Emitted radiation and geometry

Francesco Galvagno

Università degli Studi di Torino, Dipartimento di Fisica

Torino, 23 ottobre

Theories of Fundamental Interactions 2019

Based on [1910.06332] with L. Bianchi, M. Billò, A. Lerda

Emitted energy by a charged particle

Larmor formula for electrodynamics

$$\Delta E = 2\pi B \int dt (\dot{v})^2$$

- B = Bremsstrahlung function
- Problem modeled by a Wilson line operator

$$W(C) = e^{\int_C A}$$

Bremsstrahlung = Wilson line deformations

Emitted energy by a charged particle

Larmor formula for electrodynamics

$$\Delta E = 2\pi B \int dt (\dot{v})^2$$

- B = Bremsstrahlung function
- Problem modeled by a Wilson line operator

$$W(C) = e^{\int_C A}$$

Bremsstrahlung = Wilson line deformations

Example: Cusped Wilson loop

Measuring the radiated energy

- Idea(¹): ∆E proportional to the integrated energy flux h_W through a (d − 1)-dim surface around the line.
- h_W is the coefficient defining the stress tensor $T_{\mu\nu}$.
- Knowing h_W and computing the energy flux integral, one obtains an expression for the Bremsstrahlung B.

¹[Boulware,1980], [Lewkowycz, Maldacena, 2013]

Measuring the radiated energy

- Idea(¹): ∆E proportional to the integrated energy flux h_W through a (d − 1)-dim surface around the line.
- h_W is the coefficient defining the stress tensor $T_{\mu\nu}$.
- Knowing h_W and computing the energy flux integral, one obtains an expression for the Bremsstrahlung B.

Example (Maxwell):

$$h_W = rac{e^2}{32\pi^2} \; , \qquad B = rac{e^2}{12\pi^2} \; , \qquad B = rac{8}{3} h_W$$

¹[Boulware,1980], [Lewkowycz, Maldacena, 2013]

Measuring the radiated energy

- Idea(¹): ∆E proportional to the integrated energy flux h_W through a (d − 1)-dim surface around the line.
- h_W is the coefficient defining the stress tensor $T_{\mu\nu}$.
- Knowing h_W and computing the energy flux integral, one obtains an expression for the Bremsstrahlung B.

Example (Maxwell):

$$h_W = rac{e^2}{32\pi^2} \; , \qquad B = rac{e^2}{12\pi^2} \; , \qquad B = rac{8}{3} h_W \; .$$

Generalizations?

- B and h_w have **no universal relation**.
- Difficulties in **computing** h_W for non abelian cases
- Super Conformal Field Theories (SCFTs)

¹[Boulware,1980], [Lewkowycz, Maldacena, 2013]

Action of Conformal symmetry

Residual Conformal symmetry

$$SO(1, d+1) \rightarrow SO(1, 2) \times SO(d-1)$$

fixes the 1-pt function of local operators

$$\begin{split} \langle T_{00} \rangle_W &\equiv \frac{\langle T_{00} \, W \rangle}{\langle W \rangle} = \frac{h_W}{r^4} \; , \quad \langle T_{0i} \rangle_W = 0 \\ & \left\langle T_{ij} \right\rangle_W = -\frac{h_W}{r^4} \left(\delta_{ij} - \frac{X_i X_j}{r^2} \right) \end{split}$$

Action of Conformal symmetry

Residual Conformal symmetry

$$SO(1, d+1) \rightarrow SO(1, 2) \times SO(d-1)$$

fixes the 1-pt function of local operators

$$\begin{split} \langle T_{00} \rangle_W &\equiv \frac{\langle T_{00} \, W \rangle}{\langle W \rangle} = \frac{h_W}{r^4} \,, \quad \langle T_{0i} \rangle_W = 0 \\ & \left\langle T_{ij} \right\rangle_W = -\frac{h_W}{r^4} \left(\delta_{ij} - \frac{X_i X_j}{r^2} \right) \end{split}$$

$$\delta \langle W \rangle = - \int d\tau \, \delta x^i(\tau) \, \langle D_i(\tau) \rangle_W$$

have non trivial 2-pt function

$$\left\langle D_i(\tau)D_j(0)\right
angle_W=$$
 12 B $\frac{\delta_{ij}}{ au^4}$

and define the Bremsstrahlung function²

• (3) managed to perform the energy flux integral, finding a relation for B and h_W .

$$B=3h_W$$
 .

