BoCXS: a Compact X-ray Source for the Bologna Metropolitan Area

F. Boscherini¹, <u>M. Placidi²</u>, E. Puppin^{3,4}, R. Santoro L. Serafini³, M. Sumini⁵, G. Turchetti¹

¹DIFA-UniBo-INFN-Bologna ²LBNL and CERN (Ret.)

³INFN-Milano

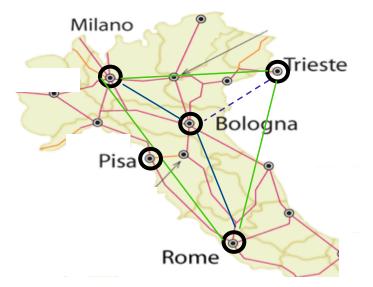
⁴Politecnico di Milano

⁵DIN-UniBo-INFN-Bologna

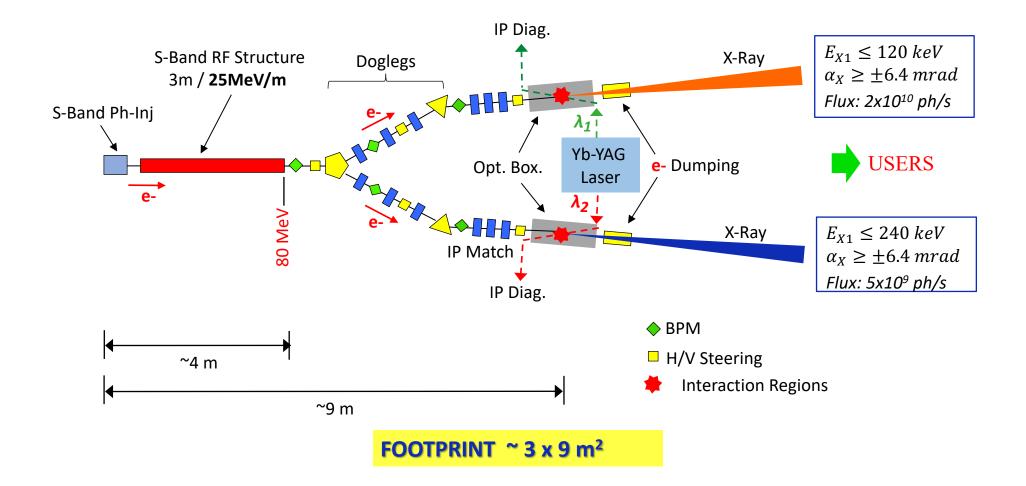
THE BOLOGNA PROPOSAL

Develop a **Compact System** to produce **High Quality X-ray Beams** for Interdisciplinary Research in Physics, Biology and Medicine

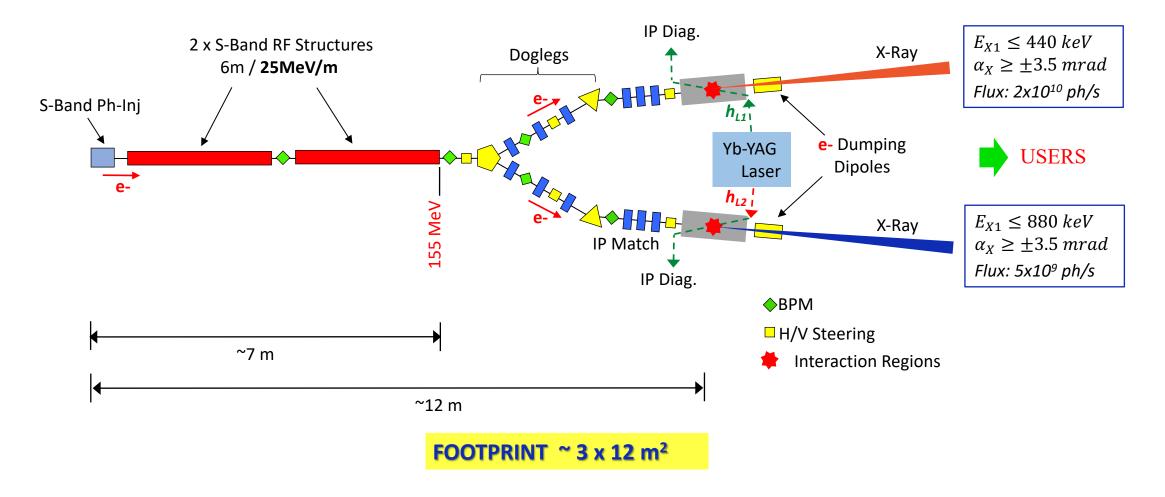
 $E_X \le 120 \ keV \ \phi \sim 2x10^{10} \ ph/s$ $E_X \le 240 \ keV \ \phi \sim 5x10^9 \ ph/s$ (second harmonic)


