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threshold region radiation inhibited

b - soft gluons - large angles q  emission of  soft and collinear gluons
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Radiative and Semi-inclusive b decays 
b -> q + non QCD 
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α(Q) = αS(Q) 2EX = mb
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�
Q � mb (semileptonic decay)

The large logarithms can be factorized into a QCD form factor
which is universal: it depends only on the hadronic subprocess
the difference between radiative and semileptonic enters in the 

“short distance” coefficient function

Q � mb

The Form Factor
Σ(u; α) = 1 − CF α
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The Form Factor
αn L2n

double logarithmic approximation Σ(u; α) = e−CF α/(2π)L2
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The Form Factor   “master formula”
1
Γ

Z u

0

d3Γ
dxdwdu� du� = C [x,w;α(wmb)] Σ [u;α(wmb)] + D [x,u,w;α(wmb)]

w =
2EX

mb
(0≤ w≤ 2); x =

2El

mb
(0≤ x≤ 1)

Total       width
leptonic   semileptonic decays
radiative        radiative decays

Γ

C(w; α) = C
(0)(w) + αC

(1)(w) + α2
C

(2)(w) + O(α3)
D(w; α) = D

(0)(w) + αD
(1)(w) + α2

D
(2)(w) + O(α3)
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Resummed Mass Distributions
jet initiated by massive partons

With the inclusion of a (final) massive parton 
dead cone effect + soft quanta are radiated 

isotropically in its rest frame:

For massless partons
amplitudes contain terms proportional to: αS

dE
E

dθ2

θ2

αS
dθ2

θ2 + m2

θ2

r ≡ m2

Q2 � 1 mass parameter
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Let us compare massless and massive cases
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JN(Q2; m2) = JN(Q2) δN(Q2; m2)

δN(Q2;m2) = exp
Z 1

0
dz

zr (N−1)−1
1− z

�
−

Z m2(1−z)

m2(1−z)2

dk2
⊥
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�
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��
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0
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dk2
⊥

k2
⊥

A
�
α

�
k2
⊥
��

+ B
�
α

�
Q2(1− z)

��
�

m2
X = (1− z)Q2

Jet o f mass m2
X

A(α) =
∞

∑
n=1

An αn; B(α) =
∞

∑
n=1

Bn αn; D(α) =
∞

∑
n=1

Dn αn.

m � Q.

r(N-1)   mass effects are “visible” for large   N ≥ Q2

m2 � 1

low jet mass  
and     log r appear

high jet mass - m neglectedmX � m

mX−m� m
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b → s + g + γt ≡ 1− cosϑ
2

r ≡ m2
s

m2
b

θ

ϑ > ϑmin ≡
ms

E(0)
s

y ≡ m2
Xs−m2

s

m2
b−m2

s

EXs � E(0)
s =

mb

2
(1 + r)

t > tmin =
1− cosϑmin

2
�

�
ϑmin

2

�2

� r

y = (1− r)ω
�

t +
r

1− r

�
∼= ω(t + r) � ω t f or t > r

ω ≡ 2Eg

mb(1− r)
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fixed order result
Ali Greub
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Resummation to All Orders
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a specific process
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massless case
probability that a massless parton produced in a hard process  at the scale Q

fragments into an hadronic jet of mass mX

J(y;Q) expansion coefficients become large 
resummation to all orders
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massive case
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A,B are related to small angle processes; the first three coefficients are known; giving a 
NNLLa 

D is related to soft emission at large angles w.r. t. the quark;  a process-dependent inter-
jet quantity;  much less accurately known

17
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resummation to all orders

r (N-1)   -  mass effects “visible” only for large N

generalizes  D(α) D1
corresponds to soft radiation not 

collinearly enhanced characteristic of the 
massive parton

infrared safelim
r→0

JN (Q2;m2) = JN (Q2)
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Let us consider the academic
“Frozen Coupling Case”

to define the method to avoid the
Landau poles
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The method 
according to:
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Drell-Yan
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In order to include also the subleading single-log terms we consider the full 
resummation formula

k!Ck
(k) (b0αS)

k → Ck (b0αS)
k kk e−k

k → ∞

δ = (Cb0αSk)
k e−k = e−

1
b0αSC = e−

2
C log Q

Λ = (
Λ

Q
)

2
C
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The resummation of logarithmic effects at threshold does not teach us 
anything about the structure of power corrections. 
Resummation formulae should not, therefore, include any power 
correction.

The Minimal Prescription Formula

The expansion *  converges asymptotically to the MP formula.  
• The coefficients of the expansion * do not grow factorially.
• If we truncate the expansion *  at the order at which its terms are at a
minimum, the difference between the truncated expansion and the full MP formula is 
suppressed by a factor  

where H is a slowly varying positive function. 

This suppression factor is stronger than any power suppression.

*

e−
H(1−τ)

λ
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In our Case
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JN (Q2; m2) = JN (Q2) δN (Q2; m2)

JN (Q2) = e fN(Q2),

fN (αS) = exp

�
Lg1 (λ) +

∞�

n=0

αn
S gn+2 (λ)

�
= exp [Lg1 (λ) + g2 (λ) + αS g3 (λ) + · · · ] ,

λ = β0 αS(Q
2) L, L = logN

δN (Q2; m2) = eFN(Q2;m2),

ρ ≡ β0α(µ
2)Lr, and Lr = θ (N − 1/r) log (N r)

FN

�
Q2;m2

�
= Lr d1 (ρ) +

∞�

n=0

αn dn+2 (ρ) = Lr d1 (ρ) + d2 (ρ) + α d3 (ρ) + · · ·
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where
g1

�
λ;

µ2

Q2

�
= − A1

2β0

1

λ
[(1− 2λ) log (1− 2λ)− 2 (1− λ) log (1− λ)] ;

g2

�
λ;