³[Lewkowycz, Maldacena, 2013]

⁴[Erikson, Semenoff, Zarembo, 2000], [Drukker, Gross, 2001], [Pestun, 2007]

• (3) managed to perform the energy flux integral, finding a relation for B and h_W .

$$B=3h_W$$
.

• Supersymmetric localization: $\langle W \rangle$ localizes on a matrix model on $S^4(^4)$.

$$\langle W \rangle_{S^4} = \mathcal{F}(g)$$
 exact $\forall g$

³[Lewkowycz, Maldacena, 2013]

⁴[Erikson, Semenoff, Zarembo, 2000], [Drukker, Gross, 2001], [Pestun, 2007]

ullet (3) managed to perform the energy flux integral, finding a relation for B and h_W .

$$B=3h_W$$
.

Supersymmetric localization: \(\lambda W \rangle \) localizes on a matrix model on S⁴(⁴).

$$\langle W \rangle_{S^4} = \mathcal{F}(g)$$
 exact $\forall g$

- Localization allows to compute h_W exactly.
 - $T_{\mu\nu}$ in the same multiplet of a chiral operator $\Phi_2 \sim {\rm Tr}\,\phi^2$.
 - $\bullet \left\langle T_{\mu\nu}\right\rangle_{W} \leftrightarrow \left\langle \Phi_{2}\right\rangle_{W}.$
 - Using localization:

$$\langle \Phi_2 \rangle_W \big|_{S^4} = h_W = \frac{1}{12\pi^2} g \frac{\partial}{\partial g} \log \langle W \rangle_{S^4}$$

³[Lewkowycz, Maldacena, 2013]

⁴[Erikson, Semenoff, Zarembo, 2000], [Drukker, Gross, 2001], [Pestun, 2007]

ullet (3) managed to perform the energy flux integral, finding a relation for B and h_W .

$$B=3h_W$$
.

Supersymmetric localization: \(\W \) localizes on a matrix model on S⁴(⁴).

$$\langle W \rangle_{S^4} = \mathcal{F}(g)$$
 exact $\forall g$

- Localization allows to compute h_W exactly.
 - $T_{\mu\nu}$ in the same multiplet of a chiral operator $\Phi_2 \sim {\rm Tr}\,\phi^2$.
 - $\bullet \left\langle T_{\mu\nu}\right\rangle_{W} \leftrightarrow \left\langle \Phi_{2}\right\rangle_{W}.$
 - Using localization:

$$\langle \Phi_2 \rangle_W \big|_{S^4} = h_W = \frac{1}{12\pi^2} g \frac{\partial}{\partial g} \log \langle W \rangle_{S^4}$$

- Hence in $\mathcal{N}=4$: Well defined **relation between** B **and** h_W
 - h_W is an **exact function** in g.

³[Lewkowycz, Maldacena, 2013]

⁴[Erikson, Semenoff, Zarembo, 2000], [Drukker, Gross, 2001], [Pestun, 2007]

• Relation between B and h_W :

Using superconformal Ward identities, (5) were able to prove that

$$B=3h_W$$

still holds.

⁵[Bianchi, Lemos, Meineri, 2018]

⁶[Fiol, Gerchkovitz, Komargodski, 2015]

• Relation between B and hw:

Using superconformal Ward identities, (5) were able to prove that

$$B = 3h_W$$

still holds.

• Computation of h_W :

 $T_{\mu\nu}$ and Φ_2 are not in the same supermultiplet \rightarrow no longer a direct localization approach on S^4 as $\mathcal{N}=4$.

⁵[Bianchi, Lemos, Meineri, 2018]

⁶[Fiol, Gerchkovitz, Komargodski, 2015]

Relation between B and h_W:

Using superconformal Ward identities, (5) were able to prove that

$$B = 3h_W$$

still holds.

Computation of h_W:

 $T_{\mu\nu}$ and Φ_2 are not in the same supermultiplet \rightarrow no longer a direct localization approach on S^4 as $\mathcal{N}=4$.

• Conjecture (6):

Insertion of a stress tensor ↔ small variation of the action w.r.t. the geometry

$$h_W = \frac{1}{12\pi^2} \partial_b \log \langle W \rangle_b \Big|_{b=1} \tag{1}$$

where W is placed on a squashed sphere with squashing parameter b.

⁵[Bianchi, Lemos, Meineri, 2018]

⁶[Fiol, Gerchkovitz, Komargodski, 2015]

Relation between B and h_W:

Using superconformal Ward identities, (5) were able to prove that

$$B = 3h_W$$

still holds.

