Recent Results in Charm and Charmonium Physics

Matteo Negrini

Ferrara University – INFN On behalf of the BaBar collaboration

OUTLINE:

• D_s spectroscopy • Measurement of the decay constant f_{Ds} • X(3872) $\rightarrow J/\psi\omega$ • Z(3930) • Search for Z(4430)⁻

BaBar data

Integrated Luminosity [fb⁻¹]

BaBar datasets:

- Y(4S): 465 · 10⁶ decays
- Y(3S): $122 \cdot 10^6$ decays
- Y(2S): 100 · 10⁶ decays

B-factory operates mainly on the Y(4S) peak, at $E_{CM}=10.58$ GeV

A B-factory is also a flavor factory

$e^+e^- ightarrow$	σ (nb)
bb	1.05
СС	1.30
SS	0.35
uu	1.39
dd	0.35
τ+τ-	0.94

As of 2008/04/11 00:00

D_s meson spectrum

- D_s (bound states of cs̄ quarks)
- Spectroscopy is still evolving
- 4 states observed before the B factories in agreement with the theoretical models
- 2 states observed at B factories: $D_{sJ}^{*}(2317)^{+}$ (in $D_{s}^{+}\pi^{0}$) and $D_{sJ}(2460)^{+}$ (in $D_{s}^{*+}\pi^{0}$) do not match theoretical expectations
- \bullet 2 additional states $D_{s1}(2700)^+$ and $D_{sJ}(2860)^+$ observed by BaBar in D^*K decay
- New broad structure at 3040 MeV

Godfrey, Isgur model predictions - PRD 32, 189 (1985) Observed before B-factories Observed at B-factories

240 fb⁻¹

PRL 97, 222001 (2006)

$D_{sJ}(2700)^+$ and $D_{sJ}(2860)^+$ in DK decay

Inclusive search of: $e^+e^- \rightarrow K^+D^0X$ $e^+e^- \rightarrow K_sD^+X$

Momentum: p*(DK)>3.5 GeV/c

Same features observed for all D^{0,+} reconstruction modes

Fit results

470 fb⁻¹

DK study update

Recent update of the study with double statistics

Results consistent with previous ones

Slightly larger mass and width for the $D_{s1}(2700)$

D_{s1}(2700)⁺ parameters: m=2710.0±3.3 MeV/c² Γ=178±19 MeV

D_{sJ}(2860)⁺ parameters: m=2860.0±2.3 MeV/c² Γ=53±6 MeV

470 fb⁻¹

BaBar studies for D_{sJ} in D^*K

Inclusive search of:

 $e^+e^- \rightarrow K^+D^{*0}X$ $e^+e^- \rightarrow K_sD^{*+}X$

$$D^{*0} \rightarrow D^0 \pi^0$$

 $D^{*+} \rightarrow D^0 \pi^+, D^+ \pi^0$

BaBar studies for D_{sJ} in D^*K

Fit to D^{*}K distribution

Combined spectrum from all reconstruction modes Fit with smooth background + 3 relativistic Breit-Wigner

Additional broad structure observed at 3040 MeV/c²

Systematic uncertainty obtained varying the selection criteria (p*, $\cos\theta_{K}$, Δm) Statistical significance evaluated from $\Delta \chi^{2}$ after removing one resonance and repeating the fit

Taking into account efficiency and averaging on $D^{*0}K^+$ and $D^{*+}K^0$ decays, we obtain: $\frac{B(D^*_{s1}(2710)^+ \to D^*K)}{B(D^*_{s1}(2710)^+ \to DK)} = 0.91 \pm 0.13 \pm 0.12 \qquad \frac{B(D^*_{sJ}(2860)^+ \to D^*K)}{B(D^*_{sJ}(2860)^+ \to DK)} = 1.10 \pm 0.15 \pm 0.19$

Angular Analysis

Angular distribution are obtained from the yield of the states in different θ_h regions θ_h : angle between the π from the D* decay wrt the K, in the D* reference frame

For the $D_{s1}^{*}(2710)$, two different assignment for $J^{P}=1^{-}$ are proposed by P. Colangelo et al. (PRD 77, 014012 (2008)):

