BESIII Results

Weiguo Li For the BES Collaboration

3rd International Workshop on Theory, Phenomenology and Experiment in Heavy Flavour Physics

Anacapri, Italy

July 5-7, 2010

OUTLINE

- Introduction
- **BEPCII/BESIII**
- Physics results
 - $> \chi_{cJ}$ $> \psi(2S) \rightarrow \gamma \gamma J/\psi$
 - ≥ h_c
 - > X(1860) & X(1835)
 - $> f_0(980) a_0(980)$ mixing
- Summary

Physics of tau – charm region

- Light hadron spectroscopy.
- Charmonium: J/ψ , $\psi(2S)$, $\eta_C(1S)$, $\chi_{C\{0,1,2\}}$, $\eta_C(2S)$, $h_C(^1P_1)$, $\psi(1D)$, etc. • New Charmonium states above open charm threshold (X, Y, Z).
- In J/ ψ and ψ (2S) hadronic decays:
 - Exotics : hybrids, glueballs, and other exotics.
 - > Baryons and excited baryons.
 - Mesons and mixing of quarks and gluons.
- Electromagnetic form factors and precise R values.
- High precision tau and charm physics near threshold. Tau mass.

Physics of tau – charm region

> Open charm factory :

- Absolute BR measurements of D and Ds decays
- Rare D decay
- D⁰ D⁰bar mixing
- Quantum correlations (Ψ '')
- CP violation, strong phase.
- f _{D+}, f_{Ds}, form factors in leptonic D decays
- Can provide calibrations and tests of lattice QCD.
- precise measurement (~1.6%) of CKM (Vcd, Vcs)
- light meson spectroscopy in D⁰ and D⁺ Dalitz plot analyses.

> Search for new physics.

The Beijing Electron Positron Collider (BEPC)

BEPC/BESIICM Energy ranges from 2 to 5 GeVLuminosity at $J/\psi \sim 5 \ge 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$

BESII detector removed in 2004.

CLEO-c

Late comer to tau – charm energy region.

- Lowered CESR CM energy in 2003 to run in tau-charm region.
- Stopped in 2008.
- Peak luminosity
 ~0.6 x 10³² pb⁻¹ s⁻¹.
- Int. Luminosity at $\psi(3770)$ ~800 pb⁻¹.
- ψ(2S) : ~25 M.
- Well understood, state of the art detector.
- BESIII has a comparable detector and higher luminosity. Unique e⁺e⁻ experiment at tau-charm energy region.

BEPCII: a high luminosity double-ring collider

Use many bunches and SC mini-beta.

Beam magnets 7

BEPCII/BESIII Milestones

Beginning of 20	004, construction starts	Record
Mar. 2008:	Collisions at 500 mA \times 500 mA, Lum.: 1	3.2 X IU
Apr. 30, 2008:	Move BESIII to IP	$3 \times CES$
July 18, 2008:	First e ⁺ e ⁻ collision event in BESIII	JU × DE
Apr. 14, 2009	BESIII 106 M Ψ(2S) events (42.3pb ⁻¹ at 3	6.65GeV)
July 28, 2009	~226 M J/ψ events	
June 27, 2010	~930 pb ⁻¹ at $\psi(3770)$, with ~70pb ⁻¹	
	scanning in $\psi(3770)$ energy region.	
Run 4530 Event 100893 date: 2008-07-20 bitte: 07.04.04	BesDis	

Record Luminosity 3.2 X 10³²cm⁻²s⁻¹ or $5 \times CESRc$ $30 \times BEPC$

P2+0.702 P4+1.040 MDC Track(GeV): P1=0.945 P3+0.421 E2+226.00 EMC Clutter/MeV/E E1+151.91 E3-295.91 E4+165.27 E5-48.68 E6+193.98

N

A

J

A

J

J

XV New

May 15, 2008: detector at IP; installing SC quads and beam pipe.

World J/ ψ and ψ (2S) Samples ($\times 10^{6}$)

BES-III

Magnet: 1 T Super conducting

BESIIII detector: all new !