Computation of h_W:

 $T_{\mu\nu}$ and Φ_2 are not in the same supermultiplet \rightarrow no longer a direct localization approach on S^4 as $\mathcal{N}=4$.

• Conjecture (6):

Insertion of a stress tensor ↔ small variation of the action w.r.t. the geometry

$$h_W = \frac{1}{12\pi^2} \partial_b \log \langle W \rangle_b \Big|_{b=1} \tag{1}$$

where W is placed on a squashed sphere with squashing parameter b.

Our goal: proof of (1).

⁵[Bianchi, Lemos, Meineri, 2018]

⁶[Fiol. Gerchkovitz, Komargodski, 2015]

Ellipsoid geometry⁷

$$\frac{x_1^2+x_2^2}{\ell^2}+\frac{x_3^2+x_4^2}{\tilde{\ell}^2}+\frac{x_5^2}{r^2}=1\;.$$

$$\begin{aligned} x_1 &= \ell \sin \rho \cos \theta \cos \varphi \,, \\ x_2 &= \ell \sin \rho \cos \theta \sin \varphi \,, \\ x_3 &= \tilde{\ell} \sin \rho \sin \theta \cos \chi \,, \\ x_4 &= \tilde{\ell} \sin \rho \sin \theta \sin \chi \,, \\ x_5 &= r \cos \rho \,, \end{aligned}$$

- When $\ell = \tilde{\ell} = r$, the ellipsoid becomes a round sphere S^4 .
- Squashing parameter $b = \sqrt{\ell/\tilde{\ell}}$
- Circular Wilson loop inserted on the maximal circle along (12) direction.
- For simplicity, in this talk we choose $\ell=r$ such that $\partial_b W=0$ (in general our derivation does not depend on the parametrization)

⁷[Hama, Hosomichi, 2012]

Relating h_W to ellipsoid deformation: naive idea

If we try to perform the direct computation

$$\left\langle W\right\rangle _{b}=rac{1}{Z_{b}}\,\int[\mathcal{D}A]\,\,\mathrm{e}^{-S_{b}}\,\,W\,,$$

$$\partial_b \log \langle W \rangle \Big|_{b=1} = -\frac{\langle : \partial_b S_b : W \rangle \Big|_{b=1}}{\langle W \rangle} = -\langle : \partial_b S_b : \rangle_W \Big|_{b=1}$$

where the :: indicates the normal ordering

Relating h_W to ellipsoid deformation: naive idea

If we try to perform the direct computation

$$\left\langle W\right\rangle _{b}=\frac{1}{Z_{b}}\,\int[\mathcal{D}A]\,\,\mathrm{e}^{-S_{b}}\,\,W\,,$$

$$\partial_b \log \langle W \rangle \Big|_{b=1} = -\frac{\langle : \partial_b S_b : W \rangle \Big|_{b=1}}{\langle W \rangle} = -\langle : \partial_b S_b : \rangle_W \Big|_{b=1}$$

where the :: indicates the normal ordering

We evaluate $\partial_b S_b$ on the ellipsoid $(\xi^{\mu} = (\rho, \theta, \varphi, \chi)$:

$$\partial_b S_b = \int d^4 \xi \, \partial_b (\sqrt{g} \mathcal{L}) = \int d^4 \xi \, \frac{\partial (\sqrt{g} \mathcal{L})}{\partial g^{\mu\nu}} \partial_b g^{\mu\nu} = \int d^4 \xi \left(-\frac{\sqrt{g}}{2} T_{\mu\nu} \right) \partial_b g^{\mu\nu}$$

Relating h_W to ellipsoid deformation: naive idea

If we try to perform the direct computation

$$\left\langle W\right\rangle _{b}=\frac{1}{Z_{b}}\,\int[\mathcal{D}A]\,\,\mathrm{e}^{-S_{b}}\,\,W\,,$$

$$\partial_b \log \langle W \rangle \Big|_{b=1} = -\frac{\langle : \partial_b S_b : W \rangle \Big|_{b=1}}{\langle W \rangle} = -\langle : \partial_b S_b : \rangle_W \Big|_{b=1}$$

where the :: indicates the normal ordering

We evaluate $\partial_b S_b$ on the ellipsoid $(\xi^{\mu} = (\rho, \theta, \varphi, \chi)$:

$$\partial_b S_b = \int d^4 \xi \, \partial_b (\sqrt{g} \mathcal{L}) = \int d^4 \xi \frac{\partial (\sqrt{g} \mathcal{L})}{\partial g^{\mu\nu}} \partial_b g^{\mu\nu} = \int d^4 \xi \left(-\frac{\sqrt{g}}{2} T_{\mu\nu} \right) \partial_b g^{\mu\nu}$$

