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Impact of LQCD on precision heavy flavour physics
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matrix elements of H
(eff)

weak, corresponding to mesonic decays/transitions

∆md ∝ F2
Bd
B̂Bd

|VtdV
∗
tb|

2 ∆ms

∆md

= ξ2 mBs

mBd

|Vts|
2

|Vtd|2
ξ = FBs

√
B̂Bs

/
FBd

√
B̂Bd

∃ large number of experimental data from heavy flavour-factories
(CLEO, BaBar, Belle, LHCb, . . . )
Inputs of theory and predominantly LQCD computations needed to

◮ interpret results of experimental measurements
◮ determine / pin down heavy quark masses & CKM matrix elements
◮ overconstrain unitarity relations ↔ unveiling New Physics effects
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


Vud Vus Vub

π→ ℓν K→ ℓν B→ πℓν

K→ πℓν

Vcd Vcs Vcb

D→ ℓν Ds → ℓν B→ Dℓν

D→ πℓν D→ Kℓν B→ D∗ℓν
Vtd Vts Vtb

Bd ↔ Bd Bs ↔ Bs




”Gold-plated” lattice processes

1 hadron in the initial state,
0 or 1 hadron in the final state

stable hadrons
(or narrow, far from theshold)

controlled χ-extrapolation
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possible by independent processes

Theory & Exp. sufficiently precise
⇒ New Physics = inconsistent (ρ̄, η̄)

LQCD inputs from the heavy sector:
◮ B-meson decays & mixing: FB,BB

◮ B→ D(∗) decays:
F(1),G(1) →֒ |Vcb|

◮ semi-leptonic B-meson decays:
f+(q2) →֒ |Vub|
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Theory & Exp. sufficiently precise
⇒ New Physics = inconsistent (ρ̄, η̄)

LQCD inputs from the heavy sector:
◮ B-meson decays & mixing: FB,BB

◮ B→ D(∗) decays:
F(1),G(1) →֒ |Vcb|

◮ semi-leptonic B-meson decays:
f+(q2) →֒ |Vub|

What is the required precision for key contributions to phenomenology ?

Experiments reach few-% level, even 6 5%⇒ theory error dominates
∆md,s: < 1% [PDG,CDF], B(D(s)→µν): 6 4% [CLEO-c], B(B→D∗ℓν): 1.5% [HFAG]

Lattice calculations with an accuracy of O(5%) or better required
→ incl. all systematics (unquenching, extrapolations, renormalization, . . . )

Verification/Agreement of results using different formulations crucial !
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Lattice QCD & Heavy flavour physics

◮ Basics & Challenges

◮ Lattice heavy quark formalisms



Lattice QCD — The principle
‘Ab initio’ approach to determine standard model parameter s

LQCD [g0,mf] = −
1

2g2
0

Tr {FµνFµν} +
∑

f=u,d,s,...

ψf {γµ (∂µ + g0Aµ) +mf}ψf




Fπ
mπ
mK

mD

mB




︸ ︷︷ ︸

Experiment

LQCD [g0,mf]
=⇒




ΛQCD

Mu,Md

Ms

Mc

Mb




︸ ︷︷ ︸

QCDparameters (RGIs)

+




FD
FB

BK,BB

ξ

· · ·




︸ ︷︷ ︸

Predictions

Sources of systematic uncertainties in LQCD computations:
Part of the vacuum polarization effects is missed, as long as u, d, s
(and ideally also c) sea quarks are not incorporated
Extrapolations to mu,d guided by χPT to connect to the physical world
Discretization errors, notably from heavy quarks: O

[
(amQ)n

]
effects

Perturbative vs. non-perturbative renormalization
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L

T

ψ(x)Uµ(x) = e iag0Aµ(x)

a

Lattice cutoff a−1 ∼ ΛUV

Finite volume L3 × T
Lattice action

S[U,ψ,ψ] = SG[U] + SF[U,ψ,ψ]

SG = 1
g2

0

∑

p

Tr { 1 −U(p) }

SF = a4
∑

x

ψ(x)D[U]ψ(x)

