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Quantum information & AdS/CFT 

Cross-over between quantum information and holography led to 
fruitful bulk-boundary dialogue:
➡ new lessons about QFTs & quantum gravity

Holographic entanglement entropy [Ryu and Takayanagi, ’06]
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Entanglement entropy is not enough (only probes the eigenvalues of 
the density matrix)

Operational perspective: generating spacetime, rather than probing it

➡ spacetime geometry ~ entanglement
➡ Einstein’s eq. from first law of entanglement 

entropy [Faulkner, Guica, Hartman, Myers, Van Raamsdonk ’14]
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Quantum circuit complexity

with a set of generators       of elementary gates OI

Given a reference state       , generate -approximately- a target state| Ri

| T i = UT | Ri

Complexity quantifies the cost of the optimal circuit generating the 
unitary      , or the state UT | T i

{g1, · · · , gN}. That is,2

| Ti = UT | Ri = gin · · · gi2 gi1 | Ri , (1.2)

whose circuit is shown in Figure 1. Now in general, we must expect that there are a large

(e.g., infinite) number of circuits or sequences of elementary gates which will accomplish

the above transformation. The complexity of the target state | Ti is then defined as

the minimum number of gates needed to construct a unitary UT satisfying eq. (1.2).

We stress that this optimal number will depend on the choices for the reference state

| Ri and for the gate set {g1, · · · , gN}, however, one can still obtain interesting physical

insights by comparing the complexities for families of target states. Nonetheless, given

a particular set of choices, the main challenge is to identify the optimal circuit from

amongst the infinite range of possibilities to prepare a certain target state.

Figure 1. A general quantum circuit where | Ti is prepared beginning with | Ri and applying

a sequence of elementary unitaries gi. We also indicate all of the intermediate states | ii that
are produced after every step.

To overcome this challenge, Nielsen and collaborators [54–56] developed a geometric

method. Adapting this approach to evaluate the complexity of QFT states [1], one

begins with a continuum construction of the unitary transformations acting on the

states

U(�) = ~P exp


�i

Z �

0

dsH(s)

�
, where H(s) =

X

I

Y I(s)OI (1.3)

where s parametrizes the circuit and ~P indicates right-to-left path ordering. The (path-

dependent) Hamiltonian H(s) is expanded in terms of a basis of Hermitian operators

OI , which we think of as generators for elementary gates gI ⇠ exp[�i"OI ] (where "

2When working with discrete gates as discussed here, we will typically only prepare | Ti within
some tolerance ", e.g., k | Ti � UT| Rik2  ". However, with the continous construction of unitaries
introduced in eq. (1.3), we are always able to exactly prepare the target states with a finite cost, and
so we will not need to introduce a tolerance.
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How difficult is it to implement a task?                                        
How difficult is it to prepare a particular state?



Nielsen’s geometric approach
Continuum representation of unitary transformations 

U(�) = ~P exp


�i

Z �

0
dsH(s)

�
H(s) =

X
Y

I(s)OIwith

control functions

            a path in the space of unitaries. For               : � 2 [0, 1]U(�) ⇠

U(� = 0) = I U(� = 1) = UTand

Optimal circuits generating       are mapped to globally minimizing 
cost trajectories in the space of unitaries.

UT

[Nielsen et al ’06]

Introducing coordinates      on the space of unitariesxa

for a choice of cost function F (xa, ẋa)

C(| T i) ⌘ Min

Z 1

0
F (xa, ẋa)



Holographic complexity = Action
[Brown, Roberts, Susskind, Swingle, Zhao ’16]

CA(⌃) =
IWDW

⇡

| T iComplexity of      
on boundary 
Cauchy surface    ⌃

=

Gravitational 
action             on 
Wheeler-DeWitt 
patch    

IWDW

WDW patch: domain of dependence of a bulk spatial slice anchored on ⌃



Holographic complexity = Action
[Brown, Roberts, Susskind, Swingle, Zhao ’16]

CA(⌃) =
IWDW

⇡

| T iComplexity of      
on boundary 
Cauchy surface    ⌃

=

Gravitational 
action             on 
Wheeler-DeWitt 
patch    

IWDW

         on                    classical gravity dual (g, {�})⌃| T i

WDW patch: domain of dependence of a bulk spatial slice anchored on ⌃

        ??  Gates ??  Cost function ??| Ri

This gravitational observable probes the black hole interior

It reproduces the expected complexity linear growth (at lates times)



Complexity variations

Study variations of complexity:

Study properties of new gravitational observable CA

Independent of | Ri

Focus on the dependence on         and its perturbations, which 
have a clear geometric interpretation

| T i

Extract information about implicit choice of cost function F (xa, ẋa)

Operational perspective: what is the cost of perturbing spacetime?

Why?

�C ⌘ C(| T + � i)� C(| T i)



First law of complexity
Using the analogy of Nielsen's approach to classical mechanics:

1st order variation

2nd order variation

�C = pa�x
a|s=1 with pa =

@F

@ẋa

�C =
1

2
�pa�x

a
���
s=1

with �pa = �xb @2F

@xb@ẋa
+ �ẋb @2F

@ẋb@ẋa



First law of complexity
Using the analogy of Nielsen's approach to classical mechanics:
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only contributions 
from the endpoint



Caveat

     ~ minimal cost, i.e. global minimum over all possible circuitsC

Assume: the circuit globally minimizing the cost function stays 
close to the original optimal circuit, i.e. the family of globally 
minimizing circuits is continuous in the amplitude of the 
perturbation.