CsI calorimeter Precision tracking Time-of-flight + dE/dx PID

The detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

April 2008 - Installation complete

BESIII collaboration: 46 Institutes

Political Map of the World, June 1999

Detector performance MDC

13

1.7

TOF, Top time resolution

Energy peak and resolution in CMS in different runs

DATA and MC consist very well for Bhabha events,

after the calibration with Bhabha

EMC Performance reach/exceed design

Nice features of BESIII EMC

Radiative decays: $\psi(2S) \rightarrow \gamma X$ $\psi(2S) \rightarrow \gamma \chi_{cJ} \rightarrow \gamma 2\pi^+ 2\pi^-$

- Clean exclusive signal
- High statistics
- Clear inclusive photon spectrum
- Excellent photon resolution

χ_{cJ} decays

- Good place to study gluonium: χ_c → gg → (qq)(qq).
 C. Amsler and F. E. Close, Phys. Rev. D 53, 295 (1996).
- Color octet mechanism can be tested.
 - G. T. Bodwin *et al.*, Phys Rev. Lett. **D51**, 1125 (1995).
 H.-W. Huang and K.-T. Chao, Phys. Rev. **D54**, 6850 (1996).
 J. Bolz *et al.*, Eur. Phys. J. C **2**, 705 (1998).

 χ_{cI} decays

SOZI

• Test of color singlet/octet models in χ_{cJ} decays

decay width	theory[3]	PDG08
Γ[χ _{c0} → π° π°]/keV	23.5	25 ± 2
$\Gamma [\chi_{c2} \rightarrow \pi^0 \pi^0] / \text{keV}$	1.93	1.4 ± 0.2
Γ[χ _{c0} → ηη] /keV	32.7	25 ± 4
Γ[χ _{c2} → ηη] /keV	2.66	
	_	

J. Bolz et. al., Eur. Phys. J. C 2:705 (1998)

• Study of higher mass resonances (η and η ') offers possibility to investigate doubly-OZI suppressed decays, which may compete with the singly-OZI suppressed decays.

 $\chi_{c0,2}$ q_{3} q_{4} DOZI $\chi_{c0,2}$ q_{3} q_{4} q_{4}

Q. Zhao, Phys. Lett. B 659, 221 (2008).

Study of $\psi(2S) \rightarrow \gamma \chi_{cJ}; \chi_{cJ} \rightarrow \pi^0 \pi^0, \eta \eta$

Good agreement between data & MC

 $\chi_{c1} \rightarrow \pi \pi$, $\eta\eta$ not allowed by parity conservation.

Decay mode		y mode	χ _{c0} (10 ⁻³)	χ _{c2} (10 ⁻³)
	$\pi^0\pi^0$	BESIII	$3.23 \pm 0.03 \pm 0.23 \pm 0.14$	$0.88 \pm 0.02 \pm 0.06 \pm 0.04$
		PDG08	2.43±0.20	0.71±0.08
		CLEOc	$2.94 \pm 0.07 \pm 0.32 \pm 0.15$	$0.68 \pm 0.03 \pm 0.07 \pm 0.04$
	ηη	BESIII	$3.44 \pm 0.10 \pm 0.24 \pm 0.20$	$0.65 \pm 0.04 \pm 0.05 \pm 0.03$
72007		PDG08	2.4 ± 0.4	< 0.5
/200/		CLEOc	$3.18 \pm 0.13 \pm 0.31 \pm 0.16$	$0.51 \pm 0.05 \pm 0.05 \pm 0.03$
		•		

CLEOc:

(2009).

PRD 79, 0'

CLEOc used their own branching ratios for $\Psi \rightarrow \gamma \chi_{cJ}$.

22

$\chi_{cJ} \rightarrow 4\pi^0$ from $\psi \rightarrow \gamma \chi_{cJ}$ decays

> Branching fraction excluding Ks $\rightarrow \pi^0 \pi^0$ Br $(\chi_{c0} \rightarrow 4\pi^0) = 3.42 \pm 0.07 \pm 0.45) \times 10^{-3}$ Br $(\chi_{c1} \rightarrow 4\pi^0) = 0.60 \pm 0.03 \pm 0.09) \times 10^{-3}$ Br $(\chi_{c2} \rightarrow 4\pi^0) = 1.13 \pm 0.04 \pm 0.15) \times 10^{-3}$

> Branching fraction for $\chi_{cJ} \rightarrow KsKs$ Br $(\chi_{c0} \rightarrow K_SK_S) = 4.1 \pm 0.4(stat.)) \times 10^{-3}$ Br $(\chi_{c2} \rightarrow K_SK_S) = 0.6 \pm 0.2(stat.)) \times 10^{-3}$

