

New results from the CUORE experiment

Irene Nutini Università degli Studi Milano Bicocca INFN Milano Bicocca

September 5th, 2019

I.Nutini, Seminar LNGS, - September 5th, 2019

Outlook

- Neutrinoless double beta decay
- The CUORE experiment
- CUORE initial operations & optimization
- CUORE physics data taking
 - ♦ Data processing
 - New results from CUORE on search for ¹³⁰Te 0vββ decay
- Conclusions

Double beta decay

Double beta decay is a rare nuclear decay: $(N,Z) \rightarrow (N-2, Z+2)$

Neutrinoless double beta decay Observation of **0vββ decay would imply:**

- Lepton number violation
- Hint on origin of matter/anti-matter asymmetry
- Presence of a Majorana term for the neutrino mass
- Constraints on neutrino mass hierarchy and scale

Experimental 0vββ half-life sensitivity

Finite background

$$S_{0
u} \propto \eta \cdot \epsilon \cdot \sqrt{\frac{M \cdot T}{\Delta \cdot B}}$$

Isotope choice

- High isotopic natural abundance or enrichment
- High Q_{ββ}
- Good detection efficiency:
 ββ source embedded into the absorber
 Excellent energy resolution

Exposure

- Large active mass (M) detector

- Long live-time

Suitable nuclei for double-beta decay are 48Ca, 76Ge, 82Se, 100Mo, 116Cd, 130Te,128Te,136Xe...

Search for 0vßß decay of 130Te

- ¹³⁰Te highest natural isotopic abundance η(¹³⁰Te) = 34.167%, no detector enrichment
- ¹³⁰Te within the detector absorber of TeO₂ (containment efficiency ~ 90%)
- $Q_{\beta\beta}$ (¹³⁰Te) = 2527.518 keV, above most of the natural radioactivity
- TeO₂ operated as low temperature macro-calorimeters (~10 mK): good energy resolution Δ (~0.2% FWHM/E), compared to other ββ experiments
- Reproducible growth of large number of high quality detectors; large active mass detector: 742 kg TeO₂ (~206 kg of 130Te)

The CUORE experiment

CUORE

Cryogenic Underground Observatory for Rare Events

Ton-scale cryogenic experiment using 988 $^{(nat)}$ TeO₂ crystals operated at ~10 mK

- large mass and high granularity -

Primary goal: Search for 0vββ decay in ¹³⁰Te

Test Majorana nature of neutrino $\leftarrow \rightarrow 0\nu\beta\beta$ decay

Experiment hosted at Laboratori Nazionali del Gran Sasso (LNGS)

CUORE ^{130}Te 0vßß projected sensitivity: $T^{0v}_{1/2} \sim 9 \times 10^{25} \, \text{yr}$ (90% C.L.) in 5 years $m_{\beta\beta} < 50\text{--}130 \ \text{meV}$

Artusa D.R. et al. (CUORE Collaboration), Adv. High Energy Phys. 2015,879871,(2015) http://doi.org/10.1155/2015/879871

History of TeO $_2$ macro-calorimeters for $0\nu\beta\beta$

From few g to 1 tonne TeO₂ cryogenic calorimeters for double beta decay search

The CUORE challenge

Low background

- Deep underground location (LNGS) Overburden: 1400 m calcareous rock (3600 m.w.e) Cosmic ray rate reduction: 10⁻⁶ relative to the surface
- Strict radio-purity controls on materials and assembly
- Passive shields (Pb) from external and cryostat radioactivity
- Detector: high granularity and self-shielding Background goal: $10^{-2} c/(keV \cdot kg \cdot yr)$ in the Region Of Interest (ROI) around $Q_{_{BB}}$

