The first law of complexity

Alice Bernamonti

Theories of Fundamental Interactions 2019 INFN Torino, 21-23 Oct 2019

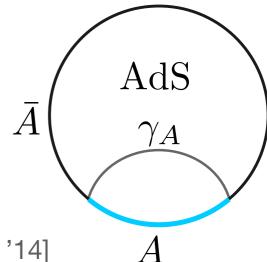
Based on PRL 123 (2019) no.8, 081601 & work in progress with F. Galli, J. Hernandez, R. Myers, S. Ruan and J. Simón

Quantum information & AdS/CFT

- Cross-over between quantum information and holography led to fruitful bulk-boundary dialogue:
 - new lessons about QFTs & quantum gravity
- O Holographic entanglement entropy [Ryu and Takayanagi, '06]

$$S_A = \operatorname{Min} \frac{\operatorname{Area}(\gamma_A)}{4G_N}$$

- ⇒ spacetime geometry ~ entanglement
- ⇒ Einstein's eq. from first law of entanglement entropy [Faulkner, Guica, Hartman, Myers, Van Raamsdonk '14]



- Entanglement entropy is not enough (only probes the eigenvalues of the density matrix)
- Operational perspective: generating spacetime, rather than probing it

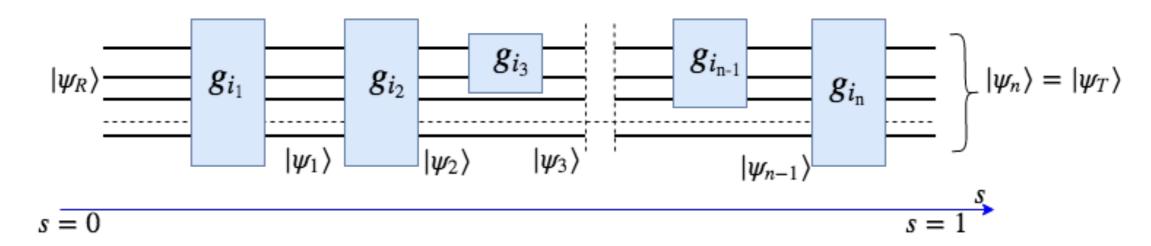
Quantum circuit complexity

- O How difficult is it to implement a task? How difficult is it to prepare a particular state?
- \circ Given a reference state $|\Psi_R\rangle$, generate -approximately- a target state

$$|\Psi_T\rangle = U_T |\Psi_R\rangle$$

with a set of generators \mathcal{O}_I of elementary gates

General Circuit



O Complexity quantifies the cost of the optimal circuit generating the unitary U_T , or the state $|\Psi_T\rangle$

Nielsen's geometric approach

[Nielsen et al '06]

O Continuum representation of unitary transformations

$$U(\sigma) = \vec{\mathcal{P}} \exp\left[-i\int_0^\sigma ds\, H(s)\right] \quad \text{with} \quad H(s) = \sum Y^I(s)\mathcal{O}_I$$
 control functions

• $U(\sigma) \sim$ a path in the space of unitaries. For $\sigma \in [0,1]$:

$$U(\sigma=0)=\mathbb{I}$$
 and $U(\sigma=1)=U_T$

• Introducing coordinates \boldsymbol{x}^a on the space of unitaries

$$\mathcal{C}(|\Psi_T\rangle) \equiv \operatorname{Min} \int_0^1 F(x^a, \dot{x}^a)$$

for a choice of cost function $F(x^a, \dot{x}^a)$

Optimal circuits generating U_T are mapped to globally minimizing cost trajectories in the space of unitaries.