Physical quantities:
Expectation values,
represented as path integrals
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SG = 1
g2

0

∑

p

Tr { 1 −U(p) }

SF = a4
∑

x

ψ(x)D[U]ψ(x)

Physical quantities:
Expectation values,
represented as path integrals

Feynman path (resp. functional) integral

〈B|e−Hτ|A〉 =

∫

D[x(t)] e−SE[x]

x(0) = A , x(t) = B
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Z =

∫

D[U]D[ψ,ψ] e−S[U,ψ,ψ] =

∫

D[U]
∏
f det

(
D/ +mf

)
e−SG[U]

〈O〉 =
1

Z

∫
∏
x,µdUµ(x)O

∏
f det

(
D/ +mf

)
e−SG[U] =̂ thermal average
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Physical quantities:
Expectation values,
represented as path integrals

Stochastic evaluation with Monte Carlo (MC) methods

→ Observables 〈O〉 = 1
N

∑N
n=1On ± ∆O from numerical simulations



Light sea quark ensembles in use
[ in current studies of heavy quark physics ]

Quenched approximation (Nf = 0)
No dynamical fermions, not suitable for phenomenology
Still useful test laboratory, e.g., to understand methodologies etc.

Two-flavour QCD (Nf = 2)

NP’ly O(a) improved Wilson (= clover) fermions ALPHA, QCDSF

Twisted mass Wilson fermions ETMC

Stout-smeared, chirally improved fermions BGR

Three-flavour QCD (Nf = 2 + 1)

AsqTad-improved staggered quarks with debated rooting prescription[
det(4)(Dst +m)

] 1
4 ≡ det(1)(γµDµ +m) MILC & FNAL, HPQCD

Domain wall fermions RBC & UKQCD

NP’ly O(a) improved Wilson fermions PACS-CS

Four-flavour QCD (Nf = 2 + 1 + 1) in progress, e.g., by ETMC

Light valence quarks usually discretized in the same way as the sea



Challenge of LHQP: The m ulti-scale problem

Predictivity in a quantum field theory relies upon a large scale ratio

interaction range ≪ physical length scales

momentum cutoff ≫ physical mass scales : Λcut ∼ a−1 ≫ Ei,mj

This is a challenge in QCD, which has many physical scales:

hierarchy of disparate physical scales to be covered:

ΛIR = L−1 ≪ mπ , . . . , mD , mB ≪ a−1 = ΛUV

↓ ↓
{

O(e−Lmπ )⇒ L &
4

mπ
∼ 6 fm

}

y L/a & 120 x

{

amD .
1

2
⇒ a ≈ 0.05 fm

}



Challenge of LHQP: The multi-scale problem

Predictivity in a quantum field theory relies upon a large scale ratio

interaction range ≪ physical length scales

momentum cutoff ≫ physical mass scales : Λcut ∼ a−1 ≫ Ei,mj

This is a challenge in QCD, which has many physical scales:

⇒ Difficult to satisfy simultaneously, clever technologies are required
◮ charm just doable, but lattice artefacts may be substantial

◮ given the today’s computing resources, it seems impossible to work
directly with relativistic b-quarks (resolving their propagation) on the
currently simulated lattices

◮ the b-quark scale (mb/mc ∼ 4) has to be separated from the others
in a theoretically sound way before simulating the theory



Illustration: Cutoff effects in the charm sector

High-precision computation of the charm quark’s mass and FDs
(Nf = 0)

Large volume and small lattice spacings: a ≈ (0.09 − 0.03) fm

O(a,amq,c) cutoff effects relevant & removed NP’ly [ LPHAA
Collaboration ]

Controlling the CL demands scaling study down to very fine lattices

Lattice artefacts may be large for charm physics [ H. & Jüttner, 2009 ]
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M
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M
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(c)
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(a/r0)
2

r 0
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H. & Jüttner, 2008, cA by ALPHA

Ali-Khan et al., 2007
H. & Jüttner, 2008, cA by LANL

(a/r0)
2

r 0
F

D
s

⇒ Warning from FDs
:

Symanzik programme works for charm, but a < 0.08 fm mandatory
◮ Note: small lattice spacings are challenging for Nf > 0

◮ Mb ≃ 4Mc s.th. beauty is not yet accomodated
→ for b-quarks: can’t control a→ 0 his way, effective theory needed



Lattice heavy quark formalisms

Lattice heavy quark physics has to deal with the presence of

strong lattice artefacts : amc . 1 amb > 1

Heavy quarks introduced as valence quarks = ”Partially quenched” setting

Relativistic formulations → mainly for D-physics applications

Wilson-like (clover or twisted mass) quarks
◮ amc 6 1/2≪ 1 desirable ALPHA, ETMC

Fermilab approach & its variants = RHQ actions
◮ relativistic clover actions with HQET interpretation
◮ adopted for charm & beauty FNAL & MILC, PACS-CS, RBC & UKQCD

Highly Improved Staggered Quarks = HISQ
◮ PT’ly improved / smeared glue, reduced taste-changing interactions
◮ now also being tried towards the bottom region HPQCD



Lattice heavy quark formalisms

Lattice heavy quark physics has to deal with the presence of

strong lattice artefacts : amc . 1 amb > 1

Heavy quarks introduced as valence quarks = ”Partially quenched” setting

Non-relativistic / effective field theory strategies → B-physics applications

NRQCD = Discretized, non-relativistic expansion of continuum LD

◮ O
[
αns /(amQ)

]
divergences HPQCD

Static approximation = Leading-order HQET
◮ HQET-guided extrapolations of fully relativistic simulations in the

charm regime, turning into interpolations if the static limit is known
◮ also in conjunction with finite-volume / finite-size scaling techniques

INFN-TOV, ALPHA, ETMC

HQET for the b-quark = Systematic expansion in ΛQCD/mb

◮ NP fine-tuning of parameters to O(1/mb) & impr. statistical precision
◮ connect different volumes iteratively with ”step scaling functions”

ALPHA



A glimpse of the status of B-physics parameters
Heavy quark masses Hadronic weak matrix elements FB & FBs

= Inputs to many (B)SM calculations → Extract |Vub| via B(B− → τ−ν̄τ)
︸ ︷︷ ︸

experiment

∝ |Vub|
2 F2

B︸︷︷︸
lattice



A glimpse of the status of B-physics parameters
Heavy quark masses Hadronic weak matrix elements FB & FBs

= Inputs to many (B)SM calculations → Extract |Vub| via B(B− → τ−ν̄τ)
︸ ︷︷ ︸
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Caveat:
Lattice computations based on NRQCD, Fermilab and HQ scaling laws are
standard, however, they all involve perturbative renormalization / matching
⇒ Is this accurate enough for precision flavour physics ?



A glimpse of the status of B-physics parameters
Heavy quark masses Hadronic weak matrix elements FB & FBs

= Inputs to many (B)SM calculations → Extract |Vub| via B(B− → τ−ν̄τ)
︸ ︷︷ ︸

experiment

∝ |Vub|
2 F2

B︸︷︷︸
lattice

Caveat:
Lattice computations based on NRQCD, Fermilab and HQ scaling laws are
standard, however, they all involve perturbative renormalization / matching
⇒ Are the claimed small (particularly systematic) errors too optimistic ?



Non-perturbative HQET in two-flavour QCD

LPHAA
Collaboration

B. Blossier, J. Bulava, M. Della Morte,
M. Donnellan, P. Fritzsch, N. Garron,

J. H., G.M. von Hippel, N. Tantalo,
H. Simma, R. Sommer

◮ Non-perturbative formulation of HQET

◮ Mass dependence at leading order in 1/m

◮ Strategy to determine HQET parameters at O(1/m)

◮ First physical results in the two-flavour theory

Scale, light quark masses from light sector:
F. Knechtli, B. Leder, S. Schaefer, F. Virotta



Non-perturbative formulation of HQET

Action: SHQET(x) = a4
∑
xLHQET(x) for the b-quark (zero velocity HQET)

[ Eichten, 1988; Eichten & Hill, 1990 ]