Roman lead shield (210Pb depleted) @ 4K

Main Support Plate

Sand-filled

columns

H₃BO₃ panels

Polythylene

Screw jacks

The CUORE challenge

•Low temperature and low vibrations

TeO₂ detectors to be operated as bolometers at ~10 mK
Multistage cryogen-free cryostat: Nested vessels at decreasing temperature Cooling systems: Pulse Tubes (PTs) and Dilution Unit (DU)
Mass to be cooled < 4K: ~ 15 tons (IVC volume and Cu vessels, Roman Pb shield)

-Mass to be cooled < 50 mK: ~ 3 tons (Top Pb shield, Cu supports and TeO₂ detectors)

Mechanical vibration

Reduce energy dissipation by vibrations

Target energy resolution: 5 keV FWHM

in the Region Of Interest (ROI) around $\mathsf{Q}_{_{\beta\beta}}$

CUORE and the bolometric technique

CUORE TeO₂ detectors are operated as cryogenic bolometers (energy converted into phonons)

- Low heat capacity @ T ~ 10 mK
- Excellent energy resolution (~0.2% FWHM)
- Same detector response for different particles (heat only)
- Slowness if coupled with NTDs (suitable only for rare event searches)

The CUORE detector

CUORE instrumented bolometers

Alduino C. et al. (CUORE collaboration), J. Inst. 11(07), P07009, (2016) https://doi.org/10.1088/1748-0221/11/07/p07009

The CUORE detector

CUORE detector Array of closely packed 988 TeO₂ crystals arranged in 19 towers High Mass of TeO₂: 742 kg (206 kg of ¹³⁰Te) and high granularity

CUORE tower: 52 crystals arranged in 13 floors of 4 crystals each

CUORE-0 experiment: CUORE-tower demonstrator

CUORE array: 19 towers

CUORE commissioning

- Detector assembly: 2012-2014
- Cryogenic system commissioning: Completed in Feb.2016
- Detector installation: Completed at the end of Aug. 2016

CUORE data taking

From early 2017 up to now

- First operation of a large array of macro bolometers
- Completely different detector and cryogenic system

Initial activities:

- Reach low temperature for system and detectors
- Reduce vibrations
- Optimize detectors thermal response
- Collect first physics data (measure background and release first 0vββ results)
- Learn how to make effective data analysis on 1000 bolometers

CUORE initial operations

- First Detector cool-down: Started in Dec. 2016

Cooldown to 4K: ~ 20 days

Pumping He exchange gas in IVC: ~ 10 days

Cooldown from 4K to 8 mK: ~ 3 days

Total detector cooldown time from 300K to 10 mK: \sim 1 month

- First CUORE data: Early 2017

D'Addabbo A. et al., Cryogenics 93, 55-56, (2018) https://doi.org/10.1016/i.cryogenics.2018.05.001

 rotation frequency
 Control the relative phases of the pressure oscillations in the Pulse Tubes and set the detectors minimum noise phase configuration

Linear Drives: precise control of the PTs motor-head

 10° 1.4 Hz 10.and harmonics 10 10.410.3 Power (mV²/Hz) Rotating valve 10 (mK) st stage 2nd stage ANPS ch 390 - 15 mK before phase optimization 10 No Linear Drives Linear Drives ANPS ch 390 - 15 mK after phase optimization 60 80 140 160 Time (h) $6 \times 10^{\circ}$ 2 6 7 8 9 10 s

Pulse Tubes induced vibrations: Pulse Tube active noise cancellation

Noise reduction

-

CUORE optimization

Frequency (Hz)

CUORE optimization

Load Curves, Working Points & Temperature scans

Achieve high quality detector readout with a good signal-to-noise ratio

Dedicated procedures and algorithms in CUORE to automate the load curve measurement and the working point identification at each T_{base} .

CUORE data taking

CUORE Run Time Breakdown Jan 2017 - Feb 2019 2017 2018 January January February February March March April April May May June June July July August August September Septembe October October November November Physics 17.2% Calibration 11.4% December December Down Time 33.6% NPulses 0.6% Setup (LC & WP) 4.9% Test 32.3%

Data taking up to March 2019

The duty cycle of the system was poor, dominated by down-time (short warm-ups and cool-downs) and technical runs.