- L=2 ground state $(1^{3}D_{1}) \rightarrow$ ratio of BR expected: 0.043±0.002
- L=0 first radial excitation $(2^{3}S_{1}) \rightarrow$ ratio of BR expected: 0.91±0.04

data support 23S1 assignment

For the the $D_{sJ}^{*}(2860)$, quantum numbers still not defined ($J^{P=3^{-}}$ and $J^{P=0^{+}}$ are proposed)

Measurement of the branching fraction $D_s^+ \rightarrow \tau^+ v_{\tau}$ and extraction of the decay constant f_{Ds}

In the standard model the D_s^+ can decay to leptonic final states through the annihilation of c and \overline{s} quarks into a virtual W⁺ boson

These decays provide a clean probe for the measurement of the meson decay constant f_{Ds} , describing the amplitude for the two quark to have 0 spatial separation

The D_s⁺ has spin 0, so the leptonic decay is helicity suppressed. This motivates the study of $\tau^+\nu_{\tau}$ final state

Predictions for f_{Ds} come from lattice calculation: $f_{Ds}=(247\pm2)$ MeV (J. Shigemitsu, FPCP 2010, Torino)

The measurement can be used to validate lattice QCD calculations and could provide hints for new physics effects

Measurement of the branching fraction $D_s^+ \rightarrow \tau^+ v_{\tau}$ and extraction of the decay constant f_{Ds} 427 f

hep-ex/1003.3063

$$e^{+}e^{-} \rightarrow c\overline{c} \rightarrow D_{s}^{*+}\overline{D}_{TAG}\overline{K}X$$
$$D_{s}^{*+} \rightarrow D_{s}^{+}\gamma$$
$$D_{s}^{+} \rightarrow \tau^{+}\nu_{\tau}$$

D_{TAG}: reconstructed D meson to suppress hadronic background

K: required to balance strangeness in the event

 $\gamma \text{ in } D_s{}^*$ decay is the signal photon

E_{extra}: sum of the CM energies of all photons (of at least 30 MeV) in the event that are not associated to reconstructed particles, used for signal - background separation

Data divided in two samples:

- D_s^* candidate is defined as the missing particle: 4-momentum: $P_{Ds^*} = P_{ee} - (P_{Dtag} + P_K + P_X)$
- a single electron is required in the event (for $\tau \rightarrow evv$ decay)
- E_{extra} required to be in the region 0-0.5 GeV
- Simultaneous unbinned max-likelihood fit to recoil
- mass (against the signal photon) and E_{extra} (for E_{extra} >0)
- branching fractions are obtained from peak in the recoil mass distribution, normalizing to $D_s^+ \rightarrow K_s^0 K^+$ decay

uncertainty from external and theoretical quantities

The Charmonium spectrum

Renewed interest in charmonium spectroscopy after results from B-factories, concerning the observation of states with unpredicted properties

- Expected narrow states below the open charm threshold, wide states above this threshold
- Several new states observed: X(3872), Y(3940), Z(3930), Y(4260),...

Experimental and theoretical efforts to explain the observed properties, including non conventional explanations:

- Hybrids (with gluonic degree of freedom, expected mass > 4.2 GeV)
- Tetraquarks DD molecules (compatible with small width above threshold and existence of charged states)

Charmonium Production at B-factories

Two photons production

Double charmonium production

Initial state radiation

The X(3872) observation

424 fb⁻¹

 $X(3872) \rightarrow J/\psi \gamma$

Analysis strategy:

- Reconstruct $B \rightarrow (J/\psi, \psi') \gamma K^{(*)}$
- Separate signal from background by assigning a weight to each event and project the events in the two categories (sPlot, NIM A 555, 356 (2005))

Same analysis strategy applied to $B\to J/\psi\,\gamma\,K(^*)$ to reconstruct $\chi_{c1,2}$ and validated on MC samples

This decay mode fix C=+ for the X(3872)

Molecular model predicts small branching ratio A large branching ratio could indicate a significant $c\bar{c}$ component

 $B(B^{\pm} \to X(3872)K^{\pm}, X(3872) \to \psi(2S)\gamma) =$ = (9.5 \pm 2.7 \pm 0.6)×10⁻⁶

 $\frac{B(X(3872) \rightarrow \psi(2S)\gamma)}{B(X(3872) \rightarrow J/\psi\gamma)} = 3.4 \pm 1.4$

