:098,2011 From a finite difference equation, a linear differential
equation was obtained.
D.Fioravanti & D.Gregory arXiv:1908.08030 where the implication of this

conjecture for the period on the A-cycle of (effective) SU(2) gauge
theory has been highlighted and used.

Patrick Dorey, Roberto Tateo Nucl.Phys. B571 (2000) 583-606 and

V.Bazhanov, N.Hibberd, M.Khoroshkin Nucl.Phys.B 622:475-547, 2002 The

third order linear differential equation for W3 ’minimal’ case was studied

and TQ, QQ equations were obtained.
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Based on: D. Fioravanti, H.Poghosyan and R. Poghossian
arXiv:1909.11100

By using the third order differential equation derived from the deformed

Seiberg-Witten differential for pure SU(3) N = 2 SYM in NS limit of

Ω-background we derive the corresponding QQ and related TQ

functional relations. We show how numerical integration of the

differential equation along imaginary direction with standard boundary

conditions allows one to find the monodromy matrix and corresponding

Floquet exponents, which in the context of gauge theory, coincide with

the A-cycle periods a1,2,3. We have convincingly demonstrated the

correctness of this identities trough comparison with instanton

computation. But the main value of this method is that it makes

accessible also the region of large coupling constants, which is beyond the

reach of instanton calculus. Eventually, we suggest a simple relation

between Baxter’s T -function and A-cycle periods a1,2,3 of SU(3) theory.
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Nekrasov partition function and the VEVs 〈trφJ〉
Consider pure SU(N) theory without hypers in Ω-background. The instanton part
of partition function is given by [Nekrasov: arXiv:hep-th/0206161]

Zinst(a, ε1, ε2, q) =
∑
~Y

Z~Y

(
(−)Nq

)|~Y |
, (0.1)

where sum runs over all N-tuples of Young diagrams ~Y = (Y1, · · · ,YN) , | ~Y | is the
total number all boxes, a = (a1, a2, · · · , aN) are VEV’s of adjoint scalar from N = 2
vector multiplet, ε1, ε2, parametrize the Ω-background and the instanton counting
parameter q = exp 2πiτ , with τ = i

g2 + θ
2π being the (complexified) coupling

constant. The coefficients Z~Y are factorized as [R. Flume, R. Poghossian: hep-th/0208176]

Z~Y =
N∏

u,v=1

1

P(Yu, au|Yv , av )
, (0.2)

where the factors P(λ, a|µ, b) for arbitrary pair of Young diagrams λ, µ and
associated VEV parameters a, b, are given explicitly by the formula

P(λ, a|µ, b) = (0.3)∏
s∈λ

(a− b + ε1(1 + Lµ(s))− ε2Aλ(s))
∏
s∈µ

(a− b − ε1Lλ(s) + (1 + ε2Aλ(s)))
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The instanton part of (deformed) prepotential is given by

Finst(a, q) = −ε1ε2 logZinst . (0.4)

Instanton calculus allows one to obtain also the VEV’s 〈trφJ〉, φ
being the adjoint scalar of vector multiplet:

〈trφJ〉 =
N∑
i=1

aJu + Z−1
inst

∑
~Y

Z~YO
J
~Y
q|
~Y | , (0.5)

where Z~Y is already defined by (0.2), (0.3), and [A. S. Losev, A. Marshakov,

and N. A. Nekrasov], [ R. Flume, F. Fucito, J. F. Morales, and R. Poghossian hep-th/0403057]

OJ
~Y

=
N∑

u=1

∑
(i,j)∈Yu

(
(au + ε1i + ε2(j − 1))J + (au + ε1(i − 1) + ε2j)

J

− (au + ε1(i − 1) + ε2(j − 1))J − (au + ε1i + ε2j)
J
)
.(0.6)
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Baxter’s difference equation and deformed Seiberg-Witten
’curve’

In the NS limit the sum [0.1] is dominated by a single term corresponding

to a unique array of Young diagrams ~Y (cr). By using this fact one can
define a entire function Y(z) the zeros of which are determined by the

column length of ~Y (cr) that will satisfy the following difference equation

Y (z + ε1) +
q

ε2N
1

Y (z − ε1) = ε−N1 PN(z + ε1)Y (z) , (0.7)

where in particular when N = 3 we have

P3(z) = z3 − u2

2
z − u3

3
. (0.8)