- $\langle T_{\mu\nu} \rangle_{_{W}}$ is fixed by conformal symmetry
- $\partial_b g^{\mu\nu}$ is known from the ellipsoid embedding in \mathbb{R}^5
- But! The dependence on the deformation is not only through the metric: we need a
 well defined supersymmetric theory on a curved space.

N = 2 supersymmetry on the ellipsoid

- We exploit previous results to build rigid supersymmetry on a curved space, following the approach of (8).
- \bullet $\mathcal{N}=2$ Super Yang Mills theory is coupled to the full gravity supermultiplet

$$g_{\mu \nu}$$
, ψ^I_μ , $k_{\mu \nu}$, $ar k_{\mu \nu}$, V^0_μ , $(V_\mu)^I_{\mathcal J}$, η^I , M , metric gravitino (anti) self-dual tensors R-symmetry gauge fields dilatino scalar

⁸[Festuccia, Seiberg, 2011]

⁹[Hama, Hosomichi, 2012] [Klare, Zaffaroni, 2013]

$\mathcal{N}=2$ supersymmetry on the ellipsoid

- We exploit previous results to build rigid supersymmetry on a curved space, following the approach of (8).
- $m{N}=2$ Super Yang Mills theory is coupled to the full gravity supermultiplet

$$g_{\mu \nu} \ , \qquad \psi^I_\mu \ , \qquad k_{\mu \nu} \ , \qquad ar k_{\mu
u} \ , \qquad V^0_\mu \ , \qquad \left(\ V_\mu \right)^I_{\mathcal J} \ , \qquad \eta^I \ , \qquad M \ ,$$

Killing spinor equations are the consistency conditions (9).

$$\delta\psi^I_\mu=0\;,\qquad \delta\eta^I=0$$

^{8[}Festuccia, Seiberg, 2011]

⁹[Hama, Hosomichi, 2012] [Klare, Zaffaroni, 2013]

$\mathcal{N}=2$ supersymmetry on the ellipsoid

- We exploit previous results to build rigid supersymmetry on a curved space, following the approach of (8).
- $m{N}=2$ Super Yang Mills theory is coupled to the full gravity supermultiplet

$$g_{\mu\nu}$$
, ψ^I_μ , $k_{\mu\nu}$, $ar k_{\mu\nu}$, V^0_μ , $(V_\mu)^I_{\mathcal J}$, η^I , M , metric gravitino (anti) self-dual tensors R-symmetry gauge fields dilatino scalar

Killing spinor equations are the consistency conditions (9).

$$\delta\psi^I_\mu = 0 \;, \qquad \delta\eta^I = 0$$

• Solutions for $k_{\mu\nu}$, $\bar{k}_{\mu\nu}$, V_{μ}^{0} , $(V_{\mu})_{\mathcal{J}}^{T}$ and M background fields fixed in terms of geometric quantities (functions of the squashing b).

^{8[}Festuccia, Seiberg, 2011]

⁹[Hama, Hosomichi, 2012] [Klare, Zaffaroni, 2013]

$\mathcal{N}=2$ supersymmetry on the ellipsoid

- We exploit previous results to build rigid supersymmetry on a curved space, following the approach of (8).
- $m{N}=2$ Super Yang Mills theory is coupled to the full gravity supermultiplet

$$g_{\mu\nu}$$
, ψ^I_μ , $k_{\mu\nu}$, $ar k_{\mu\nu}$, V^0_μ , $(V_\mu)^I_{\mathcal J}$, η^I , M ,

Killing spinor equations are the consistency conditions (9).

$$\delta\psi^I_\mu=0\;,\qquad \delta\eta^I=0$$

- Solutions for $k_{\mu\nu}$, $\bar{k}_{\mu\nu}$, V_{μ}^{0} , $(V_{\mu})_{\mathcal{J}}^{T}$ and M background fields fixed in terms of geometric quantities (functions of the squashing b).
- For example in this parametrization:

$$\left. \partial_b M \right|_{b=1} = \frac{3 \cos(2(\theta-\rho)) + 3 \cos(2(\theta+\rho)) + 2 \cos(2\theta) - 6 \cos(2\rho) - 10}{2r^2}$$