We concentrated our efforts on improving the reliability of the overall system and the stability of the data-taking.

- Performed a major maintenance of the cryogenic system (early 2019)
- Performed an upgrade of the calibration system (2018)
- Improved the data processing and analysis techniques
- Focussed on physics data-taking

CUORE data taking: improvements

External Detector Calibration System (EDCS)

Internal Detector Calibration System: strings of 232 Th γ -ray sources reaching the detectors down to 10 mK, complex procedure for deployment and interference with the cryogenic system operation

 \rightarrow Installation of External Detector Calibration System (EDCS)

EDCS: 232 Th+ 60 Co γ -ray sources, strings positioned in between the 300K vessel and the external Lead Shield

CUORE data taking

Data taking from March 2019 on

- Reached stable data-taking with high duty cycle
- Physics data bracketed by initial and final calibrations
- Calibration with EDCS
- Only short maintenance operations at dataset closure; checks for noise and thermal response consistency after the activities
- 3 complete consecutive datasets acquired, new dataset started in these days
- Priority is data taking no further optimizations in the near future

CUORE Run Time Breakdown from March 2019

CUORE data taking

Current CUORE exposure

Collected Background exposure (TeO₂): 400. 9 kg yr Analyzed Background exposure (TeO₂): 369.9 kg yr 130 Te exposure: 102.9 kg yr

22

Alduino C. et al. (CUORE collaboration), Phys. Rev. Lett. 120, 132501, (2018), https://doi.org/10.1103/PhysRevLett.120.132501

23

CUORE first results

CUORE published results - Data from 2017

984/988 operational channels

7 weeks of physics data taking (Dataset 1, Dataset 2) ^{nat}TeO₂ exposure: 86.3 kg yr, ¹³⁰Te exposure: 24.0 kg yr

ROI background index (B) ~ 1.4×10^{-2} c/(keV · kg · yr)

UEML fit performed in the ROI [2465,2575 keV] to evaluate best fit decay rate for $0\nu\beta\beta$ of 130Te

No evidence of signal

Half-life limit for $0\nu\beta\beta$ in 130Te (90%C.L including syst.) T_{0v} (130Te) > 1.3 x 10^{25} yr

Disentangle low energy signals from fake signals produced by noise, lower the detectors trigger

CUORE trigger algorithm

OT trigger

thresholds

 \rightarrow Optimum Trigger (OT) algorithm: identifies a signal when the amplitude of the filtered signal waveform exceeds a configurable threshold

- OT trigger applied for offline re-triggering of the continuous recorded stream of data

CUORE data processing

CUORE data processing

26

CUORE data

Summed Spectrum

Lineshape

Lineshape fit

- Fit ²⁰⁸TI line at 2614.5 keV in calibration spectra to precisely evaluate lineshape
- Main peak parameterized with sum of 3 Gaussian
- Fit run on single tower simultaneously for multiple datasets

Bias of peak position in physics data

- Fit peaks in physics spectrum with 3-Gaussian
- Compute residuals from literature values
- Fit residuals vs energy with 2nd order polynomial → Systematics!

Residual vs. energy, $1-\sigma$ fits (ds3519)

Lineshape

Scaling of resolution to physics data

- Extract FWHM from peak fit in physics spectra
- Fit ratio of FWHM in physics and calibration data as a function of energy
- Extrapolate to Q_{ββ}

Background resolution vs. energy, $1-\sigma$ fits (ds3519)

Efficiencies

Reconstruction	Comprises:
efficiency	\rightarrow trigger
	\rightarrow event reconstruction
	\rightarrow pile-up identification
Anti-coincidence efficiency	Quantifies the probability of properly identifying a single-site event

Pulse-Shape Analysis Fraction of efficiency pulse-shap

Fraction of events passing a multi-dimensional cut on 6 pulse-shape variables

PSA Efficiency (DS 2)