Now, let us briefly recall how the difference equation (0.7) is related to
the Seiberg-Witten curve. Introducing the function

y(z) = εN1
Y (z)

Y (z − ε1)
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one can rewrite (0.7) as

y(z) +
q

y(z − ε1)
= PN(z) . (0.9)

Notice that setting ε1 = 0 in (0.9) one obtains an equation of
hyperelliptic curve, which is just the Seiberg-Witten curve. When ε1 6= 0,
everything goes surprisingly similar to the original Seiberg-Witten theory.
For example the rôle of Seiberg-Witten differential is played anew by the
quantity

λSW = z
d

dz
log y(z) ,

and, as in the undeformed theory, the expectation values uJ are given by
the contour integrals

〈trφJ〉 =

∮
C

dz

2πi
zJ∂z log y(z) , (0.10)

where C is a large contour, enclosing all zeros and poles of y(z).
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To keep expressions simple, from now on we will set ε1 = 1. In fact, at any stage the
ε1 dependence can be easily restored on dimensional grounds. Taking the results of
previous subsection, the difference equation for N = 3 case (0.7) can be rewritten as

Y (z)−
(
z3 − u2

2
z − u3

3

)
Y (z − 1) + q Y (z − 2) = 0 , (0.11)

By means of inverse Fourier transform we can derive a third order linear differential
equation for the function

f (x) =
∑

z∈Z+a

ex(z+1)Y (z) . (0.12)

At least when |q| is sufficiently small, it is expected that the series is convergent for
finite x , provided a takes one of the three possible values a1, a2 or a3. Taking into
account the difference relation (0.11), one can easily check that the function (0.12)
solves the differential equation

−f ′′′
(x) +

u2

2
f

′
(x) +

(
e−x + q ex +

u3

3

)
f (x) = 0 . (0.13)

Denoting
q = Λ6 and shifting the variable x → x − log Λ3

the differential equation (0.13) may be cast into a more symmetric form.
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Solutions at x → ±∞
It is convenient to introduce parameters p1, p2, p3 satisfying p1 + p2 + p3 = 0

−f ′′′
(x) +

u2

2
f

′
(x) +

(
Λ3(ex + e−x) +

u3

3

)
f (x) = 0 . (0.14)

where

u2 = 〈trφ2〉 = p2
1 + p2

2 + p2
3 = 2(p2

1 + p2
2 + p1p2); (0.15)

u3 = 〈trφ3〉 = p3
1 + p3

2 + p3
3 = −3p1p2(p1 + p2) . (0.16)

We define Λ ≡ exp θ. At large positive values x � 3 ln Λ the term Λ3e−x in (0.14)
can be neglected. In this region the differential equation can be solved in terms of
hypergeometric function 0F2(a, b; z) defined by the power series

0F2(a, b; z) =
∞∑
k=0

zk

k!(a)k(b)k
, (0.17)

where

(x)k = x(x + 1) · · · (x + k − 1) (0.18)

is the Pochhammer symbol. Three linearly independent solutions can be chosen as

Ui (x) ≈ e(x+3θ)pi
0F2(1 + pi − pj , 1 + pi − pk ; ex+3θ) , (0.19)

and the indices (i , j , k) are cyclic permutations of (1, 2, 3).
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In the end, we must verify that the Wronskian of the three solutions (0.19) (below
and later on, for brevity, we use the notation pij ≡ pi − pj)

Wr [U1(x),U2(x),U3(x)] ≡ det

 U1(x) U2(x) U3(x)

U
′

1(x) U
′

2(x) U
′

3(x)

U
′′

1 (x) U
′′

2 (x) U
′′

3 (x)

 = p12p23p31 (0.20)

is not zero provided the parameters pi are pairwise different. Thus, we have
confirmed that generically the Ui (x) are linearly independent and constitute a basis
in the space of all solutions.
Similarly in region x � −3θ the term Λ3ex of (0.14) becomes negligible and one
can write down the three linear independent solutions

Vi (x) ≈ e(x−3θ)pi
0F2(1− pi + pj , 1− pi + pk ;−e−x+3θ) . (0.21)