LHQET(x) = Lstat(x) −ωkinOkin(x) −ωspinOspin(x)

Lstat(x) = ψh(x)
[
D0 +mbare

]
ψh(x)

1
2
(1 + γ0)ψh(x) = ψh(x)

Okin(x) = ψh(x)D2ψh(x)

→ kinetic energy from heavy quark’s residual motion

Ospin(x) = ψh(x)σ · Bψh(x)

→ chromomagnetic interaction with the gluon field

Composite fields: axial current, related to the B-meson decay constant
FB
√
mB = 〈B(p = 0) |A0(0) | 0 〉, where A0 = ψlγ0γ5ψb → AHQET

0

AHQET
0 (x) = ZHQET

A

[
Astat

0 (x) + cHQET
A δAstat

0 (x)
]

Astat
0 (x) = ψl(x)γ0γ5ψh(x)

δAstat
0 (x) = ψl(x)

1
2

(←−∇i+
←−∇∗i

)
γiγ5ψh(x)



EVs = Functional integral representation at the quantum level :

〈O〉 =
1

Z

∫

D[ϕ]O[ϕ] e−(Srel+SHQET) Z =

∫

D[ϕ] e−(Srel+SHQET)

Instead of including the NLO term in 1/m of LHQET in the action (as this theory
wouldn’t be renormalizable), the FI weight is expanded in a power series in 1/m

exp {−SHQET} =

exp
{
−a4

∑
xLstat(x)

}

×
{

1 − a4
∑
xL

(1)(x) + 1
2

[
a4

∑
xL

(1)(x)
]2

− a4
∑
xL

(2)(x) + . . .
}

⇒ 〈O〉 =
1

Z

∫

D[ϕ] e−Srel−a
4
∑
xLstat(x)O

{

1 − a4
∑
xL

(1)(x) + . . .
}



EVs = Functional integral representation at the quantum level :

〈O〉 =
1

Z

∫

D[ϕ]O[ϕ] e−(Srel+SHQET) Z =

∫

D[ϕ] e−(Srel+SHQET)

Instead of including the NLO term in 1/m of LHQET in the action (as this theory
wouldn’t be renormalizable), the FI weight is expanded in a power series in 1/m

exp {−SHQET} =

exp
{
−a4

∑
xLstat(x)

}

×
{

1 − a4
∑
xL

(1)(x) + 1
2

[
a4

∑
xL

(1)(x)
]2

− a4
∑
xL

(2)(x) + . . .
}

⇒ 〈O〉 =
1

Z

∫

D[ϕ] e−Srel−a
4
∑
xLstat(x)O

{

1 − a4
∑
xL

(1)(x) + . . .
}

Explicitly:

〈O〉 = 〈O〉stat +ωkina
4
∑

x

〈OOkin(x)〉stat +ωspina
4
∑

x

〈OOspin(x)〉stat

≡ 〈O〉stat +ωkin〈O〉kin +ωspin〈O〉spin

〈O〉stat = 1
Z

∫

fields
O exp

{

− a4
∑
x

[
Llight(x) + Lstat

h (x)
] }



EVs = Functional integral representation at the quantum level :

〈O〉 =
1

Z

∫

D[ϕ]O[ϕ] e−(Srel+SHQET) Z =

∫

D[ϕ] e−(Srel+SHQET)

Instead of including the NLO term in 1/m of LHQET in the action (as this theory
wouldn’t be renormalizable), the FI weight is expanded in a power series in 1/m

exp {−SHQET} =

exp
{
−a4

∑
xLstat(x)

}

×
{

1 − a4
∑
xL

(1)(x) + 1
2

[
a4

∑
xL

(1)(x)
]2

− a4
∑
xL

(2)(x) + . . .
}

⇒ 〈O〉 =
1

Z

∫

D[ϕ] e−Srel−a
4
∑
xLstat(x)O

{

1 − a4
∑
xL

(1)(x) + . . .
}

Important implications of this definition of HQET

1/m – terms appear only as insertions of local operators in CFs
⇒ Power counting: Renormalizability at any given order in 1/m

