

Flavour Physics at ATLAS: Status and Perspectives

Martin zur Nedden Humboldt-Universität zu Berlin

for the ATLAS Collaboration

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung Workshop on "Heavy Flavour Physics" July 5th – 8th 2010 Capri/Italy

ATLAS Flavour Physics Program

Contents

- First measurements at 7 TeV
 - K⁰_s and A decays
 - hidden charm: J/Ψ measurements
 - open charm: D-mesons
 - b-quark jets
- Perspectives
 - studies for 14 TeV
 - quarkonia production
 - B-meson family
 - rare B-decays

weak decay (V₀) reconstruction provides a stringent test of tracking performance:

- reconstructed K_s and A masses close to PDG value
- width of the invariant mass peaks well reproduced by Monte Carlo
- more sensitive test with higher momentum tracks (i.e. alignment)

Reconstruction of Secondary Vertices

Martin zur Nedden, HU Berlin

$J/\psi \rightarrow \mu^+\mu^-$ Event at ALTAS

Martin zur Nedden, HU Berlin

$J/\psi \rightarrow \mu^+\mu^-$ Selections

loose selections applied to understand shape of background:

• Trigger: Level 1 (L1) and Higher Level Event Filter (EF)

- Minimum Bias Trigger Scintilators MBTS 2.09 < |η| < 3.84 :
 2 coincidence hits on either side of detector (L1)
- **muon activity in MS** found by the muon trigger
- muon triggers combined with MBTS (EF)

collision events

 at least 3 tracks associated with same primary vertex

track quality:

at least 1 hit in the pixel detector; at least 6 hits in semiconductor tracker

track reconstruction applies p_T>0.5 GeV cut to all ID tracks

• muons

- each muon has ID track with the before mentioned track quality cuts
- combination of muon tracks with tracking system

common vertex fit + opposite sign mass region 2-4 GeV

T
<u></u>

$J/\psi \rightarrow \mu^+\mu^-$ Signal

Entries/0.080 [GeV]	ata: 7 TeV runs, L = $6.4 \pm 1.3 \text{ nb}^{-1}$ asic selection $400 ATLAS$ Preliminary $L_{int} = 6.4 \text{ nb}^{-1}$ 350 + 7 TeV data: Opposite Sign 300 Monte Carlo Simulation	 unbinned event-by-event maximum likelihood fit, applied to data and MC N_{sig} and N_{bg} defined in 3 σ region around J/Ψ MC: signal only 	
	200	N _{sig}	612±34
		N _{bg}	332±9
		Mass [GeV]	3.095±0.004
	0^{-1}	σ _м [MeV]	82±7
	J/ψ Mass [GeV]	σ _м (MC)[MeV]	74.0±0.4

Martin zur Nedden, HU Berlin

invariant mass distribution of same sign and opposite sign muon pairs after vertexing

- same sign is (as expected) flat
- smaller contribution from same sign than from opposite sign:
 - both have contributions from combinatorial BG and π/K decays in flight
 - opposite side bands: additional contributions from heavy flavour decays

N _{sig}	612±34
N _{bg}	351±10 / 332±9

before Vertexing / after Vertexing:

- improvements not expected at this stage, most data from primary vertex
- background reduction only by ~6%

J/Ψ Mass Resolution

 in good agreement with MC simulation: much work done with cosmics data, Geant4 and early data to describe / understand the ATLAS detector so well

• most candidates in **EE**

J/Ψ Kinematics

Martin zur Nedden, HU Berlin

L1-muon Trigger

data collected with LVL1 Minimum Bias trigger

good opportunity to study L1 muon trigger efficiency

MU0: loose muon trigger, no p_T threshold applied

efficiency measurement for all J/ Ψ candidates: require at least one reconstructed muon to match to L1 MU0 trigger object within $\Delta R < 0.5$

low J/ Ψ p_T important for polarization studies

$D^{*+} \rightarrow D^0 \Pi_s^+ \rightarrow (K^- \Pi^+) \Pi_s^+$

- data: 7 TeV runs, L = 1.4 nb⁻¹
 basic selection:
 - p_T(D^{*}) > 3.5 GeV
 - $|\eta(D^*)| < 2.1$
 - χ²(vertex) < 5, Lxy>0
 - p_T(D^{*})/E_T > 0.02