Holographic complexity = Action

[Brown, Roberts, Susskind, Swingle, Zhao '16]

$$\mathcal{C}_A(\Sigma) = rac{I_{ ext{WDW}}}{\pi}$$

 $t_L
ightarrow con$

Complexity of $|\Psi_T\rangle$ on boundary = Cauchy surface Σ

Gravitational action $I_{\rm WDW}$ on Wheeler-DeWitt patch

 \circ WDW patch: domain of dependence of a bulk spatial slice anchored on Σ

Holographic complexity = Action

[Brown, Roberts, Susskind, Swingle, Zhao '16]

$$\mathcal{C}_A(\Sigma) = rac{I_{ ext{WDW}}}{\pi}$$

 $t_L \rightarrow \longleftarrow t_R$

Complexity of $|\Psi_T\rangle$ on boundary = Cauchy surface Σ

Gravitational action I_{WDW} on Wheeler-DeWitt patch

- $ilde{ imes}$ WDW patch: domain of dependence of a bulk spatial slice anchored on Σ
- This gravitational observable probes the black hole interior
- It reproduces the expected complexity linear growth (at lates times)
- o $|\Psi_T\rangle$ on Σ declaration classical gravity dual $(g,\{\phi\})$
- $\circ |\Psi_R\rangle$?? Gates ?? Cost function ??

Complexity variations

Study variations of complexity:

$$\delta \mathcal{C} \equiv \mathcal{C}(|\Psi_T + \delta \Psi\rangle) - \mathcal{C}(|\Psi_T\rangle)$$

Why?

- Focus on the dependence on $|\Psi_T\rangle$ and its perturbations, which have a clear geometric interpretation
- \circ Independent of $|\Psi_R
 angle$
- Extract information about implicit choice of cost function $F(x^a, \dot{x}^a)$
- \circ Study properties of new gravitational observable \mathcal{C}_A
- Operational perspective: what is the cost of perturbing spacetime?

First law of complexity

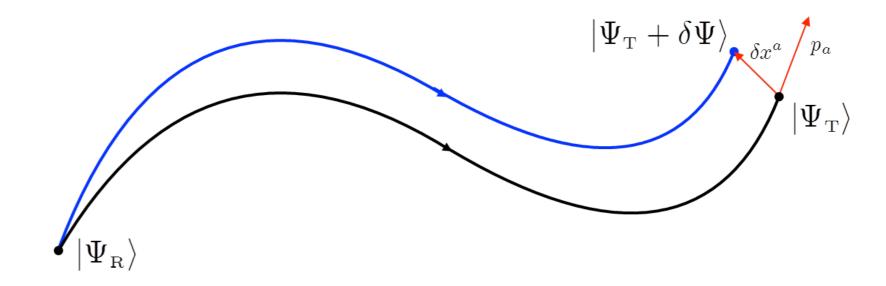
Using the analogy of Nielsen's approach to classical mechanics:

Ist order variation

$$\delta \mathcal{C} = p_a \delta x^a |_{s=1}$$
 with $p_a = \frac{\partial F}{\partial \dot{x}^a}$

O 2nd order variation

$$\delta \mathcal{C} = \frac{1}{2} \delta p_a \delta x^a \Big|_{s=1}$$
 with $\delta p_a = \delta x^b \frac{\partial^2 F}{\partial x^b \partial \dot{x}^a} + \delta \dot{x}^b \frac{\partial^2 F}{\partial \dot{x}^b \partial \dot{x}^a}$



