ТШП

Brilliant Monochromatic X-rays at the Munich Compact Light Source

<u>Klaus Achterhold</u> Biomedical Physics

Physics-Department E17 &

Munich School of BioEngineering

Technical University of Munich

Outline

- Inverse Compton Scattering
- MuCLS Design
- Beam Characteristics at MuCLS
- Radiation Shielding

Inverse Compton Scattering

Synchrotron

3 4

Inverse Compton Scattering

exchange undulator dipole magnets by the electro magnetic field of a laser

12 34

1: S. Mobilio 2015 Springer Verlag; 3: www.lorentz.leidenuniv.nl/history/wallformulas/images

high energy electrons

low energy photons

10-20

1.395

.245

1.095

.645 w

0.495

0.345

0.195

0.045

Inverse Compton Scattering

$$\lambda_{rad} = \frac{\lambda_{IR}}{4\gamma^2} \cdot \left(1 + \frac{a_0^2}{2} + \gamma^2 \theta^2\right)$$

$$a_0 = 0.22 \cdot \frac{\lambda_{IR}}{r_s} \cdot \sqrt{P_{IR}[GW]}$$

$$= 2.9 \cdot 10^{-4}$$

(for λ =1064 nm; Power of 300 kW)

→ small amplitude transverse oscillation
→ no higher harmonics

Inverse Compton Scattering

from Klein-Nishina equation

tuning the energy

in case it's not a head-on collision

MuCLS

Spectrum of the X-rays

Spectrum of the X-rays

How many X-ray Photons do we generate per second?

$$\sigma_{Th} = \frac{8\pi}{3}r_e^2 = 6.65 \cdot 10^{-29} m^2$$

Flux of X-ray photons

$$\dot{N}_x = \sigma_{Th} \cdot \mathcal{L} = \sigma_{Th} \cdot \frac{1}{4\pi\sigma_{eL}^2}$$

+ small size of interaction area

 $\sigma_{Th} = \frac{8\pi}{3}r_e^2 = 6.65 \cdot 10^{-29} m^2$

Flux of X-ray photons

$$\dot{N}_x = \sigma_{Th} \cdot \frac{N_e N_L}{4\pi \sigma_{eL}^2}$$

+ many electrons+ many laser photons

Laser Enhancement Cavity

[1] E. Eggl, M. Dierolf, K. Achterhold, Ch. Jud, B. Günther, E. Braig, B. Gleich, F. Pfeiffer, The Munich Compact Light Source: initial performance measures, J. Synch. Rad. 23 (2016)

laser pulse -

electron pulse

LASER PULS

x-rays

OPTICALICAVIT

velocity of electrons 99.99 % of c circumference of 4.6 m \rightarrow 65 MHz

STORED BEAM

1 bunch = 250 pC (max 1.2 nC) = $1.6 \cdot 10^9$ electrons = 16 mA bunch length = 1 cm

Synchrotron Energy Loss/Turn 0.21 eV for 25 MeV electron energy

mirror thinned in the middle area

Flux

 $\dot{N}_x = \sigma_{Th} \cdot \frac{N_e N_L}{4\pi \sigma_{cL}^2} \cdot f_{CLS}$ Expected flux with $\sigma_{Th} = \frac{8\pi}{2}r_e^2 = 6.65 \cdot 10^{-29} m^2$ $\dot{N}_x = 2.2 \cdot 10^{12} \, s^{-1}$ N_e for 250 pC electrons in the ring is 1.6 $\cdot 10^9$ N_{L} for 2.3 mJ puls energy in laser cavity: 1.2 $\cdot 10^{16}$ f_{CLS} (repetition rate of ring and cavity): 65 MHz but with the $\dot{N}_x = 1.1 \cdot 10^{11} \, s^{-1}$ cross section into +/- 2 mrad $\sigma_{Th\pm 2} = 0.35 \cdot 10^{-29} m^2$

we have @35keV: $\dot{N}_x = 5 \cdot 10^{10} \ ph \ s^{-1} \rightarrow brilliance: 1.1 \cdot 10^{10} \ ph \ s^{-1} \ mm^{-2} \ mrad^{-2} \ 0.1\% BW^{-1}$

Beam Position Monitor

closed-loop feedback adjusting the laser beam trajectory

B. Günther, M. Dierolf, K. Achterhold, F. Pfeiffer, J Synchrotron Radiation 26 (2019) 1546–1553

Radiation Shielding

Radiation Shielding

The Future

Parameter	CLS 1.1 (Munich CLS)	CLS 2.0 (Next system)	CLS Roadmap (Future)
Total Flux (~4% BW) – [ph/s]	>3 * 10 ¹⁰	4 * 1011	4 * 10 ¹²
Source size [µm rms]	45	40	30
Source divergence [mrad] (Flattop Cone)	4	6	6
Source Brightness – Full Bandwidth [ph/s/mrad^2/mm^2/4% BW]	5 * 1011	4 * 10 ¹²	1 * 10 ¹⁴
Tunable x-ray energy range [keV]	8-35 (IR 1um laser)	8-35 (IR 1um laser)	4-22 (IR – 2um) 8-50 (IR – 1um) 16-100 (Vis – 0.5um)
X-ray energy bandwidth [dE/E FWHM]	3-5%	3-5%	2-4%
X-ray Pulse Length (rms) [ps]	60		
X-ray Repetition Rate [MHz]	65		

Michael Feser, CEO Lyncean Technologies Inc., XRM 2018

www.e17.ph.tum.de

Franz Pfeiffer, Martin Dierolf, Benedikt Günther

Ronald Ruth, www.lynceantech.com Roderick Loewen, Chris Juan, Martin Gifford,...

www.bioengineering.tum.de Axel Haase, Bernhard Gleich

www.munich-photonics.de DFG Cluster of Excellence Munich-Center for Advanced Photonics (DFG EXC-158)

37

Thank you for your attention