$B(\chi_{c0} \rightarrow K_S K_S)$	χ _{c0} (10 ⁻³)	χ _{c2} (10 ⁻³)
BESIII	$4.1 \pm 0.4_{\rm stat}$	$0.6 \pm 0.2_{\text{stat}}$
PDG08	2.82 ± 0.28	0.65 ± 0.08
CLEOc	$3.49 \pm 0.08 \pm 0.18 \pm 0.17$	$0.53 \pm 0.03 \pm 0.03 \pm 0.03$

CLEO Collaboration, Phys. Rev. D79: 072007 (2009).

These decays are important for evaluating theoretical techniques.

B (10 ⁻⁶)	BESIII	CLEOc	pQCD
$\chi_{c0} \rightarrow \gamma \phi$	< 14.8	< 6.4	0.46
$\chi_{c1} \rightarrow \gamma \phi$	$27.3 \pm 5.5_{\rm stat}$	< 26	3.6
$\chi_{c2} \rightarrow \gamma \phi$	< 7.8	< 13	1.1
$\chi_{c0} \rightarrow \gamma \rho^{0}$	< 9.5	< 9.6	1.2
$\chi_{c1} \rightarrow \gamma \rho^{0}$	$241 \pm 14_{\rm stat}$	$243 \pm 19 \pm 22$	14
$\chi_{c2} \rightarrow \gamma \rho \ ^0$	< 19.7	< 50	4.4
$\chi_{c0} \rightarrow \gamma \omega$	< 11.7	< 8.8	0.13
$\chi_{c1} \rightarrow \gamma \omega$	$73.5 \pm 7.6_{\mathrm{stat}}$	$83 \pm 15 \pm 12$	1.6
$\chi_{c2} \rightarrow \gamma \omega$	< 5.8	< 7.0	0.5

χ_{c1} → γφ observed for first time.
pQCD predictions ×10 too low.
Difference may be explained by non-perturbative QCD "loop corrections". D.Y Chen *et al*, arXiv:1005.0066v2[hep-ph].

CLEOc: PRL 101, 151801 (2008) pQCD: Y.J. Gao et al., hep-ph/070100⁹⁴

BESIII: Only statistical errors are shown

Measurements of $\chi_{cJ} \rightarrow \gamma V$, V= ϕ , ρ , ω

Helicity angle θ is the angle between the vector meson direction in the χ_{c1} rest frame and a daughter meson in the vector meson rest frame (ρ and ϕ) or the normal to the decay plane in the ω rest frame. Longitudinal polarization (transverse) exhibits a $\cos\theta^2$

 $(\sin\theta^2)$ dependence.

Longitudinal polarization dominant in $\chi_{c1} \rightarrow \gamma V$ decays.

CLEO-c determines ratio of transverse to longitudinal polarization (f_T) :

$$f_T = 0.078^{+0.048+0.002}_{-0.036-0.022} \quad \text{for } \chi_{c1} \rightarrow \gamma \rho$$

$$f_T = 0.47^{+0.37+0.11}_{-0.24-0.23} \quad \text{for } \chi_{c1} \rightarrow \gamma \omega$$

CLEOc: PRL 101, 151801 (2008)

BESIII preliminary

25

Study of $\chi_{cJ} \rightarrow VV$, $V = \omega, \phi$

Important laboratory to test QCD:

- Previous measurements from BESII.
- They do not show expected helicity suppression.

BR(10-3)	χ _{c0}	χ_{c2}	
$\rightarrow \phi \phi$	$0.94 \pm 0.21 \pm 0.13$	$1.70\pm0.30\pm0.25$	BESII, PLB 642, 197 (2006)
$\rightarrow \omega \omega$	$2.29 \pm 0.58 \pm 0.41$	$1.77 \pm 0.47 \pm 0.36$	BESII, PLB 630, 7 (2005)

Study of $\chi_{cI} \rightarrow VV, V = \omega, \phi$

• $\chi_{c1} \rightarrow \phi \phi$ (and $\omega \omega$) should be highly suppressed because C-parity requires L = 2.