Compact ICS sources can produce high quality X-ray beams and can be installed in **Clinical Laboratories and Universities** operated by a small team

BoCXS: A COMPACT ICS X-Ray SOURCE


An Advanced Medical Imaging Facility in the center of a Scientific Triangle

MAIN TARGET Pre-clinical and Clinical Imaging of Soft Tissues


COMPLEMENTARY ACTIVITIES Detector development Non-destructive analysis of Mechanical Samples Cultural Heritage Science

Double Arm S-Band STAR-like Source

Upgraded S-Band STAR-like System

OPERATIONAL PHASES

PHASE I – e- ENERGY: 80 MeV X-ray ENERGY : (120 – 240) keV X-ray FLUX : (20 – 5)x10⁹ ph/s X-ray DIVERGENCE : +/- 6.4 mrad

> **PHASE II** – e- ENERGY: 155 MeV X-ray ENERGY : (440 – 880) keV X-ray FLUX : (20 – 5)x10⁹ ph/s X-ray DIVERGENCE : +/- 3.3 mrad –

Rep. rate = 100 HzLaser: Fund. & 2^{nd} harm.

ROADMAP

Conceptual Design ready

Linac and Photo-Injector (STAR-like) Laser Systems (photocathode + interaction region) Transport lines optimized to match applications All components commercially available

Detailed evaluation of Costs, Schedule and Manpower: **3 months**

Acquisition phase: 12 months Bunker construction: 18 months (in parallel with acquisition) Installation: 12 months Commissioning: 6 months

Network

BO (Uni and INFN), MI-INFN, LNF-INFN FE (Uni and INFN), NA (Uni and INFN). (FE and NA are also Users).

A PROTECT IS A DREAM WITH A DEADLINE

THANK YOU FOR YOUR TIME

ICS TECHNOLOGY

ACCELERATOR-DRIVEN COMPACT SOURCE ACCESSIBLE TO

ACADEMIC

CLINICAL and

INDUSTRIAL INSTITUTIONS

X-ray BEAMS with SOPHISTICATED CHARACTERISTICS

ENERGY TUNABILITY

HIGH BRIGHTNESS

QUASI-MONOCHROMATICITY

OUTLOOK

HIGH BRIGHTNESS, ENERGY-TUNABLE, QUASI-MONOCHROMATIC

X-ray BEAMS

PROVIDE ADVANCED BIOMEDICAL AND SOFT TISSUE IMAGING QUALITY

- IMPROVED SPACIAL RESOLUTION
- **REDUCED BEAM EXPOSURE**
- NO CONTRAST AGENTS IN RADIOLOGICAL EXAMINATIONS
- FRIENDLY TO PATIENTS CARRYING
 METALLIC IMPLANTS AND/OR STIMULATORS

A POTENTIALLY MULTIDISCIPLINARY COMPACT ICS X-ray SOURCE INSTALLED IN CLINICAL LABORATORIES OR UNIVERSITIES WOULD REPRESENT AN INVALUABLE INSTRUMENT IN BIOMEDICAL IMAGING DIAGNOSTICS AND OTHER APPLICATIONS

PROPOSED FACILITY

- Accelerator-Driven Compact X-ray Source
- STAR-like
- Energy Tunable and Upgradable
- OTS components
- Contained Footprint
- Twin User Areas

THE MESSAGE

Bring ADVANCED IMAGING QUALITY and IMPROVED VISUALIZATION DIAGNOSTICS for BIOMEDICAL APPLICATIONS to CLINICS and UNIVERSITY INSTITUTIONS

SYSTEM REQUIREMENTS / COMPETENCES

Electron beam High average current Multi-bunch Photo-Injector option	Linac Technology	LNF – INFN MI – UNIBO
Laser system High Pulse Energy (close to 1J) Recirculator option	Non-linear Optics	LNF – INFN MI
Scattered radiation Monochromaticity		
High Brilliance Energy tunability Spatial coherence Dual color option	X-ray Characteriza and Manipulation	UNIEE