⁸[Festuccia, Seiberg, 2011]

^{9 [}Hama, Hosomichi, 2012] [Klare, Zaffaroni, 2013]

Stress tensor supermultiplet one-point functions

We build the stress tensor multiplet consistently with SUSY transformations

$$g_{\mu\nu}$$
, ψ^I_μ , $k_{\mu\nu}$, $ar k_{\mu\nu}$, V^0_μ , $(V_\mu)^I_{\mathcal J}$, η^I , M , $\downarrow \frac{\delta \mathcal L}{\delta ullet}$
 $T_{\mu\nu}$, J^I_μ , $H_{\mu\nu}$, $ar H_{\mu\nu}$, $ar H_{\mu\nu}$, t^0_μ , $(t_\mu)^I_{\mathcal J}$, χ^I , O_2 , stress tensor SUSY current (anti) self-dual operators R-symmetry currents fermion scalar superprimary

¹⁰[Billò, Lauria, Goncalves, Meineri, 2016], [Lauria, Meineri, Trevisani, 2018]

Stress tensor supermultiplet one-point functions

We build the stress tensor multiplet consistently with SUSY transformations

$$g_{\mu\nu}\,, \quad \psi^I_\mu\,, \quad k_{\mu\nu}\,, \quad ar k_{\mu
u}\,, \quad V^0_\mu\,, \quad (V_\mu)^I_{\mathcal J}\,, \quad \eta^I\,, \quad M\,, \ \downarrow \frac{\delta \mathcal L}{\delta \,ullet} \ , \ \qquad \int_\mu^I \,, \quad H_{\mu
u}\,, \quad ar H_{\mu
u}\,, \quad t^0_\mu\,, \quad (t_\mu)^I_{\mathcal J}\,, \quad \chi^I\,, \quad O_2\,, \$$
 tress tensor SUSY current (anti) self-dual operators R-symmetry currents fermion scalar superprimary

- Defect CFT fixes the one-point functions in presence of a line defect (¹⁰).
 - Fixed kynematics (distance in terms of ellipsoid coordinates).
 - Unique coefficient h_W for the whole multiplet (Superconformal Ward identities).
 - Non vanishing 1 pt functions: $\langle T_{\mu\nu} \rangle_{_{lM}}$, $\langle H_{\mu\nu} \rangle_{_{lM}}$, $\langle \bar{H}_{\mu\nu} \rangle_{_{lM}}$, $\langle O_2 \rangle_{_{W}}$.

Stress tensor supermultiplet one-point functions

We build the stress tensor multiplet consistently with SUSY transformations

$$g_{\mu\nu}\ , \qquad \psi_{\mu}^{I}\ , \qquad k_{\mu\nu}\ , \qquad ar{k}_{\mu
u}\ , \qquad V_{\mu}^{0}\ , \qquad (V_{\mu})_{\mathcal{J}}^{I}\ , \qquad \eta^{I}\ , \qquad M\ , \\ \downarrow \qquad \frac{\delta\mathcal{L}}{\deltaullet} \ , \qquad \downarrow \qquad \dot{\sigma}_{\mu\nu}\ , \qquad J_{\mu}^{I}\ , \qquad H_{\mu\nu}\ , \qquad ar{H}_{\mu\nu}\ , \qquad t_{\mu}^{0}\ , \qquad (t_{\mu})_{\mathcal{J}}^{I}\ , \qquad \chi^{I}\ , \qquad O_{2}\ ,$$
 ress tensor SUSY current (anti) self-dual operators R-symmetry currents fermion scalar superprimary

- Defect CFT fixes the one-point functions in presence of a line defect (10).
 - Fixed kynematics (distance in terms of ellipsoid coordinates).
 - Unique coefficient h_W for the whole multiplet (Superconformal Ward identities).
 - Non vanishing 1 pt functions: $\left\langle T_{\mu\nu}\right\rangle_{W}$, $\left\langle H_{\mu\nu}\right\rangle_{W}$, $\left\langle \bar{H}_{\mu\nu}\right\rangle_{W}$, $\left\langle O_{2}\right\rangle_{W}$.
- For example: $\langle O_2 \rangle_W = \frac{3h_W}{8} \frac{1}{r^2(\cos^2 \rho + \sin^2 \theta \sin^2 \rho)}$