426 fb⁻¹

•

BaBar reanalysis: $X(3872) \rightarrow J/\psi \omega$

- Same selection criteria used in previous analysis, with low ω mass limit lowered to 0.7400 GeV/c²
- m_{ES} fit (after ∆E requirement) in intervals of the variable of interest to extract B-signal contribution

 4σ evidence of X(3872) in J/ $\psi\omega$

- Fit distributions after efficiency correction
- $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$

$X(3872) \rightarrow J/\psi\,\omega$: fit results

$$m_{X} = (3873.0^{+1.8}_{-1.6} \pm 1.3) MeV/c^{2}$$

$$N_{X}^{+} = 21\pm7$$

$$N_{X}^{0} = 6\pm3$$

$$\frac{B(X \to J/\psi\omega)}{B(X \to J/\psi\pi^{+}\pi^{-})} = 0.7\pm0.3 \text{ for B}^{+} \text{ events}$$

$$\frac{B(X \to J/\psi\omega)}{B(X \to J/\psi\pi^{+}\pi^{-})} = 1.7\pm1.3 \text{ for B}^{0} \text{ events}$$

$$\frac{B(X \to J/\psi\pi^{+}\pi^{-})}{B(X \to J/\psi\pi^{+}\pi^{-})} = 1.7\pm1.3 \text{ for B}^{0} \text{ events}$$
Consistent with Belle result:
$$\frac{B(X \to J/\psi\omega)}{B(X \to J/\psi\pi^{+}\pi^{-})} = 1.0\pm0.4\pm0.3$$

$$B(B^+ \to XK^+) \times B(X \to J/\psi\omega) = (0.6 \pm 0.2 \pm 0.1) \times 10^{-5}$$
$$B(B^0 \to XK^0) \times B(X \to J/\psi\omega) = (0.6 \pm 0.3 \pm 0.1) \times 10^{-5}$$

5.2

5.28

 m_{ES} (GeV/c²)

5.26

5.24

 $5\overline{.2}$

5.22

5.24

5.26

22

5.28

 $m_{FS} (GeV/c^2)$

Results for Y(3940) \rightarrow J/ $\psi\,\omega$

Third Workshop on Theory, Phenomenology and Experiments in Heavy Flavour Physics - July 5-7, 2010 - Capri

Charged states: Z(4430)⁻

Third Workshop on Theory, Phenomenology and Experiments in Heavy Flavour Physics - July 5-7, 2010 - Capri

Third Workshop on Theory, Phenomenology and Experiments in Heavy Flavour Physics - July 5-7, 2010 - Capri

Third Workshop on Theory, Phenomenology and Experiments in Heavy Flavour Physics - July 5-7, 2010 - Capri

 $Z(4430)^-$: $\psi\pi^-$ mass distribution

Third Workshop on Theory, Phenomenology and Experiments in Heavy Flavour Physics - July 5-7, 2010 - Capri

BaBar - Belle comparison

Direct comparison of the two experiments:

 normalization with integrated luminosity, efficiency, background (corr. factor = 1.18)

application of K* veto

The two results are statistically compatible (low efficiency regions excluded)

Conclusions

- Large datasets of Charm / Charmonium available at the B-factories
- New informations on charmed meson spectroscopy
 - Data support $2^{3}S_{1}$ for the D_{s1} (2710)⁺; J^P=3⁻ and 0⁺ proposed for D_{sJ}(2860)⁺
 - Observation of a broad $D_{sJ}(3040)^+$
 - Measured D_s decay constant f_{Ds} in agreement with recent unquenched lattice QCD calculations
- Renewed interest in charmonium spectroscopy after the discovery of several new states, with unpredicted properties
 - X(3872) studied in detail but its nature is still not clear
 - Several states observed at mass around 3940 MeV/c².
 - The charged state Z(4430)⁻ still need more experimental studies
- Several experiments (B-factories, CDF, D0, LHC experiments) with the potential for studies in this field. More results are expected.
- The Super-B factory will play a leading role in this field.

The BaBar detector at PEP-II

32

X(3872) - angular distribution

0++ and 0-+ ruled out by Belle

1++ and 2-+ favored by CDF

A family of new states

(not presented in this talk)