Parameters for the analysis

Parameter	Value
Number of datasets	7
Number of channels	842-948 (depending on dataset)
TeO ₂ exposure	369.94 kg·yr
FWHM at 2615 keV in calibration data	8.1 keV
FWHM at Q _{ββ} in physics data	8.7 keV
Reconstruction efficiency	(95.9578 ± 0.0033)%
Anti-coincidence efficiency	(98.95 ^{+0.15} _{- 0.16})%
PSA efficiency	(92.04 ± 0.11)%
Tot. analysis efficiency	(87.41 ± 0.18)%
Syst. on analysis efficiency	±1.9%
Containment efficiency	(88.350 ± 0.090)%

Statistical approach

Bayes theorem:
$$P\left(\vec{\theta}|\vec{E}\right) = \frac{\mathcal{L}\left(\vec{E}|\vec{\theta}\right) \cdot \pi\left(\vec{\theta}\right)}{\int_{\Omega} \mathcal{L}\left(\vec{E}|\vec{\theta}\right) \cdot \pi\left(\vec{\theta}\right) d\vec{\theta}}$$

Likelihood: $\mathcal{L}\left(\vec{E}|\vec{\theta}\right) = \prod_{dataset \ channel} \prod_{dataset \ channel} \left[\frac{e^{-\lambda}\lambda^{n}}{n!}\prod_{event \ i} \left(\frac{s}{\lambda}pdf_{0\nu\beta\beta}\left(E_{i}|\vec{\theta}\right) + \frac{c}{\lambda}pdf_{60\ Co}\left(E_{i}|\vec{\theta}\right) + \frac{b}{\lambda}\frac{1}{\Delta E}\right)\right]$
Expectation value: $\lambda = s+c+b$
Width of fit region: ΔE

Systematics implemented as nuisance parameters

Parameter	Dependence	Method
Analysis efficiency I	Dataset	Gaussian
Analysis efficiency II	Global	Flat in [0.981, 1.021] range
Energy bias	Dataset	Fit residuals of peaks in physics spectrum from literature values with 2 nd order polynomial
Energy resolution	Dataset	Fit ratio of FWHM in physics and calibration data with 2 nd order polynomial
Q _{ββ}	Global	Gaussian, 2527.518(13) keV
¹³⁰ Te isotopic fraction	Global	Gaussian, 34.1668(16)%

Blinded fit

Summed Spectrum (Blinded) Events [counts/keV] **CUORE** Preliminary Exposure: 369.9 kg yr 25 ⁶⁰Co 20 15 10 fit region new old fit region 2560 2580 260 Reconstructed Energy [keV] 2460 2480 2500 2540 2600 2520

- Fit range: [2490, 2575] keV
- Components: flat background, ⁶⁰Co peak, 0vββ peak
- Fit run independently for each dataset and tested w/ and w/o additional nuisance parameters for systematics

 \rightarrow 0v\beta\beta consistent in both cases for all datasets

Unblinding

Summed Spectrum

Background in α region and at $Q_{\beta\beta}$

a region

- Fit flat background in [2650,3100] keV region
- Average α background: 1.210(28)·10⁻²

- $\mathbf{Q}_{\mathbf{\beta}\mathbf{\beta}}$ region Fit with flat background + ⁶⁰Co peak in • [2490,2575] keV region
- Average BI: 1.369(69)·10⁻² cts/keV/kg/yr

Dataset	BI [x10 ⁻² counts/keV/kg/yr]
1	1.20 ^{+0,26} 0.17
2	1.29 ^{+0.22} -0.16
3	1.11 ^{+0.15} 0.14
4	1.60 ^{+0.19} -0.17
5	1.64 ^{+0.44} -0.25
6	1.51 ^{-0.21} -0.16
7	1.13 ^{+0.17} -0.14

Sensitivity

limits

Method

Fit unblinded data with flat background

and ⁶⁰Co components only (no $0\nu\beta\beta$)