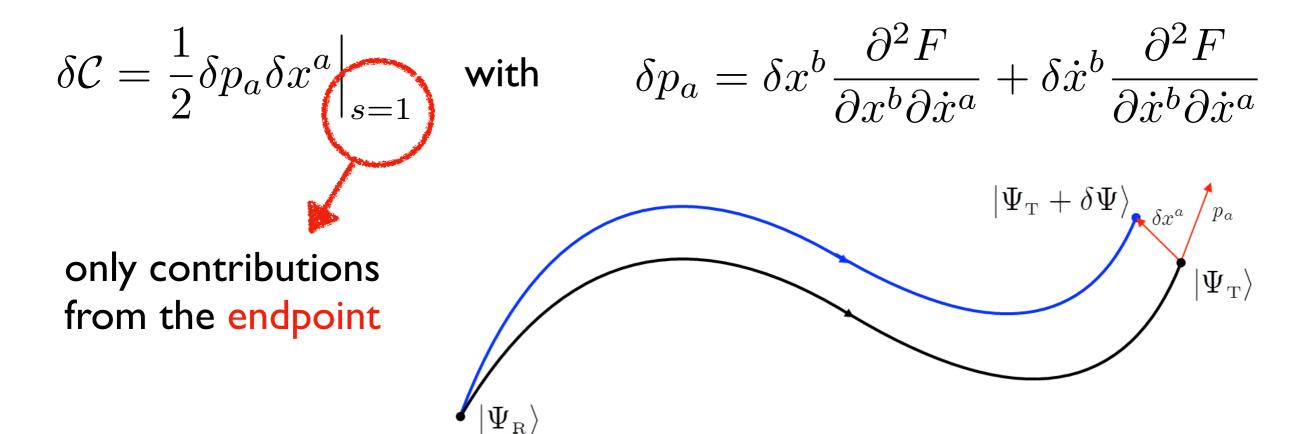
First law of complexity

Using the analogy of Nielsen's approach to classical mechanics:

Ist order variation

$$\delta \mathcal{C} = p_a \delta x^a|_{s=1}$$
 with $p_a = \frac{\partial F}{\partial \dot{x}^a}$

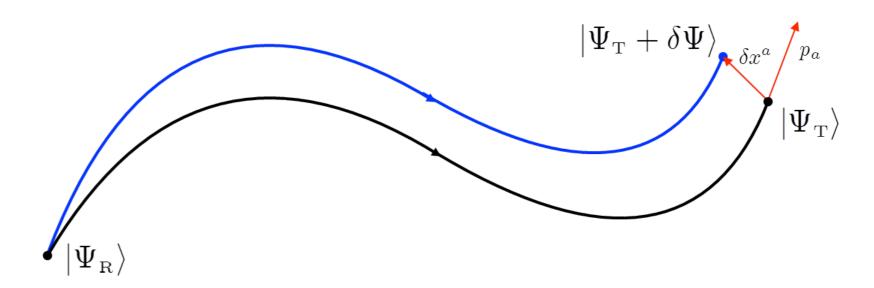
2nd order variation



Caveat

- o C ~ minimal cost, i.e. global minimum over all possible circuits
- Assume: the circuit globally minimizing the cost function stays close to the original optimal circuit, i.e. the family of globally minimizing circuits is continuous in the amplitude of the perturbation.
- It does not hold in general, but we expect it to hold in the example we consider (cf. free QFT complexity calculations).

[Guo, Hernandez, Myers, Ruan '18]



Holographic framework

Bulk:

$$I_{\text{bulk}} = \frac{1}{16\pi G_N} \int d^4y \sqrt{-g} \left[R + \frac{6}{L^2} - \frac{1}{2} g^{\mu\nu} \nabla_{\mu} \phi \nabla_{\nu} \phi \right]$$

 $|\Psi_T\rangle$: empty AdS_4 of radius L

 $|\Psi_T + \delta\Psi
angle$: small amplitude coherent state of the bulk scalar

• Given $m_\phi^2=0$ scalar: $\phi(y^\mu)=\sum_n\left(u_n(y^\mu)a_n+u_n^*(y^\mu)a_n^\dagger\right)$ we consider an excited state

$$|\varepsilon\alpha_j\rangle = \mathrm{e}^{\varepsilon\sum D(\alpha_j)}|0\rangle$$
 with $D(\alpha_j) = \alpha_j a_j^\dagger - \alpha_j^* a_j$

where a few modes $\{j\}$ are given classical expectation values

$$\langle \varepsilon \alpha_j | \phi | \varepsilon \alpha_j \rangle = \varepsilon \sum (\alpha_j u_j + \alpha_j^* u_j^*) \equiv \varepsilon \phi_{cl}$$

and work perturbatively in $\varepsilon \ll 1$

Holographic framework

Boundary:

- In AdS/CFT, bulk and boundary theories provide equivalent descriptions of the same quantum states.
- $|\varepsilon \alpha_j\rangle$ are also coherent states in the boundary CFT corresponding to excitations of the vacuum by the dual generalized free field operator $\mathcal{O}_{\Delta=3}$ and its descendants $\Box^j \mathcal{O}_{\Delta=3}$

Consequences:

- O Quantum circuit technology in QFT [Jefferson, Myers '17] applied to coherent states [Guo, Hernandez, Myers, Ruan '18] can be equivalently applied in the bulk.
- O Classical gravity duals $(g, \varepsilon \phi_{\rm cl})$ are suitable to compute holographic complexity.

