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Introduction – What is brane-flux annihilation?

What is brane-flux annihilation?

If we were to place a localised brane charge in a background of distributed charge,
coming from fluxes, of opposite sign

dF5 = H3 ∧ F3 − |Q|δ(x− xD̄3)

= e−φ|H3|2 − |Q|δ(x− xD̄3)
(1)

this solution would generically break supersymmetry. This we call an “anti-brane”.

The flux-brane combination can decay into a supersymmetric state of pure flux by
having the brane consumed by flux.

We sort of have this picture:

dF5 = e−φ|H3|2 − |Q|δ(x− xD̄3)

→ e−φ|H leftover
3 |2

(2)

where this arrow is very complicated.



Introduction – What is brane-flux annihilation?

When does this happen? Is the decay perturbative? Why is it interesting?

There is this proposed construction, KKLT1, which suggests that one would use an
anti-brane for uplifting the cosmological constant.

This anti-brane is placed in a background of opposite charge.

KPV2 showed that brane-flux annihilation can occur in this background as

The anti-D3-brane polarise into an NS5-brane carrying the anti-brane charge

The NS5-brane is balanced by two forces
The background flux pushing the NS5 open
The NS5-brane tension (and local geometry) pulling it together

For small anti-brane–charge/background–flux ratio, these can reach a balance.

If the background flux pushes too much, the brane would perturbatively decay into a
supersymmetric pure flux background.

1hep-th/0301240: Kachru, Kallosh, Linde, Trivedi
2hep-th/0112197: Kachru, Pearson, Verlinde



Introduction – What is brane-flux annihilation?

KPV performed this calculation at the bottom of the KS3 conifold, which is relevant
for the KKLT scenario.
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3hep-th/0007191: Klebanov, Strassler



Introduction – Anti-brane singularities

These calculations were done from a probe-brane (worldvolume) perspective.

When the backreaction for the anti-brane was calculated in supergravity a singularity
was discovered.4 The flux surrounding the anti-brane was singular, that is H3 and
F3, not F5.

As I mentioned: If the flux push to hard on the anti-brane that has polarised it will
decay perturbatively. Interpreting the singular solution as the end-point of an
adiabatic time-evolving solution in which flux builds up around the anti-brane, then
this means that the anti-brane would decay very fast.5

This was the central worry regarding the anti-brane singularity.

Since then, there has been a suggestion as to how this problem is resolved:6

The singularity is a signal of instability into polarisation which was not captured
by the Ansätze used when computing the backreaction.

40912.3519: Bena, Grana, Halmagyi
51202.1132: JB, Danielsson, Van Riet
61507.01022: Cohen-Malonado, Diaz, Van Riet, Vercnocke; 1603.05678: Cohen-Malonado, Diaz, Gautason
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Singular anti-D6 branes

We are using the BPS (but not supersymmetric) background of JMO7. From the
point of view of the Ansatz this appears to be a generalisation of the
Klebanov-Tseytlin8 singular conifold.

ds210 = S−1/2ds27 + S1/2
(
dr2 + r2dΩ2

2

)
, eφ = gsS

−3/4

F2 = g−1
s ∂rS r2Ω2 , H3 = −gsMr2dr ∧ Ω2

(3)

This has the solution

S = v2 −
1

6
g2
sM

2r2 +
q

r
(4)

and the similarities to a conifold is that this is BPS and probe anti-D6 branes fall
towards r = 0 (note that q = ±|q| are O-plane and D-brane, not anti-D-brane and
D-brane.).

7hep-th/9901078: Janssen, Meessen, Ort́ın
8hep-th/0002159: Klebanov, Tseytlin



Singular anti-D6 branes

To make it possible to add an anti-brane: generalise the Ansatz.

ds210 = e2Ads27 + e2B
(
dr2 + r2dΩ2

2

)
,

F2 = −e−7A ?3 dα , H3 = −αe−7A+2φ ?3 F0

(5)

Four functions: F2 ∼ α, dilaton ∼ φ, warping ∼ A, and conformal factor ∼ B.