- M(Kπ):
 - combining 2 opposite sign track (p_T>1.0GeV),
 - assigning K/ π -masses to each track
 - 2098±128 D^{*+} candidates in 1.83 < M(Kπ)< 1.90 GeV</p>
- $\Delta M = M(K\pi\pi_s) M(K\pi)$:
 - 2010±115 D* candidates in 114 < ΔM < 147 MeV</p>

Martin zur Nedden, HU Berlin

$D^+ \rightarrow K^- \pi^+ \pi^-$

$$p_T(\pi_1) > 0.8 \text{ GeV}, p_T(\pi_2) > 1.0 \text{ GeV}$$

- combine with third track with assigned K mass
 - p_T(K) > 1.0 GeV
- suppression of $D^{*\pm}$ and $D_s^+ \rightarrow \phi \pi^+ \rightarrow (K^-K^+) \pi^+$ reflections:
 - remove $\Delta M_{1,2} < 150$ MeV to suppress D^{*+} and $|M(K^+K^-) M(\phi)_{PDG}| < 8$ MeV to suppress D_s⁺

$D_s^+ \rightarrow \phi \Pi^+ \rightarrow (K^-K^+)\Pi^+$

• data: 7 TeV runs, L = 1.4 nb⁻¹

• basic selection:

p_T(D_s⁺) > 3.5 GeV,

$$|\eta(D_{s}^{+})| < 2.1$$

• χ^2 (vertex) < 6, L_{xy} > 0.4 mm

- $\cos\theta^{*}(\pi) < 0.4$
- $|\cos^{3}\theta'(K)| > 0.2$

- combine 2 opposite-charge tracks assigning K mass to each
 - p_T(K₁,K₂) > 0.7 GeV
- M(K+K-)
 - select $|M(K^+K^-) M(\phi)_{PDG}| < 6 \text{ MeV}$
- combine with third track with assigned π mass • $p_T(\pi) > 0.8$ GeV

Martin zur Nedden, HU Berlin

Heavy Flavour Selection Variables

tagging b-jets is elementary for many analyses at LHC

- all top-related Standard Model analyses
- many searches for new physics (MSSM)
- good knowledge of **impact parameter** and **secondary vertices** also crucial for B-Physics

impact parameter significance (second highest, tag weight), comparison of real Data and Monte Carlo

decay length significance, signed with respect to the calorimeter jet axis (**tag weight**), **comparison of real Data and Monte Carlo**

Martin zur Nedden, HU Berlin

Contents

- First measurements at 7 TeV
 - K⁰_s and A decays
 - hidden charm: J/Ψ measurements
 - open charm: D-mesons
 - b-quark jets
- Perspectives
 - studies for 14 TeV
 - quarkonia production
 - B-meson family
 - rare B-decays

- based on 14 TeV simulations
- some selected highlights shown:
 - B-Trigger Strategy
 - quarkonia production
 - B⁺→ J/Ψ K⁺
 - $B_s \rightarrow J/\Psi \phi$ and $B_d \rightarrow J/\Psi K^{0*}$
 - **B**_s→μ⁺μ⁻
- longer term goals for more luminosity

B-Trigger Strategy

- low p_T single- and di-muon
 - control samples, for very low luminosities, first beams
- di-muon (common vertex) in final state
 - different mass ranges: J/Ψ or Y decaying to $\mu^+\mu^-$
 - very rare $\mathbf{B} \rightarrow \mu^+ \mu^-$ (box diagrams)
 - semi-leptonic rare $B \rightarrow X_s \mu^+ \mu^-$ (penguin diagrams)
- sidebands around the signal peak needs to be covered (bb and cc contributions)
- control measurements di-muon low mass: M(μ⁺μ⁻) < 13 GeV

Martin zur Nedden, HU Berlin

Quarkonia Production

- seeded by L1 di-muon trigger, tracks fitted to common vertex
 - background suppression for J/Ψ : pseudo proper time < 0.2 ps
- R_{pi} measurement relies on separation of those processes
- with **1 pb⁻¹**, R_{pi} can be measured as a function of p_T and η at ~ **10% precision**