First observation of $\psi(2S) \rightarrow \gamma \gamma J/\psi$

- Two photon transitions are well known in excitations of molecules, atomic hydrogen, and positronium.
 - A. Quattropani etal, PRA 25, 3079 (1982).
 - F. Bassani *etal,* PRL **39**, 1070 (1977).
 - A. Quattropani *etal,* PRL **50**, 1258 (1983).
- CLEO observed two photon transitions in Upsilon(3S)
- \rightarrow Upsilon(2S).
 - F. Butler etal, PRD 49, 40 (1994).
- Never been observed in the charmonium system.
- Observation helpful to understanding QCD.

Theoretically:

- potential models give discrete spectra ($\psi(2S) \rightarrow \gamma \chi_{cJ}, \chi_{cJ} \rightarrow \gamma J/\psi$)
- coupled channel models can give continuous spectra.
- theoretical work ongoing.

$h_c({}^1P_1)$ M(h_c) important to learn about hyperfine (spin-spin) interaction of P wave states.

Hyperfine or triplet-singlet splitting determined by spin-spin term in QCD potential models.

- h_c: 1st seen by E835 and CLEO in 2005
 - E835: Evidence in pp $\rightarrow h_c \rightarrow \gamma \eta_c$
 - CLEO: Observation in $\psi(2S) \rightarrow \pi^{0} h_{c}$;

$$h_c \rightarrow \gamma \eta_c$$

CLEOc in 2008: 25 M ψ(2S) events
 Combining with earlier CLEO results:

 $M(h_C)_{AVG} = 3525.20 \pm 0.18 \pm 0.12 \text{ MeV/c}^2$ $(B_1 \times B_2)_{AVG} = (4.16 \pm 0.30 \pm 0.37) \times 10^{-4}$

30

Using the spin weighted centroid of ${}^{3}P_{J}$ states, $\langle M({}^{3}P_{J}) \rangle$, to represent $M({}^{3}P_{J})$: $\Delta M_{hf}(1P) = \langle M({}^{3}P_{J}) \rangle - M({}^{1}P_{1}) = 0.08 \pm 0.18 \pm 0.12$ MeV ± 0.12 MeV Consistent with lowest order expectation of 0.

BESIII h_c: Tagged $\psi(2S) \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$

- Select events with E1-photon to tag $h_c \rightarrow \gamma \eta_c$
- Plot mass recoiling from inclusive $\pi^0 (\psi(2S) \rightarrow \pi^0 h_c)$
- Fit with double-Gaussian signal x BW + sideband bkg:

 $M(h_c) = 3525.40 \pm 0.13 \pm 0.18 \text{ MeV/c}^2$ $\Gamma(h_c) = 0.73 \pm 0.45 \pm 0.28 \text{ MeV/c}^2$ (< 1.44 MeV/c² @ 90% CL) (First measurement)

Br($\Psi(2S) \rightarrow \pi^0 h_c$)×Br($h_c \rightarrow \gamma \eta_c$) = (4.58 ± 0.40 ± 0.50) ×10⁻⁴

BESIII h_c : Inclusive $\psi(2S) \rightarrow \pi^0 h_c$

- Select inclusive π^0 (untagged)
- Plot mass recoiling against π° .
- Fit with double-Gaussian x BW signal + 4th Poly. bkg (mass and width fixed to tagged values)
- Combine with tagged results to determine:

Br(ψ(2S) $\rightarrow \pi^0 h_c$) = (8.4 ± 1.3 ± 1.0) ×10⁻⁴ Br(h_c $\rightarrow \gamma \eta_c$) = (54.3 ± 6.7 ± 5.2) %

(First measurement) (First measurement)

BES Collaboration, PRL 104, 132002 (2010)

h_c: analysis summary

BES Collaboration, PRL 104, 132002 (2010)

	BESIII	CLEOc	Th(Kuang)
$Br(\psi(2S) \rightarrow \pi^0 h_c) \times$	$4.58 \pm 0.40 \pm 0.50$	$4.16 \pm 0.30 \pm 0.37$	
Br (h _c →γη _c) [10 ⁻⁴]			
M [MeV/c ²]	3525.40 ±0.13±0.18	3525.20 ±0.18±0.12	
Γ [MeV]	$0.73 \pm 0.45 \pm 0.28$		1.1 (NRQCD)
	<1.44 @ 90%CL		0.51 (PQCD)
$\Delta M_{hf}(1P) [MeV/c^2]$	$0.10 \pm 0.13 \pm 0.18$	$0.08 \pm 0.18 \pm 0.12$	