In fact, we obtain the same result for the Wronskian

Wr [V1(x),V2(x),V3(x)] = p12p23p31 . (0.22)
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The QQ and TQ relations
All three solutions Vi (x) grow very fast at x → −∞, but there is a special linear
combination (unique, up to a common constant factor) which vanishes in this limit.
If it is the fastest one (as we suspect), this solution is usually referred to as
subdominant. Using formula for asymptotics of 0F2 we are able to establish that the
correct combination is

χ(x) = Γ(p12)Γ(p13)
4π2 V1(x) + Γ(p23)Γ(p21)

4π2 V2(x) + Γ(p31)Γ(p32)
4π2 V3(x) . (0.23)

Its asymptotic expansion at x → −∞ is given by

χ(x) =
v−

1
3 e−3v1/3

2π
√

3

(
1−

(
1

9
− u2

2

)
v−

1
3 +

(
u2

2

8
− 5u2

36
+

u3

6
+

2

81

)
v−

2
3

−
(
−u3

2

48
+

u2
2

18
− u3u2

12
− 13u2

324
+

7u3

54
+

14

2187

)
v−1 + O

(
v−

4
3

))
, (0.24)

where we denoted
v = exp(3θ − x)

and u2, u3 are defined in terms of pi in (0.16).
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Since Ui (x) constitute a complete set of solutions one can represent χ(x)
as a linear combination

χ(x , θ) =
3∑

n=1

Qn(θ)Γ(pnj)Γ(pnk)e−3pnθUn(x , θ), (0.25)

where the important quantities Qn(θ), based on general theory of linear
differential equations, are expected to be entire functions of θ (and also of
parameters p dependence on which will be displayed explicitly only if
necessary). The following, easy to check property plays an essential role in
further discussion. Namely the Wronskian of any two solutions f (x), g(x)
of the differential equation (0.14)

W [f (x), g(x)] ≡ f (x)g ′(x)− g(x)f ′(x)

satisfies the adjoint equation, i.e. the one obtained by reversing the signs
p→ −p and Λ3 → −Λ3. Taking inspiration from this property, it is then
possible to show exactly that

Wr

[
χ(x , θ +

iπ

3
), χ(x , θ − iπ

3
)

]
= − i

2π
χ̄(x , θ) , (0.26)

where χ̄(θ) = χ(θ,−p).
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Let us investigate the x →∞ limit of (0.26). Taking into account
(0.25) we obtain the functional relations

sin(πpjk )
2iπ2 Q̄n(θ) = Qj

(
θ + iπ

3

)
Qk

(
θ − iπ

3

)
− Qj

(
θ − iπ

3

)
Qk

(
θ + iπ

3

)
, (0.27)

where again, the bar on Qn indicates the sign change p→ −p

Q̄n(θ,p) ≡ Qn(θ,−p)

and (n, j , k) is a permutations of (1, 2, 3).
And finally let us establish the θ → −∞ asymptotics of Qk(θ) and
Q̄k(θ). Obviously, in this case both (0.19) and (0.21) are approximate
solutions of (0.14) at x ∼ 0. Thus, comparison of (0.23) with (0.25)
ensures that for θ � 0

Qk(θ) ∼ exp(−3θpk)

4π2
; Q̄k(θ) ∼ exp(3θpk)

4π2
. (0.28)

It is easy to see that above asymptotic behavior is fully consistent with
functional relations (0.27).
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The functional relations (0.27) suggest the following SU(3) analog
of Baxter’s TQ equations:

T (θ)Qj

(
θ − πi

6

)
Q̄k

(
θ +

πi

6

)
= Qj(θ −

5πi

6
)Q̄k

(
θ +

πi

6

)
(0.29)

+Qj

(
θ +

πi

2

)
Q̄k

(
θ − πi

2

)
+ Qj

(
θ − πi

6

)
Q̄k

(
θ +

5πi

6

)
for j , k ∈ {1, 2, 3} with j 6= k . To uncover the essence of this

construction, notice that for a fixed pair of indices (i , j) (0.29) can
be thought as definition of function T (θ) in terms of Q’s. Then
the nontrivial question is “do other choices of (j , k) lead to the
same T?” Fortunately, elementary algebraic manipulations with
the help of (0.27) ensure that the answer is positive. As mentioned
earlier, Qi (θ) are entire functions. A thorough analysis shows that
due to (0.27) all potential poles of T (θ) have zero residue. Thus
T (θ) is an entire function too.
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The Bethe ansatz equations can be represented as