It does not hold in general, but we expect it to hold in the 
example we consider (cf. free QFT complexity calculations).

[Guo, Hernandez, Myers, Ruan ’18]



Holographic framework

Ibulk =
1

16⇡GN

Z
d4y

p
�g


R+

6

L2
� 1

2
gµ⌫rµ�r⌫�

�

| T + � i : small amplitude coherent state of the bulk scalar

h"↵j |�|"↵ji = "
X�

↵juj + ↵⇤
ju

⇤
j

�
⌘ "�cl

Bulk:

�(yµ) =
X

n

�
un(y

µ)an + u⇤
n(y

µ)a†n
�

Given             scalar:m2
� = 0

we consider an excited state

|"↵ji = e"
P

D(↵j)|0i D(↵j) = ↵ja
†
j � ↵⇤

jajwith

where a few modes      are given classical expectation values{j}

and work perturbatively in 

| T i AdS4 : empty           of radius L

" ⌧ 1



Holographic framework

Boundary:

In AdS/CFT, bulk and boundary theories provide equivalent 
descriptions of the same quantum states.

         are also coherent states in the boundary CFT corresponding 
to excitations of the vacuum by the dual generalized free field 
operator            and its descendantsO�=3 ⇤j

O�=3

|"↵ji

Consequences:

Quantum circuit technology in QFT                        applied to 
coherent states                                      can be equivalently 
applied in the bulk.
Classical gravity duals              are suitable to compute 
holographic complexity. 

[Guo, Hernandez, Myers, Ruan ’18]

[Jefferson, Myers ’17]

(g, "�cl)



Complexity = Action

Variational principle for Dirichlet BCs on @WDW
[Lehner, Myers, Poisson, Sorkin ’16]

   measures how much non-affine the parametrization    of              is s @WDW

                       expansion scalar of null generators⇥ = @s log
p
�

      arbitrary scale`ct
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Variation of holographic complexity

�I ⌘ I[g0 + �g, ��]� I[g0, 0]

for a spherically symmetric perturbation             in a small 
amplitude expansion                  around global 
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AdS4 (g0)�� = "�cl
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Variation of holographic complexity

�I ⌘ I[g0 + �g, ��]� I[g0, 0]

for a spherically symmetric perturbation             in a small 
amplitude expansion                  around global 

(�g, ��)
AdS4 (g0)�� = "�cl

�CA(⌃) =
�I

⇡
=

1

⇡
(�IWDW + I�WDW)

captures               on undeformed WDW patch(�g, ��)

captures      on deformed WDW patchg0

Structure at           :O("2)



Variation of holographic complexity

Pure          matter contribution 
Localized on boundary of undeformed WDW patch
Independent of arbitrary counterterm scale

O("2)

`ct
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�Imatter
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Variation of holographic complexity

Explicitly at �CA(⌃) =
"2

⇡2

X

j1,j2

↵j1↵j2Cj1j2
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Pure          matter contribution 
Localized on boundary of undeformed WDW patch
Independent of arbitrary counterterm scale

O("2)

`ct

t = 0



Main features

0 20 40 60 80 100 120
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Near the diagonal peak: lim
j!1

Cj,j+�j = 3
log 2j

j
+O

✓
1

j

◆
Two peaks at             and            , with values decaying as    growsj1 = 1 j1 = j2 j2



Remarks
Holographic

Quantum circuit

        is scale independent: UV finite and independent of 

                    is crucial for gravitational action cancellation

        is an integral over boundary of undeformed WDW patch

`ct/L�CA
Icounterterm

�CA

                              �CA ⇠ "2↵2 ) pa�x
a|s=1 = 0

coherent state directions are orthogonal to the direction along 
the circuit preparing the CFT vacuum              

      only depends on data at the end of the circuit 

➡ does the quantum circuit end on              ?                               

�C
@WDW

Specific choices of cost function      lead to relation with                            Cj1j2F



Comparison with          measure = 2

F=2 =
X

I

|Y I |2

[Guo, Hernandez, Myers, Ruan ’18]
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Comparison with          measure = 2

F=2 =
X

I

|Y I |2

[Guo, Hernandez, Myers, Ruan ’18]

�C=2(⌃) =
"2

⇡2

X

j1,j2

↵j1↵j2C
=2
j1j2

C=2
j1j2 ! �j1j2

µR

(µx0)2
⇡2

j1
log

2j1
µR

frequency | Ri
scale of coherent state gates 

length scale in the metric
to produce a dimensionful time



Comparison with          measure = 2

F=2 =
X

I

|Y I |2

[Guo, Hernandez, Myers, Ruan ’18]
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large radial quantum number limit  

all coherent states are mutually orthogonal

absence of scales requires                        µx0 ⇠ 1 ⇠ Rµ

O("2)



Conclusions

Exploring holographic complexity and developing the concept of 
circuit complexity for QFTs are two parallel lines of inquiry.

The first law of complexity provides a new approach to build a 
bridge between holographic and circuit complexity. 

It allows to investigate the implicit choice of cost function in

Extensions:

‣other fields and excited states 

‣higher spacetime dimensions

‣complexity = volume

‣path integral optimization, Fubini-Study approach, …

How generic is the cancellation in the gravitational sector?

CA



Thank you!