¹⁰[Billò, Lauria, Goncalves, Meineri, 2016], [Lauria, Meineri, Trevisani, 2018]

We had to compute $\partial_b \log \langle W \rangle \Big|_{b=1} = - \langle : \partial_b S_b : \rangle_W \Big|_{b=1}$, where:

We had to compute $\partial_b \log \langle W \rangle \Big|_{b=1} = - \langle : \partial_b S_b : \rangle_W \Big|_{b=1}$, where:

$$\begin{split} \partial_b S_b &= \\ &= \int d^4 \xi \, \sqrt{g} \left[\frac{1}{\sqrt{g}} \frac{\partial (\sqrt{g} \mathcal{L})}{\partial g^{\mu\nu}} \partial_b g^{\mu\nu} \right. \\ &= - \int d^4 \xi \, \sqrt{g} \left[\frac{1}{\sqrt{g}} \frac{\sqrt{g}}{2} T_{\mu\nu} \, \partial_b g^{\mu\nu} \right. \end{split}$$

We had to compute $\partial_b \log \langle W \rangle \Big|_{b=1} = - \langle : \partial_b S_b : \rangle_W \Big|_{b=1}$, where:

$$\begin{split} &\partial_{b}S_{b} = \\ &= \int d^{4}\xi \, \sqrt{g} \bigg[\frac{1}{\sqrt{g}} \frac{\partial (\sqrt{g}\mathcal{L})}{\partial g^{\mu\nu}} \partial_{b}g^{\mu\nu} + \frac{\partial (\mathcal{L})}{\partial (V^{\mu})_{I}^{\mathcal{J}}} \partial_{b}(V^{\mu})_{I}^{\mathcal{J}} + \frac{\partial \mathcal{L}}{\partial k^{\mu\nu}} \, \partial_{b}k^{\mu\nu} + \frac{\partial \mathcal{L}}{\partial \bar{k}^{\mu\nu}} \, \partial_{b}\bar{k}^{\mu\nu} + \frac{\partial \mathcal{L}}{\partial M} \, \partial_{b}M \bigg] \\ &= - \int d^{4}\xi \, \sqrt{g} \bigg[\frac{1}{\sqrt{g}} \frac{\sqrt{g}}{2} T_{\mu\nu} \, \partial_{b}g^{\mu\nu} + \frac{\mathrm{i}}{2} \, (t_{\mu})_{\mathcal{J}}^{\mathcal{J}} \, \partial_{b}(V^{\mu})_{I}^{\mathcal{J}} + 16 \left(H_{\mu\nu} \, \partial_{b}k^{\mu\nu} + \bar{H}_{\mu\nu} \, \partial_{b}\bar{k}^{\mu\nu} \right) + O_{2} \, \partial_{b}M \bigg] \end{split}$$

We had to compute $\partial_b \log \langle W \rangle \Big|_{b=1} = - \langle : \partial_b S_b : \rangle_W \Big|_{b=1}$, where:

$$\begin{split} &\partial_{b}S_{b} = \\ &= \int d^{4}\xi \, \sqrt{g} \left[\frac{1}{\sqrt{g}} \frac{\partial (\sqrt{g}\mathcal{L})}{\partial g^{\mu\nu}} \partial_{b}g^{\mu\nu} + \frac{\partial (\mathcal{L})}{\partial (V^{\mu})_{I}^{\mathcal{J}}} \partial_{b}(V^{\mu})_{I}^{\mathcal{J}} + \frac{\partial \mathcal{L}}{\partial k^{\mu\nu}} \, \partial_{b}k^{\mu\nu} + \frac{\partial \mathcal{L}}{\partial \bar{k}^{\mu\nu}} \, \partial_{b}\bar{k}^{\mu\nu} + \frac{\partial \mathcal{L}}{\partial M} \, \partial_{b}M \right] \\ &= - \int d^{4}\xi \, \sqrt{g} \left[\frac{1}{\sqrt{g}} \frac{\sqrt{g}}{2} T_{\mu\nu} \, \partial_{b}g^{\mu\nu} + \frac{\mathrm{i}}{2} \left(t_{\mu} \right)_{\mathcal{J}}^{\mathcal{J}} \, \partial_{b}(V^{\mu})_{I}^{\mathcal{J}} + 16 \left(H_{\mu\nu} \, \partial_{b}k^{\mu\nu} + \bar{H}_{\mu\nu} \, \partial_{b}\bar{k}^{\mu\nu} \right) + O_{2} \, \partial_{b}M \right] \end{split}$$