Complexity = Action

Variational principle for Dirichlet BCs on ∂WDW

[Lehner, Myers, Poisson, Sorkin '16]

$$I \supset I_{\text{bulk}} + I_{\text{null}} + I_{\text{counterterm}}$$

$$= \frac{1}{16\pi G_N} \int d^4y \sqrt{-g} \left[R + \frac{6}{L^2} - \frac{1}{2} g^{\mu\nu} \nabla_{\mu} \phi \nabla_{\nu} \phi \right]$$

$$+\frac{1}{8\pi G_N} \int_{\partial \text{WDW}} ds \, d^2 \Omega \sqrt{\gamma} \, \kappa + \frac{1}{8\pi G_N} \int_{\partial \text{WDW}} ds \, d^2 \Omega \sqrt{\gamma} \, \Theta \, \log(\ell_{\text{ct}} \Theta)$$

- \circ κ measures how much non-affine the parametrization s of $\partial \mathrm{WDW}$ is
- $\Theta = \partial_s \log \sqrt{\gamma}$ expansion scalar of null generators
- o ℓ_{ct} arbitrary scale

$$\delta I \equiv I[g_0 + \delta g, \delta \phi] - I[g_0, 0]$$

for a spherically symmetric perturbation $(\delta g, \delta \phi)$ in a small amplitude expansion $\delta \phi = \varepsilon \phi_{\rm cl}$ around global ${
m AdS}_4$ (g_0)

Structure at $\mathcal{O}(\varepsilon^2)$:

$$\delta C_A(\Sigma) = \frac{\delta I}{\pi} = \frac{1}{\pi} (\delta I_{\text{WDW}} + I_{\delta \text{WDW}})$$

$$\delta I \equiv I[g_0 + \delta g, \delta \phi] - I[g_0, 0]$$

for a spherically symmetric perturbation $(\delta g, \delta \phi)$ in a small amplitude expansion $\delta \phi = \varepsilon \phi_{\rm cl}$ around global ${
m AdS}_4$ (g_0)

Structure at $\mathcal{O}(\varepsilon^2)$:

$$\delta C_A(\Sigma) = \frac{\delta I}{\pi} = \frac{1}{\pi} (\delta I_{\text{WDW}} + I_{\delta \text{WDW}})$$

captures $(\delta g, \delta \phi)$ on undeformed WDW patch

$$\delta I \equiv I[g_0 + \delta g, \delta \phi] - I[g_0, 0]$$

for a spherically symmetric perturbation $(\delta g, \delta \phi)$ in a small amplitude expansion $\delta \phi = \varepsilon \phi_{\rm cl}$ around global ${
m AdS}_4$ (g_0)

Structure at $\mathcal{O}(\varepsilon^2)$:

$$\delta C_A(\Sigma) = \frac{\delta I}{\pi} = \frac{1}{\pi} (\delta I_{\text{WDW}} + I_{\delta \text{WDW}})$$

captures $(\delta g, \delta \phi)$ on undeformed WDW patch

captures g_0 on deformed WDW patch

$$\delta C_A(\Sigma) = \frac{\delta I_{\text{matter}}}{\pi} = -\frac{\varepsilon^2}{64\pi^2 G_N} \int_{\partial \text{WDW}} ds \, d^2 \Omega \sqrt{\gamma} \, \partial_s(\phi_{\text{cl}}^2)$$