Qj(θ` − 2πi
3 )Q̄k

(
θ` + πi

3

)
Qj

(
θ` + 2πi

3

)
Q̄k

(
θ` − πi

3

) = −1 , (0.30)

where θ` are the zeroes of Qj(θ).
Functional relations similar to (0.27) and (0.29) emerge also in the
context of ODE/IM for ’minimal’ 2d CFT with extra spin 3 current
(W3 symmetry) P. Dorey, R. Tateo Nucl.Phys. B571 (2000) 583-606, V. Bazhanov, A. Hibberd, S.

Khoroshkin Nucl.Phys.B622:475-547,2002. From there we can extrapolate that our
case might correspond to the special choice of Virasoro central
charge c = 98 for Toda CFT. In fact, this value of the central
charge lies outside the region discussed in above references.
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The Floquet-Bloch monodromy matrix
Consider the basis of solutions f1(x), f2(x), f3(x) of

−f ′′′
(x) +

u2

2
f

′
(x) +

(
Λ3(ex + e−x) +

u3

3

)
f (x) = 0 . (0.31)

with standard initial conditions (n, k ∈ {1, 2, 3})

f
(k−1)
n (x)

∣∣∣
x=0

= δk,n . (0.32)

Since the functions fn(x + 2πi) are solutions too, we can define the
monodromy matrix Mk,n as

fn(x + 2πi) =
3∑

k=1

fk(x)Mk,n . (0.33)
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Clearly

Mk,n = f
(k−1)
n (2πi) .

The solutions

f (x) =
∑

z∈Z+a

ex(z+1)Y (z) . (0.34)

with a ∈ {a1, a2, a3} have diagonal monodromies and can be
represented as certain linear combinations of fn(x). In other words
the eigenvalues of the monodromy matrix Mk,n must be identified
with exp(2πiak), with k = 1, 2, 3:

Spec(Mk,n) = {exp(2πia1), exp(2πia2), exp(2πia3)} . (0.35)
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For any fixed values of parameters Λ, p, it is easy to integrate
numerically the differential equation (0.14) with boundary
conditions (0.32), find the matrix Mk,n and then its eigenvalues
exp(2πian). Taking into account Matone relation of Ω-background,

u2 ≡ 〈trφ2〉 =
3∑

n=1

a2
n + 2q∂qFinst(q, a) , (0.36)

we can access the deformed prepotential for any value of the
coupling constant.
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Comparison of the instanton counting against numerical
results

It is straightforward to calculate 〈trφ2〉 or 〈trφ3〉 as a power series in q. Here are
the 3-instanton results (it is assumed that a1 + a2 + a3 = 0 and by definition
ajk ≡ aj − ak)

〈trφ2〉 =
3∑

k=1

a2
k −

12(1− h2)q∏
j<k(a2

jk − 1)
+

P2,2q
2∏

j<k(a2
jk − 1)3(a2

jk − 4)
+ O(q)4 (0.37)

〈trφ3〉 =
3∑

k=1

a3
k +

54h3q∏
j<k(a2

jk − 1)
+

P3,2q
2∏

j<k(a2
jk − 1)3(a2

jk − 4)

− P3,3q
3∏

j<k(a2
jk − 1)5(a2

jk − 4)(a2
jk − 9)

+ O(q)4 , (0.38)

where

h2 =
a2

1 + a2
2 + a2

3

2
; h3 = −a1a2a3 , (0.39)

and

P2,2 = 36(220− 1027h2 + 1659h2
2 − 698h3

2 − 958h4
2 + 1257h5

2 − 521h6
2

+68h7
2 − 13959h2

3 + 33804h2h
2
3 − 25434h2

2h
2
3 + 5292h3

2h
2
3

+297h4
2h

2
3 + 13851h4

3 − 5103h2h
4
3) .(0.40)
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By means of numerical integration of the differential equation we have
computed the eigenvalues of monodromy matrix (0.34) for several values
of the instanton parameter q = Λ6, namely for the values