Plugging into $\partial_b \log \langle W \rangle_b$ and summing all the contributions:

$$\partial_b \log \langle W \rangle \Big|_{b=1} = 12\pi^2 h_W$$

We had to compute $\partial_b \log \langle W \rangle \Big|_{b=1} = -\langle : \partial_b S_b : \rangle_W \Big|_{b=1}$, where:

$$\begin{split} &\partial_{b}S_{b} = \\ &= \int d^{4}\xi \, \sqrt{g} \bigg[\frac{1}{\sqrt{g}} \frac{\partial (\sqrt{g}\mathcal{L})}{\partial g^{\mu\nu}} \partial_{b}g^{\mu\nu} + \frac{\partial (\mathcal{L})}{\partial (V^{\mu})_{I}^{\mathcal{J}}} \partial_{b}(V^{\mu})_{I}^{\mathcal{J}} + \frac{\partial \mathcal{L}}{\partial k^{\mu\nu}} \, \partial_{b}k^{\mu\nu} + \frac{\partial \mathcal{L}}{\partial \bar{k}^{\mu\nu}} \, \partial_{b}\bar{k}^{\mu\nu} + \frac{\partial \mathcal{L}}{\partial M} \, \partial_{b}M \bigg] \\ &= - \int d^{4}\xi \, \sqrt{g} \bigg[\frac{1}{\sqrt{g}} \frac{\sqrt{g}}{2} T_{\mu\nu} \, \partial_{b}g^{\mu\nu} + \frac{\mathrm{i}}{2} \, (t_{\mu})_{\mathcal{J}}^{\mathcal{I}} \, \partial_{b}(V^{\mu})_{I}^{\mathcal{J}} + 16 \Big(H_{\mu\nu} \, \partial_{b}k^{\mu\nu} + \bar{H}_{\mu\nu} \, \partial_{b}\bar{k}^{\mu\nu} \Big) + O_{2} \, \partial_{b}M \bigg] \end{split}$$

Plugging into $\partial_b \log \langle W \rangle_b$ and summing all the contributions:

$$\partial_b \log \langle W \rangle \Big|_{b=1} = 12\pi^2 h_W$$

- The conjecture is now fully proven.
- For any $\mathcal{N}=2$ SCFT the Bremsstrahlung function ($B=3h_W$)

$$B = \frac{1}{4\pi^2} \partial_b \log \langle W \rangle \Big|_{b=1}$$

Change of perspective:

- \bullet Proven conjecture \Rightarrow predictions in field theory.
- $\mathcal{N}=2$ $\langle W \rangle_b$ still localizes (11) on a matrix model.
- Ellipsoid matrix model provides a nice tool to infer diagrammatic behaviours.

^{11 [}Hama, Hosomichi, 2012]

- Change of perspective:
 - Proven conjecture ⇒ predictions in field theory.
 - $\mathcal{N} = 2 \langle W \rangle_b$ still localizes (11) on a matrix model.
 - Ellipsoid matrix model provides a nice tool to infer diagrammatic behaviours.
- After a rescaling, we write (in 0-instanton sector)

$$\langle \mathcal{W} \rangle_b = \frac{1}{Z_b} \int da \ \mathrm{e}^{-\mathrm{tr}\,a^2} \left| Z_b^{1-\mathrm{loop}} \right|^2 \left(\frac{1}{N} \mathrm{tr}\,e^{\frac{b\,g}{\sqrt{2}}\,a} \right).$$

^{11 [}Hama, Hosomichi, 2012]

- Change of perspective:
 - Proven conjecture ⇒ predictions in field theory.
 - $\mathcal{N} = 2 \langle W \rangle_b$ still localizes (11) on a matrix model.
 - Ellipsoid matrix model provides a nice tool to infer diagrammatic behaviours.
- After a rescaling, we write (in 0-instanton sector)

$$\left\langle \mathcal{W}\right\rangle_{b} = \frac{1}{Z_{b}} \int da \; e^{-\mathrm{tr}\,a^{2}} \left|Z_{b}^{\text{1-loop}}\right|^{2} \left(\frac{1}{N} \mathrm{tr}\,e^{\frac{b\,g}{\sqrt{2}}\,a}\right).$$

•
$$\mathcal{N}=4$$
 case ($\left|Z_b^{\text{1-loop}}\right|^2=1$): • $\partial_b \langle W \rangle_b |_{b=1}=g\,\partial_g \langle W \rangle$

 \bullet This construction generalizes ${\cal N}=4$ exact result.