Generate set of 10⁴ toy-MC data-sets

Extract distribution of 90% C.I. halflives

according to bkg-only model

Fit toy-MC with signal+bkg model

Projected Sensitivity

Details for NERDs

- Posterior for background index (BI) and ⁶⁰Co rate from bkg-only fit have uncertainties larger than corresponding Poisson uncertainty
 - \rightarrow Sample from enlarged distribution: TRandom3::PoissonD(B²/ σ^2)· σ^2 /B
- ⁶⁰Co peak generated using same 3-Gaussian lineshape used for the fit

Unblinded fit

Method

- Bayesian analysis based on <u>BAT</u>
- Allow negative non-physical range for Γ_{0ν} to evaluate the amplitude of possible background under-fluctuations
- Repeat fit on physical range only \rightarrow Results on Γ_{0y} obtained from this!
- Free params: 60° Co peak rate & position, Γ_{0v} rate, background
- Repeat fit with additional nuisance parameters to account for systematics

Results

PRELIMINARY Results

- 🔹 No evidence for 0νββ decay 😢
- Background under-fluctuation yields a best-fit value of:

 Γ_{0v} =-3.0^{+2.8}_{-1.8} ·10⁻²⁶ yr ⁻¹

• Marginalized limit computed on physical range: $\Gamma_{0v} < 3.0 \cdot 10^{-26}$ yr ⁻¹

$T_{1/2}^{0v}$ > 2.3.10²⁵ yr at 90% C.I.

- Systematics affect the limit by ~1%
- Probability of getting a stronger limit: 13%
- Assuming the light neutrino exchange:

$m\beta\beta < 0.09\text{-}0.42$ eV at 90% C.I.

• Starting to work on a publication

Conclusions

CUORE is the first tonne-scale operating bolometric $0\nu\beta\beta$ detector.

- New CUORE physics results of T_{0v} in ¹³⁰Te with increased exposure (370 kg yr TeO2)
- The CUORE data taking is currently underway to collect 5 years of run time
- Investigating the potential of the CUORE experiment for the search for rare events and/or for physics beyond the Standard Model other than the 2vββ decay of 130Te

Thank you on behalf of The CUORE collaboration

Yale

BERKELEY LAB

INFN

40

Backup

CUORE optimization & first physics data

Energy resolution in calibration runs
 @²⁰⁸TI decay gamma-peak (2615 keV)

First CUORE physics data

984/988 operational channels 7 weeks of physics data taking (Dataset 1, Dataset 2) $^{nat}TeO_2$ exposure: 86.3 kg yr, ^{130}Te exposure: 24.0 kg yr

ROI background index (B) ~ 1.4×10^{-2} c/(keV · kg · yr)

Alduino C. et al. (CUORE collaboration), Phys. Rev. Lett. 120,

132501, (2018), <u>https://doi.org/10.1103/PhysRevLett.120.132501</u>

B CUORE

Dataset 1: 9.0 keV FWHM Dataset 2: 7.4 keV FWHM

Improved resolution from Dataset 1 to Dataset 2 due to:

- Investigation and upgrades to the electronics grounding
- Active cancellation of the PT-induced noise
- Optimization of the operating temperature and detector working points
- Software and analysis upgrades

CUORE auxiliary systems

First results from CUORE: 0vßß analysis

Blinding of the background spectrum

Blinding procedure:

- Choose a random fraction and move events from +/- 20 keV of 2615 keV to the Q_{ββ} and vice versa
 - The blinding algorithm produces an artificial peak around the $0\nu\beta\beta$ Q-value and blinds the real $0\nu\beta\beta$ rate of ¹³⁰Te
 - When all data analysis procedures are fixed the data are eventually unblinded

Unblinded fit

Method

- Bayesian analysis based on <u>BAT</u>
- Allow negative non-physical range for Γ_{0ν} to evaluate the amplitude of possible background under-fluctuations
- Repeat fit on physical range only \rightarrow Results on Γ_{0y} obtained from this!
- Repeat fit with additional nuisance parameters to account for systematics