This system has been studied since the early days of the anti-brane singularity. It was
the first that showed the presence of a singularity beyond perturbation theory.9

The proof goes like this.10 Equations of motion tells us:

1 The derivative near the source is determined by the charge: sgnα′|r=0 = sgnQ.

2 If H3 is to be regular, non-singular, then α|r=0 = 0.

3 Solution should asymptotically be BPS, in the sense of α > 0 for large r.

4 Equations of motion shows that: sgnα = sgnα′′ at any regular point.

Can this be avoided by polarisation somehow? Brane-flux decay for an anti-D6?

91111.2605: JB, Danielsson, Junghans, Van Riet, Wrase, Zagermann
101105.4879: JB, Danielsson, Junghans, Van Riet, Wrase, Zagermann



The polarisation

For D5 and D6, the topology of the state is different: a brane–anti-brane pair.11

D5 → NS5 + NS5

D6 → KK5 + KK5

KK5 KK5

p D6 (M − p) D6 p D6

111609.06529: Danielsson, Gautason, Van Riet



The polarisation

We perform the calculation from the point of view of the anti-D5-brane polarisation.

We need a background to place this brane-configuration in

ds2 = S−1/2ds26 + S1/2
(
dψ2 + dr2 + r2dΩ2

2

)
,

F1 = Mdψ , H3 = gsMr2dr ∧ Ω2 ,

e2φ = g2
sS
−1 , F3 = g−1

s ?̃4dS .

(6)

With the same S as before. This has a H3 ∧ F1 charge distribution in it, opposite
that of the brane charges we will add.

The full worldvolume action for this process would consist of

S = S+ + S− + Sint.

= (S
(DBI)
+ + S

(WZ)
+ ) + (S

(DBI)
− + S

(WZ)
− ) + Sint.

(7)

with Sint. some interaction action capturing gravitational and Coulomb interactions
between the pair.



The polarisation

The explicit expression for the individual brane actions are

S± = −µ5

{∫
W6

±

d6xe−2φ
√
− det g6

√
1 + e2φG2

± ∓
∫
W6

±

(B6 − G±C6)

}
, (8)

where G± carries the D5-brane charge G± = ± p
2
− P [C0] derived via T-duality.12

This action is then evaluated in this background: C0, φ, B6, C6, and S are
evaluated to their supergravity values.

The important thing I want to illustrate is the effective charge:

S
(WZ)
+ + S

(WZ)
− = −µM

∫ ( p

M
− (Φ+ − Φ−)

)
C6 , (9)

The effective charge is the coefficient to C6. At Φ+ −Φ− =: ∆Φ = 0, this charge is
−p for the number of anti-D5-branes that it carries. At the other side, where
∆Φ = 1 the charge is instead M − p, BPS with the background.

121505.00159: Gautason, Truijen, Van Riet; 1609.06529: Danielsson, Gautason, Van Riet



The polarisation

First we need to need to take a detour though.

This system is not a pure NS5–anti-NS5 pair, but a system carrying D5 charge. If we
annihilate the two NS5-brane pairs at ∆Φ = 0 they should condense into the D5
brane. However:

S+ + S− = −µ5p

 2

g2
svp

∫
d6x

√
1 +

g2
sp

2

4v2

√
− det ηµν +

∫
C6

 (10)

which is the action for a −p charged D5-action except for the “1” in the square root.

This is because we have not accounted for the tachyon dynamics.13

13hep-th/9805170: Sen; hep-th/0204203: Hashimoto



The polarisation

The tachyon field is governed by a potential

V (T ) ∼ e−|T |
2
(1 + L2|T |2) , (11)

and has two behaviours depending the distance between the branes, L.

L < 1: Branes are close, and V → 0 as |T | → ∞.

L > 1: Branes are far, meta-stable at |T | = 0 and V = 1.

The resolution to our problem: The branes are close, the tachyon falls into its true
vacuum: V → 0, and the combined action is

S+ + S− = −µ5p

 2

g2
svp

∫
d6x

√
V (T ) +

g2
sp

2

4v2

√
− det ηµν +

∫
C6


→ −µ5pg

−1
s

{∫
d6x

√
− det ηµν +

∫
C6

} (12)

which is a D5-brane with charge −p.

We will therefore keep the tachyon in the true vacuum.