- Pure $\mathcal{O}(\varepsilon^2)$ matter contribution
- Localized on boundary of undeformed WDW patch
- \circ Independent of arbitrary counterterm scale ℓ_{ct}

$$\delta \mathcal{C}_A(\Sigma) = \frac{\delta I_{\text{matter}}}{\pi} = -\frac{\varepsilon^2}{64\pi^2 G_N} \int_{\partial \text{WDW}} ds \, d^2 \Omega \, \sqrt{\gamma} \, \partial_s(\phi_{\text{cl}}^2)$$

- ${\bf o}$ Pure $\mathcal{O}(\varepsilon^2)$ matter contribution
- Localized on boundary of undeformed WDW patch
- o Independent of arbitrary counterterm scale ℓ_{ct}

Explicitly at
$$t=0$$

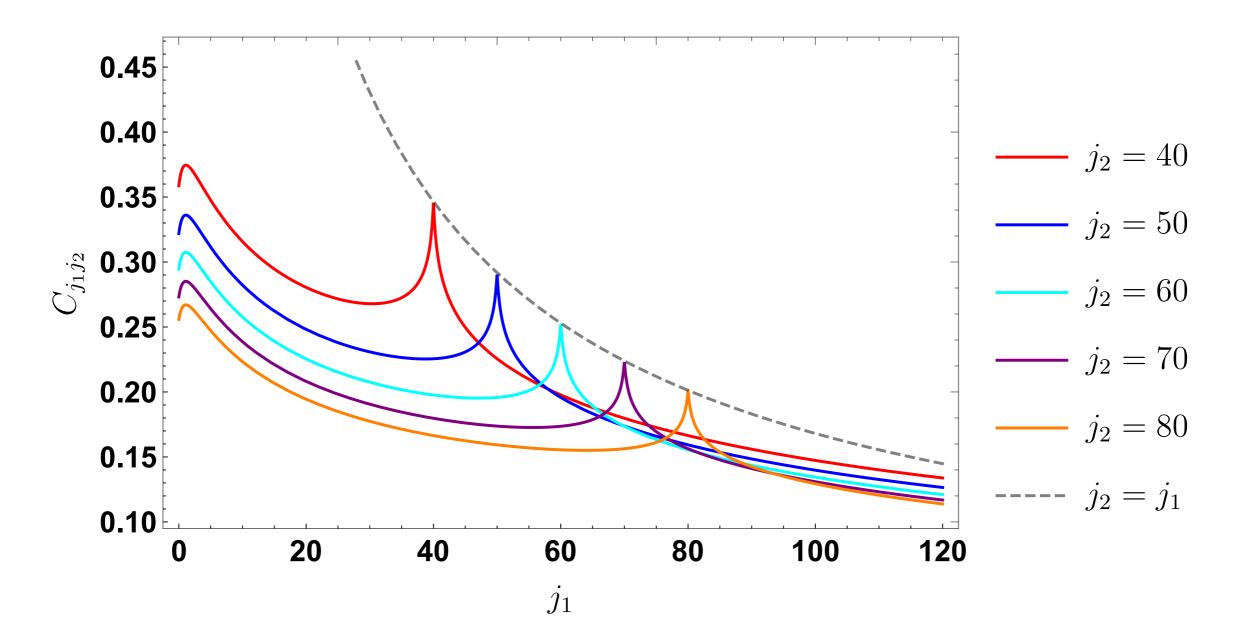
$$\delta \mathcal{C}_A(\Sigma) = \frac{\varepsilon^2}{\pi^2} \sum_{j_1,j_2} \alpha_{j_1} \alpha_{j_2} C_{j_1 j_2}$$

$$C_{j_1 j_2} = \sqrt{\frac{(j_1 + \frac{3}{2})(j_2 + \frac{3}{2})}{(j_1 + 1)(j_1 + 2)(j_2 + 1)(j_2 + 2)}}$$

$$\times \left(H_{j_1 + \frac{1}{2}} + H_{j_1 + \frac{3}{2}} + H_{j_2 + \frac{1}{2}} + H_{j_2 + \frac{3}{2}} - H_{j_1 + j_2 + \frac{5}{2}} - H_{j_1 - j_2 - \frac{1}{2}} - 2 + 4 \log 2\right)$$

with $H_{\beta} = \partial_{\beta} \log \Gamma(\beta + 1) + \gamma$ harmonic numbers