Unblinded fit: systematic on lineshape

46

Unblinded fit: systematic on lineshape

CUORE background budget

CUORE sensitivity and perspectives


```
nominal background: 10<sup>-2</sup> c/(keV · kg · yr) and
```

nominal energy resolution : 5 keV FWHM in the Region Of Interest (ROI)

Next generation of 0v $\beta\beta$ decay experiments seek be sensitive to the full Inverted Hierarchy region: Sensitivity S_{0v} ~10²⁷ yr, m_{$\beta\beta$} ~ 6 - 20 meV

CUPID (CUORE Upgrade with Particle ID) project: build a future experiment with ~ 1500 enriched light ¹ emitting bolometers mounted in the CUORE cryostat, reaching nearly zero background goal, $< 10^{-4}$ c/(keV·kg·yr)

The CUORE challenge

Low temperature and low vibrations

TeO₂ detectors to be operated as bolometers at temperature ~10 mK: need for cryogenic infrastructure

•Multistage cryogen-free cryostat: Nested vessels at decreasing temperature Cooling systems: Pulse Tubes (PTs) and Dilution Unit (DU) -Mass to be cooled < 4K: ~ 15 tons (IVC volume and Cu vessels, Roman Pb shield)

-Mass to be cooled < 50 mK: ~ 3 tons (Top Pb shield, Cu supports and TeO₂ detectors)

Mechanical vibration isolation

Reduce energy dissipation by vibrations

Target energy resolution: 5 keV FWHM

in the Region Of Interest (ROI) around Q_{BB}

300 K

40 K

Still (800 mK)

HEX (50 mK)

Mixing Chamber

(10 mK)

4 K

The CUORE challenge

Low temperature and low vibrations

TeO₂ detectors to be operated as bolometers at temperature ~10 mK: need for cryogenic infrastructure

•Multistage cryogen-free cryostat: Nested vessels at decreasing temperature Cooling systems: Pulse Tubes (PTs) and Dilution Unit (DU) -Mass to be cooled < 4K: ~ 15 tons (IVC volume and Cu vessels, Roman Pb shield)

-Mass to be cooled < 50 mK: ~ 3 tons (Top Pb shield, Cu supports and TeO₂ detectors)

Mechanical vibration isolation

Reduce energy dissipation by vibrations

Target energy resolution: 5 keV FWHM

in the Region Of Interest (ROI) around Q_{BB}

300 K

40 K

Still (800 mK)

HEX (50 mK)

Mixing Chamber

(10 mK)

4 K

CUORE data taking

Data taking from March 2019 on

- Reached stable data-taking with high duty cycle
- Physics data bracketed by initial and final calibrations
- Calibration with EDCS
- Only short maintenance operations at dataset closure; checks for noise and thermal response consistency after the activities
- 3 complete consecutive datasets acquired, new dataset started in these days
- Priority is data taking no further optimizations in the near future

52

Open questions about neutrinos

- The Minimal Standard Model (MSM) assumes massless neutrinos; need to extend it to accommodate for massive neutrinos
- Neutrino mass hierarchy
- Neutrino mass absolute values
- ✤ Why neutrino mass is so small?
- Neutrinos are Dirac or Majorana particles?

Experimental searches:

- Neutrino flavor oscillation parameters precision measurements: Super-K, SNO, KamLAND, Daya Bay, T2K, NoVA
- Sum of neutrinos masses from cosmological and astrophysical data: PLANCK,...
- Direct neutrino mass measurement from β-decay spectral shape: KATRIN (3H), HOLMES and ECHO (163Ho)
- Majorana nature of neutrino via neutrinoless double beta decay: CUORE, GERDA, EXO-200, NEMO...; CUPID, LEGEND, Kamland-Zen, SNO+,...

Neutrinoless double beta decay: unique tool to probe the Majorana nature of neutrino