The polarisation

At the end of the day, we arrive at the effective potential

Veff. =
µ5M

gsv2

{∣∣∣ p
M
−∆Ψ

∣∣∣+
( p

M
−∆Ψ

)
+ Vint.(∆Ψ)

}
. (13)

without knowing much about Vint. we can say:

There is a meta-stable minima at ∆Ψ = p/M as long as ∂∆ΨVint.|∆Ψ=p/M < 2.

Furthermore, since the effective charge carried by the NS5 pair is given by:

Q5 = −µ5(p−M∆Ψ) , (14)

it is zero at the meta-stable state.



The polarisation

Just as a toy-example. Set Vint. = k sin(π∆Ψ)2/(1 + sin(π∆Ψ)2), as long as k is
not too large we get a meta-stable minimum
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This leads us to believe that the same is true for our D6-brane: A meta-stable
minima at zero charge.

Supergravity solution of this?



Regular supergravity solution – General statements

What was the big deal with zero charge?

The known results regarding the anti-D6-brane background was:

If there is (anti-brane) charge at r = 0, there is a singularity there in H3.

But if we are looking for something at r = 0 with zero net-charge, what would we be
looking for?

This would be our wish-list:

A probe D6-brane should feel a force towards the r = 0 is there is a
anti-D6-brane remnant there.

Since the flux is non-BPS w.r.t. the anti-brane, there should be some (finite) flux
clumping at small r.

A probe D6-brane should have zero force at the point in UV.

The UV should be preserved.



Regular supergravity solution – General statements

How would we start looking for this?

We write down the Ansatz presented before for the anti-D6 backreaction

ds2 = S
−1/2
a ds27 + S

1/2
b (dr2 + r2dΩ2

2) , eφ = gsS
−3/4
f

F2 = −g−1
s

(
S7
aSb

S8
f

)1/4

?3 dSl , H3 = −gsM
(
S7
aS

3
b

S6
fS

4
l

)1/4

(1− S(0)
l Sl)r

2dr ∧ Ω2

(15)

which is the BPS solution when Sa = Sb = Sf = Sl = S.

The only candidate initial condition (∼ boundary condition at r = 0) that exists14

the ones having

Sx|r=0 = positive constants , S′x|r=0 = 0 . (16)

141111.2605: JB, Danielsson, Junghans, Van Riet, Wrase, Zagermann



Regular supergravity solution – General statements

The full non-BPS equations are: F2 Bianchi, dilaton, and three components of the
Einstein’s equations. These are very complicated, and for the present work we aim to
find a solution only numerically.

Numerically we have some “problems”

Equations of motion are singular at r = 0

Equations of motion are singular at r = rUV

We have four functions and five differential equations

These are not serious problems, we simply have to

Find consistent approximate boundary conditions at r = ε� 1

Solve towards r = rUV but be careful with interpreting behaviour there

Make sure that a numerical solution satisfies the remaining equation



Regular supergravity solution – Numerical solutions

Our numerical solution is given by the boundary conditions

Sx|r=ε ≈


0.9849456962929038
0.9981866313616979
1.018395334382631
0.49703367584074376

, S′x|r=ε ≈


−2.214565823966585 · 10−8

−1.917892841125644 · 10−7

6.231007744084667 · 10−8

−2.192092217351898 · 10−8

.

(17)

where ε = 10.0−6, for m = 1.0, gs = 0.5, and S
(0)
l = 0.



Regular supergravity solution – Numerical solutions

All code is available on

https://gitlab.com/johanbluecreek/non-bps_polarised_anti-d6_notebooks



Concluding remarks

Using a T-dual version of KPV, we argue for the existence of a meta-stable
KK5-monopole–pair polarisation of anti-D6-branes.

This meta-stable polarised state is such that it carries zero net charge.

This would imply a supergravity solution of this polarised state, without localised
charge.

Given a list of requirements for such a solution we are able to show there exists
numerical solutions that appear to obey all requirements.

Going forward it would be interesting to find the supergravity solution analytically.

Can one analytically find parameters corresponding to remaining tension of
polarised source?

Is the zero-force at UV condition actually true?



Thank you for your attention.
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