Λ = exp

(
k − 1

20
− 5

)
, k = 1, 2, · · · , 120 , (0.41)

and fixed values of parameters

p1 = 0.12 ; p2 = 0.17 ; p3 = −0.29 ,

Due to identification (0.35) this allows to find the corresponding A-cycle
periods a1, a2, a3. Inserting the values of ak , Λ in (0.37), (0.38) we can
calculate 〈trφ2〉 and 〈trφ3〉. The consistency requires that at small values
of q one should always obtain 〈trφ2〉 = p2

1 + p2
2 + p2

3 = 0.1274 and
〈trφ3〉 = p3

1 + p3
2 + p3

3 = −0.017748.
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Λ a1 a2

0.00822974704902 0.1200000000131 0.169999999982
0.0223707718562 0.1200000053049 0.169999992932
0.0608100626252 0.1200021402877 0.169997148430
0.165298888222 0.1208841761521 0.168828966405
0.246596963942 0.1349151981823 0.151933010167
0.272531793034 0.142136769453 - 0.019455438633 i 0.142136769453 + 0.019455438633 i
0.449328964117 0.092117229441 - 0.135924390553 i 0.092117229441 + 0.135924390553 i
0.740818220682 0.003727137475 - 0.568756791077 i 0.003727137475 + 0.568756791077 i
1.22140275816 0.000899023180 - 1.071594057757 i 0.000899023180 + 1.071594057757 i
2.01375270747 0.00036203460 - 1.78605985179 i 0.00036203460 + 1.78605985179 i
3.32011692274 0.00013130957 - 2.96965962318 0.00013132399 + 2.96965962932 i

Table: The values a1, a2 obtained through numerical integration of the
differential equation (0.14) with initial conditions (0.32) for p1 = 0.12,
p2 = 0.28.
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Λ 〈trφ2〉 〈trφ3〉
0.00822974704902 0.1274000000000 -0.0177480000000
0.0223707718562 0.1274000000000 -0.0177480000000
0.0608100626252 0.1274000000000 -0.0177480000000
0.165298888222 0.1274000000000 -0.0177480000000
0.246596963942 0.1273999999998 -0.0177480000000
0.272531793034 0.1273999999922 -0.0177479999994
0.449328964117 0.1273774046391 -0.0177462190257
0.740818220682 0.1313057536866 -0.0178774876030

Table: The values 〈trφ2〉, 〈trφ3〉 obtained by inserting the values of a1,
a2 from Table 1 into (0.37), (0.38) supplemented by q4 and q5

corrections. To be compared with (by definition)
〈trφ2〉 = p2

1 +p2
2 +p2

3 = 0.1274 and 〈trφ3〉 = p3
1 +p3

2 +p3
3 = −0.017748.
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Extension of Zamolodcikov’s conjecture to SU(3)
The simpler case of the gauge group SU(2) has been analyzed recently in
D. Fioravanti & D. Gregory arXiv:1908.08030. In this case one has to deal with the Mathieu
equation. Corresponding TQ relation was investigated in Alexei Zamolodchikov’s

unpublished paper ”Generalized Mathieu equation and Liouville TBA”-2000, where it was conjectured
(and demonstrated numerically) an elegant relationship between
T -function and Floquet exponent ν of Mathieu equation:

T = cos(2πν) . (0.42)

Here we suggest a natural extension of Zamolodchikov’s conjecture for
SU(3) case:

T (θ) =
3∑

n=1

e2πian . (0.43)

Notice, that at θ � 0 the asymptotic (0.28) leads to
T (θ) ∼

∑3
n=1 e

2πipn , which is consistent with (0.43), since for θ � 0
instanton corrections disappear and ak coincides with pk .
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Conclusions

It would be very interesting to have a TBA for our case and check
our conjecture (0.43) as it was done by Al. Zamolodchikov in
unpublished paper ”Generalized Mathieu equation and Liouville
TBA”-2000. Actually, even relevant would be a Y -system and a
gauge TBA that may shed light on the dual B-cycle periods aD

along the route presented in D. Fioravanti & D. Gregory arXiv:1908.08030 and A.Grassi,

J.Gu, and M.Marino for the SU(2) case.
Of course, it is very plausible that the imaginable generalizations of
our results, and in particular of (0.43), might hold for arbitrary
SU(N) gauge groups.
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