CLEO-c Collaboration, PRL 101, 182003 (2008)

	BESIII	theoretical predictions
$Br(\psi' \rightarrow \pi^0 h_{c)} [10^{-4}]$	$8.4 \pm 1.3 \pm 1.0$	4 – 13 Kuang
Br($h_c \rightarrow \gamma \eta_c$) [%]	54.3±6.7±5.2	41 (NRQCD) Kuang
		88 (PQCD) Kuang
		38 Godfrey, Rosner

Theoretical predictions: Kuang, PRD65, 094024 (2002), Godfrey & Rosner, PRD 66, 014012 (2002).

Threshold enhancement in $J/\psi \rightarrow \gamma p \overline{p}$

- **BESII**: enhancement seen near threshold in M_{pp} in $J/\psi \rightarrow \gamma p \bar{p}$.
- If fitted with an S -wave resonance:

$$M = 1859 + 3 + 5 - 10 - 25 MeV/c^{2}$$

$$\Gamma < 30 MeV/c^{2} (90\% CL)$$

Phys. Rev. Lett. 91, 022001 (2003) 162 citations

BESI

pp threshold enhancement

EPJ C53 (2008) 15

35

pp threshold enhancement @ BESIII

$\psi' \rightarrow \pi^+ \pi^- J/\psi, J/\psi \rightarrow \gamma p \overline{p}$

Published in Chinese Physics C 34, 421 (2010)

Consistent observation by BESIII !

pp threshold enhancement @ CLEOc

BES considered these (2) and (3) as systematic errors.

X(1835) at BESII

- The X(1860) should be detected in other decay modes.
- G.J. Ding and M.L. Yan suggest η'ππ to be a favorable mode. (Hep-ph/0502127)
 - there is gluon content in pp̄
 - $-\eta$ ' has strong coupling to gluons
- Confirmation of X(1835) is necessary with BESIII 226M J/ψ data sample

The $\pi^+\pi^-\eta'$ mass spectrum for η' decaying into $\eta' \rightarrow \pi^+\pi^-\eta$ and $\eta' \rightarrow \gamma \rho$

PRL 95, 262001 (2005) 38

BES III

Preliminary

2.4

 $M_{\pi\pi\eta'}$ (GeV/c²)

2.6

2.2

300

200

100

0 4

1.8

1.6

2.0

 $M = 1842.4 \pm 2.8(stat)MeV$

 $\Gamma = 99.2 \pm 9.2(stat)MeV$

Fit result: Stat. sig. $\sim 21 \sigma$ X(1835) confirmed by BESIII ³⁹

- Light scalar mesons f₀ and a₀ are still controversial.
- Described as quark-antiquarks, four quarks, KK-bar molecule, qq-bar g hybrids, etc.
- Study of mixing is important to clarify their nature.
- $J/\Psi \rightarrow \phi f_0 \rightarrow \phi a_0 \rightarrow \phi \eta \pi$ and $\chi_{c1} \rightarrow a_0 \pi^0 \rightarrow f_0 \pi^0 \rightarrow \pi^+ \pi^- \pi^0$ provide complementary information:

Mixing peaks expected at ~991 MeV/c² with 8 MeV/c² width.

- Branching ratio and mixing intensity ξ_{fa}
- $J/\psi \rightarrow \phi f_0(980) \rightarrow \phi a_0(980) \rightarrow \phi \eta \pi^0$
- efficiency = (18.5±0.2)%
- **Nobs** = 24.7 ± 8.6
- (< 36.7@90% C. L., by Bayesian approach)
- $Br(J/\psi \rightarrow \phi f_0(980) \rightarrow \phi a_0(980) \rightarrow \phi \eta \pi^0) = (3.1 \pm 1.1(\text{stat.}) \pm 0.8(\text{sys.})) \times 10^{-6}$