$B^+ \rightarrow J/\Psi(\mu^+\mu^-) K^+$

cross section statistical

total

• important reference channel for searches for rare B-decays

using di-muon trigger (p_T > 4/6 GeV),
 experimental precision for 10 pb⁻¹:

$B_s \rightarrow J/\Psi(\mu^+\mu^-)\phi$ and $B_d \rightarrow J/\Psi(\mu^+\mu^-)K^{0*}$

- **B**_s \rightarrow J/ $\Psi\phi$ channel promising for indirect searches for New Physics
 - "Weak mixing phase" $\phi_s = (-0.0368 \pm 0.0018)$ very small in SM
 - may be enhanced by BSM processes
- topologically identical $B_d \rightarrow J/\Psi K^{0*}$ (15x greater statistics) primary background; essential as a control channel (test of lifetime measurement and tagging calibration)
- simultaneous fit to mass and decay time can be used to extract signal mass and lifetime from data in the channel $B_d \rightarrow J/\Psi(\mu^+\mu^-)K^{0^*}$ with 10pb⁻¹ (10 % precision expected)
- similar precision for $B_s \rightarrow J/\Psi(\mu^+\mu^-)\phi$ mean lifetime achievable with 150 pb⁻¹

Expected Performance for B_s \rightarrow \mu^+ \mu^-

 $W' W^+$

- B_s →µ⁺µ⁻ highly suppressed in SM (penguin and box diagrams)
 SM: BR(B_s→µ⁺µ⁻) = (3.42 ± 0.52) x 10⁻⁹
 - best limit: CDF: BR($B_s \rightarrow \mu^+ \mu^-$) < 5.8 x 10⁻⁸ (95% CL)
- sensitivity to new physics (MSSM): new particles in the loop
- main challenge to control the background

Martin zur Nedden, HU Berlin

Workshop on Flavour Physics, Capri 2010

Mass(µ µ) [GeV]

• $J/\psi \rightarrow \mu^+\mu^-$ resonance observed in ATLAS data with $\int L \ of \ 6.4 \pm 1.3 \ nb^{-1}$

- mass in good agreement with the PDG table mass within statistical uncertainties
- mass resolution is consistent with MC expectations in all parts of the detector

• clear D^{\pm} , D^{\pm} and D_s^{\pm} signals reconstructed with the ATLAS detector with $\int L$ of 1.4 nb⁻¹

- D*±: 2020±120, D±: 1667±86, Ds±: 326±57
- positions in good agreement with PDG values

confirm high performance of ATLAS detector for precision measurement

• in short term future:

- ratio measurement: prompt J/ψ to non-prompt J/ψ
- J/ ψ and Y cross section and polarization measurement
- exclusive B-meson decays
- D-meson measurements

taggers for b-flavoured jets at ATLAS in good shape for data taking

- good agreement of impact parameter and secondary vertex significances with MC
- essential basis for b-tagging weights based on them
- vital for many top and BSM analyses

ATLAS ...

- ... has a long term flavour physics program.
- ... allows important measurements for the search for new physics.
- ... needs powerful and reliable di-muon trigger strategy for the Flavour-Physics program.
- ... provides valuable information on the detector performance with early Flavour-Physics analyses.
- ... supports searches for new physics with calibration studies with B-Physics.

The ATLAS Detector

OLDT-UNILARSITA ND H. - C BERLIN

Muon Spectrometer ($|\eta|$ < 2.7): air-core toroids with gas-based muon chambers Muon trigger and measurement with **momentum resolution** < 10% up to E_u ~ 1 TeV

Inner Detector (|η|<2.5, B=2T):

Si Pixels, Si strips, Transition Radiation Detector (straws) Precise tracking and vertexing, e/γ separation Momentum resolution: $\sigma/p_T \sim 3.8 \times 10^{-4} p_T (GeV) + 0.015$

EM calorimeter: Pb-LAr Accordion e/γ trigger, identification and measurement **E-resolution:** $\sigma/E \sim 10\%/\sqrt{E}$

HAD calorimeter ($|\eta|$ **<5):** segmentation, hermeticity Fe/scintilator Tiles (central), Cu/W-LAr (fwd) Trigger and measurement of jets and missing ET **E-resolution:** $\sigma/E \sim 50\%/\sqrt{E + 0.03}$

Martin zur Nedden, HU Berlin