Main features



- Two peaks at $j_1 = 1$ and $j_1 = j_2$, with values decaying as j_2 grows
- Near the diagonal peak: $\lim_{j \to \infty} C_{j,j+\delta j} = 3 \frac{\log 2j}{j} + \mathcal{O}\left(\frac{1}{j}\right)$

Remarks

Holographic

- o $\delta \mathcal{C}_A$ is scale independent: UV finite and independent of ℓ_{ct}/L
- o $I_{
 m counterterm}$ is crucial for gravitational action cancellation
- o $\delta \mathcal{C}_A$ is an integral over boundary of undeformed WDW patch

Quantum circuit

•
$$\delta \mathcal{C}_A \sim \varepsilon^2 \alpha^2 \Rightarrow p_a \delta x^a|_{s=1} = 0$$

coherent state directions are orthogonal to the direction along the circuit preparing the CFT vacuum

- \circ $\delta \mathcal{C}$ only depends on data at the end of the circuit
- \rightarrow does the quantum circuit end on ∂WDW ?
- \circ Specific choices of cost function F lead to relation with $C_{j_1j_2}$

Comparison with $\kappa=2$ measure

$$F_{\kappa=2} = \sum_{I} |Y^{I}|^2$$

[Guo, Hernandez, Myers, Ruan '18]

$$\delta C_{\kappa=2}(\Sigma) = \frac{\varepsilon^2}{\pi^2} \sum_{j_1, j_2} \alpha_{j_1} \alpha_{j_2} C_{j_1 j_2}^{\kappa=2}$$

$$C_{j_1 j_2}^{\kappa=2} \to \delta_{j_1 j_2} \frac{\mu R}{(\mu x_0)^2} \frac{\pi^2}{j_1} \log \frac{2j_1}{\mu R}$$

Comparison with $\kappa=2$ measure

$$F_{\kappa=2} = \sum_{I} |Y^{I}|^2$$

[Guo, Hernandez, Myers, Ruan '18]

$$\delta C_{\kappa=2}(\Sigma) = \frac{\varepsilon^2}{\pi^2} \sum_{j_1, j_2} \alpha_{j_1} \alpha_{j_2} C_{j_1 j_2}^{\kappa=2}$$

$$C_{j_1 j_2}^{\kappa=2} \to \delta_{j_1 j_2} \frac{\mu R}{(\mu x_0)^2} \frac{\pi^2}{j_1} \log \frac{2j_1}{\mu R}$$

frequency $|\Psi_R\rangle$

scale of coherent state gates

length scale in the metric to produce a dimensionful time

Comparison with $\kappa=2$ measure

$$F_{\kappa=2} = \sum_{I} |Y^{I}|^2$$

[Guo, Hernandez, Myers, Ruan '18]

$$\delta C_{\kappa=2}(\Sigma) = \frac{\varepsilon^2}{\pi^2} \sum_{j_1, j_2} \alpha_{j_1} \alpha_{j_2} C_{j_1 j_2}^{\kappa=2}$$

$$C_{j_1 j_2}^{\kappa=2} \to \delta_{j_1 j_2} \frac{\mu R}{(\mu x_0)^2} \frac{\pi^2}{j_1} \log \frac{2j_1}{\mu R}$$

- $\circ \mathcal{O}(\varepsilon^2)$
- o large radial quantum number limit
- all coherent states are mutually orthogonal
- absence of scales requires $~\mu x_0 \sim 1 \sim R \mu$

Conclusions

- Exploring holographic complexity and developing the concept of circuit complexity for QFTs are two parallel lines of inquiry.
- The first law of complexity provides a new approach to build a bridge between holographic and circuit complexity.
- \circ It allows to investigate the implicit choice of cost function in \mathcal{C}_A
- Extensions:
 - other fields and excited states
 - higher spacetime dimensions
 - complexity = volume
 - ▶ path integral optimization, Fubini-Study approach, ...
- O How generic is the cancellation in the gravitational sector?

Thank you!