Round Table on Future B Factories the Physics Case

Marco Ciuchini

The physics goal of a Super Flavour Factory: search for & characterize New Physics

NP found

- determine the FV and CPV couplings of the NP Lagrangian
- look for the effect of heavier states

NP not found

 look for any deviation from the SM signaling NP in the multi-TeV energy region

- probe regions of the NP parameter space

Ingredients for a success

- leap in luminosity
- a large set of new-physicssensitive observables related observables to different flavour sectors (B_d , D, τ , B_s ,...) measurable with high accuracy
- control of the theoretical uncertainties at a level matching the expected experimental precision (in the SM and eventually beyond)

A "treasure chest"

of new

theoretical uncertainties

no theory improvements needed	$\beta(J/\psi K)$, $\gamma(DK)$, $\alpha(\pi\pi)^*$, $B\to K^{(*)}vv$ lepton FV and UV, $S(\rho^0\gamma)$ CPV in $B\to X\gamma$, D and τ decays zero of FB asymmetry $B\to X_sI^*I^-$	null tests of the SM or SM already known with the required accuracy
improved lattice QCD	meson mixing, $B \rightarrow D(*)Iv$, $B \rightarrow \pi(\rho)Iv$ $B \rightarrow K^*\gamma$, $B \rightarrow \rho\gamma$, $B \rightarrow Iv$, $B_s \rightarrow \mu\mu$	target error: ~1-2% Feasible (see below)
improved OPE+HQE	$B \rightarrow X_{u,c} I v, B \rightarrow X \gamma$	target error: ~1-2% Possibly feasible with SuperB data getting rid of the shape function. Detailed studies required
improved QCDF/SCET or flavour symmetries	S's from TD A_{CP} in $b \rightarrow s$ transitions	target error: ~2-3% large and hard to improve uncertainties on small corrections. FS+data can bound the th. error

^{3&}lt;sup>rd</sup> Flavour Physics Workshop "Capri 2010"

Theory keeps up...

lattice QCD can reach the O(1%) precision goal in time

V. Lubicz, SuperB CDR, updated for the physics white paper

Measurement	Hadronic	Status	6 TFlops	Status	60 TFlops	1-10 PFlops
	Parameter	End 2006	(Year 2009)	End 2009	(Year 2011)	(Year 2015)
$K o \pi l V$	$f_{+}^{K\pi}(0)$	0.9 %	0.7 %	0.5 %	0.4 %	< 0.1 %
$oldsymbol{arepsilon}_K$	\hat{B}_K	11 %	5 %	5 %	3 %	1 %
B o l V	f_B	14 %	3.5-4.5 %	5 %	2.5-4.0 %	1.0-1.5 %
Δm_d	$f_{Bs}\sqrt{B_{B_s}}$	13 %	4-5 %	5 %	3-4 %	1-1.5 %
$\Delta m_d/\Delta m_s$	ξ	5 %	3 %	2 %	1.5-2 %	0.5-0.8 %
$B o D/D^* l v$	$\mathscr{F}_{B o D/D^*}$	4 %	2 %	2 %	1.2 %	0.5 %
$B o\pi/ hol u$	$f_+^{B\pi},\dots$	11 %	5.5-6.5 %	11 %	4-5 %	2-3 %
$B \rightarrow K^*/\rho (\gamma, l^+l^-)$	$T_1^{B o K^*/ ho}$	13 %		13 %		3-4 %

CKM matrix at 1%

Today

with 75 ab^{-1} at the Y(4S)

Generalized UT fits: $_{today}$ SuperB CKM at 1% in the $\bar{\rho}$ 0.187±0.056 ±0.005 presence of NP! $\bar{\eta}$ 0.370±0.036 ±0.005

- crucial for many NP searches with flavour (not only in the B sector!)

Mixing amplitude BSM: $M_{12}^d = C_{B_d} e^{2i\phi_{B_d}} |M_{12}^{d,SM}| e^{2i\beta}$

Yellow: today

Blue: future

preliminary, courtesy of M. Bona

phenomenological impact*

*topics selected following the mood and taste of the speaker

 $(\delta^{\circ}_{23})_{LR}=0.028 e^{m}$ for $\Lambda = m_{\tilde{g}} = m_{\tilde{q}} = 1 \text{ TeV}$

 $m_{gluino}(TeV)$

for A<1 TeV

MSSM (ii): model-dependent studies

W. Altmannshofer et al., 0909.1333

	AC	RVV2	AKM	$\delta \mathrm{LL}$	FBMSSM
$D^0 - \bar{D}^0$	***	*	*	*	*
$S_{\psi\phi}$	***	***	***	*	*
$S_{\phi K_S}$	***	**	*	***	***
$A_{\rm CP}\left(B \to X_s \gamma\right)$	*	*	*	***	***
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***

AC / RVV2, AKM: abelian / non-abelian flavour models

δLL: CKM-like new LH currents + 2↔3 NP CPV phase

FBMSSM: universal SSB terms + CPV phases

R-H currents in $B \rightarrow K^{(*)} vv$

$$\epsilon = \frac{\sqrt{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}}{|(C_L^{\nu})^{\text{SM}}|}$$

$$\eta = \frac{-{\rm Re} \left(C_L^{\nu} C_R^{\nu*}\right)}{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}$$

SuperB Workshop VI, arXiv:0810.1312

4th generation

- allows for a heavier Higgs
- allows for large
 CPV in Bs mixing
- testable at the LHC

Backup

Correlations between 2+ observables can be used to characterize and possibly identify NP models

A possible problem of "lookalikes" is much eased thanks to the rich flavour phenomenology

2-Higgs-Doublet Model

- * B $\rightarrow \tau \nu \& B \rightarrow D \tau \nu$ on the tan β - $M_{H^{+}}$ plane
- * direct searches are not competitive
- * strong bounds also from $B_s \rightarrow \mu\mu$

R-5 models

- flavour in extra-dim. is severely constrained by ϵ_{K}
- large B/Bs effect are still possible

there are R-S models where effects in B(s) are confined to the mixing amplitudes

LHT model

- LFV: $\tau \rightarrow \mu \gamma$ vs $\tau \rightarrow \ell \ell \ell$
- semileptonic asymmetries

Recently: large and correlated CPV effects in D mixing

FC right-handed quark currents

New FC right-handed currents may:

- change the effective γ/g vertex, particularly the magnetic dipole term constraints (b -> $s\gamma$) b -> $s\ell\ell$
- change the effective Z vertex (+box)
- introduce a new effective Z' vertex constraints: b -> $s\ell\ell$ (b -> $s\nu\nu$)

Disentangling the different contributions helps identifying the NP model extreme example: leptofobic Z'