µ2

Q2

�
= +

A2

2β2
0

[log(1− 2λ)− 2 log(1− λ)] +
A1γE
β0

[log(1− 2λ)− log(1− λ)] +

−β1A1

4β3
0

�
log2(1− 2λ)− 2 log2(1− λ) + 2 log(1− 2λ)− 4 log(1− λ)

�
+

+
D1

2β0
log(1− 2λ) +

B1

β0
log(1− λ) +

A1

2β0
[log (1− 2λ)− 2 log (1− λ)] log

µ2

Q2
.

g3

�
λ;

µ2

Q2

�
= − A3

2β2
0

�
λ

1− 2λ
− λ

1− λ

�
−A1ζ2

2

�
4λ

1− 2λ
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�
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�
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�
+
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3λ
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+

log (1− 2λ)
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+
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+

2λ
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�
+
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�
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+

λ
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�
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1− 2λ
−
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λ
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−A1γ2

E
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�
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−
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−
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+
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Functions            represent mass effects, can be
obtained from the standard ones            of the massless

case by means of the replacements:

di(ρ)
gi(λ)

A(α) → −A(α); B(α) → −B(α); D(α) → D(α); log
µ2

Q2
→ log

µ2

m2
; λ → ρ.

U. Aglietti G. Ricciardi G. Ferrera,  Phys. Rev. D 74 (2006) 034004 

M−1[f�(N);x] = f(x) =
1

2πi

� C+i∞

C−i∞
dN x−Nf�(N)

The general inverse Mellin transform is defined as:

C represents the integration path in the complex N-plane

M−1[f�(N)g�(N);x] =

� 1

x
f
�x
u

�
g(u)

du

u

The inverse Mellin transform of the product is:
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g1 = − A1

2β0
λ

g2 =

�
−B1

β0
− D1

β0
− A1γE

β0

�
λ

g3 =

�
−B2

β0
− D2

β0
− A2γE

β0

�
λ.

In the frozen coupling limit  β0 → 0

and  similarly for the 

di(ρ)

log JN (Q2,m2) = L fN (Q2) + Lr FN (Q2,m2) � − A1

2β0
λ L+

A1

2β0
ρ Lr

λ = β0 αS(Q
2) L, L = logN

ρ ≡ β0α(µ
2)Lr, and Lr = θ (N − 1/r) log (N r)

log JN (Q2,m2) � A1

2β0
logN · log r , r =

m2

Q2
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x10 1-r

threshold region

Landau pole x = 1− e
1

2αS β0

massless behavior massive behavior

scales and  kinematics

 

x    likewise the Bjorken variable represents the inelasticity of the final state

x =
Q2

2Q · p

x = 1− y y =
m2

X −m2

Q2 −m2

r =
m2

Q2

x =
2Ew

mb
= 1− y
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in our massive case the Minimal Prescription Formula
consists in taking the contour as in the massless case

ΓN (x)

Γ
=

1

2πi

� C+i∞

C−i∞
dN x−N JN (Q2) · δN (Q2;m2)

JN (Q2;m2) = JN (Q2) · δN (Q2;m2)

ΓN (x)

Γ
=

1

2πi

� C+i∞

C−i∞
dN x−N JN (Q2;m2)

JN (Q2;m2) = e
A1
2β0

logN ·log r

Tuesday, July 6, 2010



Finally 

dΓ(x)

dx
=

1

2πi

� CMP+i∞

CMP−i∞
dN x−N ea logN ·log r

= − d

dx
θ(1− x)ea log r·log 1

1−x · (1 +NLL terms)

a =
A1

2β0
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Some Results in frozen coupling
( no regularization )

in order to estimate the mass effects
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CONCLUSIONS AND A WISHFUL OUTLOOK

The regularization of a generalized resummed approach to mass corrections in 
HQ decays in the threshold region up to NNLLa terms

In the frozen coupling constant case the massive Minimal Prescription Formula 
regularization, for the leading terms,  shows a milder divergent behaviour 
( shadow of the singularity in the massless case ) with respect to the massless 
one.

In the running coupling case we expect that, by including the subleading terms,  a 
finite order truncated expansion can be obtained

We expect that resummed formulae will not be plagued by renormalon power 
corrections in perturbative treatment of  HQ decays

The MP formula for the massive case is potentially extensible to any other 
massive perturbative evaluation 
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spare transparencies
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  Anacapri June 18  2008

Theoretical aspects of resummation in B 
decays and fragmentation processes

Luca Trentadue 
Universita’ and  INFN

ParmaSecond Workshop on Theory, Phenomenology 
and Experiments in Heavy Flavour Physics

Based on the work done in collaboration with:
U. Aglietti L. Di Giustino  G. Ferrera  A. Renzaglia  G. Ricciardi  

   Phys.Lett. B651:275-292,2007 B653:38-52 2007
                                              e-Print: arXiv:0804.3922 [hep-ph]
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2
λ = 1
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2
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Interpolation Formula

Interpolation of soft and soft+collinear radiation
                                        

Resummation is valid for any ratio of             ; reduces to the massless formula for m->0

Coherence effects are included i.e. no-radiation for no-recoil of the “light”  quark u_c=0
( most of the phase space of the b->c transitions is for a “not too fast” charm) 

Derivation comes from the universal properties of the QCD radiation
Resummed formula can be combined with a first order differential distribution

Phenomenological Outputs:

A more precise determination of m_c
b->c is dominated by few hadronic states ( unlike the charmless channels ) 

Insights on the parton-hadron duality and hadron dynamics at the scale of few GeV

Improved inclusive extraction of the CKM |V_cb| and a better subtraction of backgrounds 
to  b->u transitions due to larger windows of data analysis  (see D
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