< 5.5 ×10⁻⁶ @90% C. L., lowering the efficiency by $1\sigma_{sys}$ (to be conservative) Br(J/ $\psi \rightarrow \phi f_0(980) \rightarrow \phi \pi \pi$) = (5.4 ±0.9) ×10⁻⁴ (BESII)

mixing intensity

BESIII Preliminary

42

 $\begin{aligned} \xi_{fa} &= \operatorname{Br}(J/\psi \to \phi f_0(980) \to \phi a_0(980) \to \phi \eta \pi^0) / \operatorname{Br}(J/\psi \to \phi f_0(980) \to \phi \pi \pi) \\ &= (0.6 \pm 0.2(\operatorname{stat.}) \pm 0.2(\operatorname{sys.}))\% \ (< 1.1\% \ @ 90\% \ C. \ L.) \\ \text{Uncertainty of } \operatorname{Br}(J/\psi \to \phi f_0(980) \to \phi \pi \pi) \text{ included} \end{aligned}$

$a_0(980) - f_0(980)$ mixing Branching ratio and mixing intensity ξ_{af}

 $\psi(2S) \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow a_0(980)\pi^0, a_0(980) \rightarrow f_0(980), f_0(980) \rightarrow \pi^+\pi^$ efficiency = (22.3±0.2)%

Nobs = 6.5 ± 3.2

(<12.1@90% C. L., by Bayesian approach)

 $Br(\psi(2S) \rightarrow \gamma \chi_{c1}) \times Br(\chi_{c1} \rightarrow a_0(980)\pi^0 \rightarrow f_0(980)\pi^0 \rightarrow \pi^+ \pi^- \pi^0)$

= $(2.8 \pm 1.4(\text{stat.}) \pm 0.5(\text{sys.})) \times 10^{-7}$

< 5.5 ×10⁻⁷ @90% C. L., lowering the efficiency by $1\sigma_{sys}$ (to be conservative)

Br(ψ(2S) $\rightarrow \gamma \chi_{c1}) = (8.8 \pm 0.4)\%$ (PDG);

Br($\chi_{c1} \rightarrow a_0(980)^+\pi^- + c.c. \rightarrow \eta\pi^+\pi^-$) = (2.0 ±0.7(stat.) ±0.1(sys.)) ×10⁻³ (PDG);

 $Br(\psi(2S) \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow a_0(980)\pi^0, a_0(980) \rightarrow \eta \pi^0) = 8.8 \times 10^{-5} \times (1 \pm 35\%)$ mixing intensity

 $\xi_{af} = (0.32 \pm 0.16(\text{stat.}) \pm 0.12(\text{sys.}))\% (< 0.91\% @ 90\% C. L.)$ BESIII Preliminary

43

Mixing intensity $\xi_{fa and} \xi_{af}$

Shaded region: Our measurement Red line: Upper limit

> BESIII Preliminary

Charm meson production

• Threshold productions at 3.773, 4.03, 4.17 GeV

$$e^+e^- \rightarrow D\overline{D}, D_sD_s, D_sD_s^*$$

- Quantum Coherent of DD meson pair
- Double Tag techniques: (partial-) reconstruct both D mesons
- Charm events at threshold are very clean

Scan data around ψ (3770)

• About 70 pb⁻¹ of data were taken at 65 energy points in the energy region from 3.65 to 3.89 GeV.

- Three ψ (3686) energy scan data samples were collected for BEPC-II energy calibration, ...
- Separated beam data were taken for three hours, which will be used to study the beam associated background.
- > To more precisely measure the line shape of cross sections for $e^+e^- \rightarrow$ hadrons in the energy range from 3.72 to 3.89 GeV
- ≻ To measure B[$\psi(3770)$ →non-DD] and B[$\psi(3770)$ →LH]
- > To measure line-shape for $\sigma(e^+e^- \rightarrow DD)$ and $\sigma(e^+e^- \rightarrow LH)$
- > To measure $\psi(3770)$ resonance parameters precisely

> To measure inclusive decay of $\psi(3770)$ to K⁰, K^{0*}, ϕ , J/ ψ , etc.

to understand the nature of $\psi(3770)$

Summary

- **BEPCII/BESIII completed successfully:**
 - Peak Luminosity of 3.2*10³² achieved.
 - 106 M $\psi(2S)$ and ~226 M J/ ψ events obtained in 2009.
 - ~930 pb⁻¹ at $\psi(3770)$ so far in 2010, with some energy scan data.
- Some nice results are obtained with the data: χ_{CJ} , hc, light hadron spectroscopy
- More results will come soon

Thanks