^{11 [}Hama, Hosomichi, 2012]

Change of perspective:

- Proven conjecture ⇒ predictions in field theory.
- $\mathcal{N} = 2 \langle W \rangle_b$ still localizes (11) on a matrix model.
- Ellipsoid matrix model provides a nice tool to infer diagrammatic behaviours.
- After a rescaling, we write (in 0-instanton sector)

$$\left\langle \mathcal{W}\right\rangle_{b}=\frac{1}{Z_{b}}\int da\;e^{-\mathrm{tr}\,a^{2}}\left|Z_{b}^{1\text{-loop}}\right|^{2}\left(\frac{1}{N}\mathrm{tr}\,e^{\frac{b\,g}{\sqrt{2}}\,a}\right).$$

- $\mathcal{N}=4$ case ($\left|Z_b^{\text{1-loop}}\right|^2=1$): $\partial_b \langle \mathcal{W} \rangle_b |_{b=1}=g \, \partial_g \langle \mathcal{W} \rangle$
 - \bullet This construction generalizes ${\cal N}=4$ exact result.

N = 2 SCFT:

$$\left|Z_b^{\text{1-loop}}\right|^2 = e^{-S_{\text{int}}(a,g)}$$

no longer exact results, but we can obtain expansions in transcendentality

^{11 [}Hama, Hosomichi, 2012]

Transcendentality driven expansion (13)

Perturbative computation the Bremsstrahlung function (12)

$$B = \frac{g^2}{8\pi^2} \left[\left(\underbrace{ \begin{array}{c} \zeta(3) \\ \end{array} } + \ldots \right) + \frac{g^4}{\pi^4} \left(\underbrace{ \begin{array}{c} \zeta(3) \\ \end{array} } + \ldots \right) + \ldots \right] + \frac{g^6}{\pi^8} \left(\underbrace{ \begin{array}{c} \zeta(3)^2 \\ \zeta(7) \end{array} } + \ldots \right) + \ldots \right]$$

^{12 [}Andree, Young, 2010], [Gomez, Mauri, Penati, 2018]

^{13 [}Billò, Galvagno, Lerda, 2019]

Transcendentality driven expansion (13)

Perturbative computation the Bremsstrahlung function (12)

$$B = \frac{g^2}{8\pi^2} \left[\left(\underbrace{\begin{array}{c} \\ \\ \end{array} \right) + \ldots \right) + \frac{g^4}{\pi^4} \left(\underbrace{\begin{array}{c} \\ \\ \\ \end{array} \right) \left(\underbrace{\begin{array}{c} \\ \\ \end{array} \right) \left(\underbrace{\begin{array}$$

What about h_W ?

 h_W is related to the 1-pt function of a non-chiral operator

$$O_2 \sim \text{Tr}\,\phi\bar{\phi} + \text{hypers}$$

• the expansion of B provides non-trivial suggestions for higher loop diagrams of $\langle O_2 \rangle_W$

^{12 [}Andree, Young, 2010], [Gomez, Mauri, Penati, 2018]

^{13 [}Billò, Galvagno, Lerda, 2019]

Resume and final comments

- We proved a conjecture which relates the emitted radiation of an accelerated particle to a deformation of the geometry, for any N = 2 Lagrangian SCFT on a 4-dim squashed sphere.
- Derivation uses general properties of background geometry and Defect CFTs data.

Future directions:

- Insights on non-protected observables.
- Integrability structure of transcendentality expansion (¹⁴).
- In principle we have a recipe to extract $\langle T_{\mu\nu} \rangle_D$ for any superconformal (line) defect by perturbing the geometry.

^{14 [}Mitev. Pomoni, 2015]

Resume and final comments

- We proved a conjecture which relates the emitted radiation of an accelerated particle to a deformation of the geometry, for any N = 2 Lagrangian SCFT on a 4-dim squashed sphere.
- Derivation uses general properties of background geometry and Defect CFTs data.

Future directions:

- Insights on non-protected observables.
- Integrability structure of transcendentality expansion (¹⁴).
- In principle we have a recipe to extract $\langle T_{\mu\nu} \rangle_D$ for any superconformal (line) defect by perturbing the geometry.

THANK YOU!

^{14 [}Mitev, Pomoni, 2015]