⇔ Existence of the continuum limit with universality

Effective theory = Continuum asymptotic expansion in 1/m of QCD



Renormalization & Matching

Renormalization
The mixing of operators of different dimension in LHQET induces
power divergences [ Maiani, Martinelli & Sachrajda, 1992 ]

→ Lstat : linearly divergent additive mass renormalization δm originates
from mixing of ψhD0ψh with ψhψh ⇒ EQCD

h,h̄
= Estat

h,h̄

∣∣
δm=0

+mbare

mbare = δm+m , δm =
c(g0)

a
∼ e 1/(2b0g

2
0) ×

{
c1g

2
0 + c2g

4
0 + . . .

}

→ PT: uncertainty = truncation error ∼ e 1/(2b0g
2
0) cn+1 g

2n+2
0

g0→0−→ ∞ !
⇒ Non-perturbative c(g0) needed, i.e., NP renormalization of HQET

(resp. fixing of its parameters) required for the continuum limit to exist

Power-law divergences even worse at the level of 1/m – corrections:
a−1 → a−2 ( e.g., δm picks up a contribution a−2ωkin )

Matching

The finite parts of renormalization constants must be fixed s.th. the
effective theory describes the underlying theory, QCD

Proper conditions for these must be imposed from QCD with finite mb



Mass dependence at leading order in 1/m
The r ôle of perturbative anomalous dimensions

Consider matrix elements of composite fields involving b-quarks as, e.g.,
obtained from a QCD correlation function of the heavy-light axial current

CQCD
AA (x0) = Z2

Aa
3
∑

x

〈
A0(x)(A0)

†(0)
〉
QCD[

ΦQCD
]2 ≡ F2BmB =

∣∣ 〈B |ZAA0 | 0 〉
∣∣2

= lim
x0→∞

[
2 exp

{
x0m

eff
B (x0)

}
CQCD

AA (x0)
]

◮ B-meson state dominates spectral representation of CQCD
AA at large x0

◮ ZA(g0) fixed by chiral Ward identities, renormalization scale independent

In the static approximation this translates into

[
Φ(µ)

]2
=

∣∣ 〈B |Zstat
A Astat

0 | 0 〉
∣∣2 = lim

x0→∞

[
2 exp

{
x0 E

eff
stat(x0)

}
Cstat

AA (x0)
]

◮ Absence of chiral symmetry in HQET implies a scale dependence
→ µ – dependence in Zstat

A (g0,aµ) = 1 + g2
0 [B0 − γ0 ln(aµ) ] + O(g4

0)

◮ Better alternative: work with the RGI opertator (Astat
RGI)0



How does one get from ΦRGI = Zstat
A,RGI〈B |Astat

0 | 0 〉 to FB ?

QCD LO HQET

ZA〈B |A0(0) | 0 〉QCD CPS(Mb/Λ)Zstat
A,RGI 〈B |Astat

0 (0) | 0 〉stat
FB
√
mB FB

√
mB + O(1/mb)

◮ Renormalization problem solved non-perturbatively (via interm. SF scheme)
⇒ Zstat

A,RGI : NP’ly known (to ≈ 1% accuracy)
[Nf = 0 : H., Kurth & Sommer, 2003;Nf = 2 : Della Morte, Fritzsch & H., 2007 ]

◮ 〈B(s) |Astat
0 | 0 〉 : known for Nf = 0 and in progress for Nf = 2

[ LPHAA
Collaboration , Blossier et al., arXiv:1006.5816 ]

⇒ 〈B(s) |Astat
0 | 0 〉RGI −→ FB, FBs

by multiplying with CPS



How does one get from ΦRGI = Zstat
A,RGI〈B |Astat

0 | 0 〉 to FB ?

QCD LO HQET

ZA〈B |A0(0) | 0 〉QCD CPS(Mb/Λ)Zstat
A,RGI 〈B |Astat

0 (0) | 0 〉stat
FB
√
mB FB

√
mB + O(1/mb)

◮ Renormalization problem solved non-perturbatively (via interm. SF scheme)
⇒ Zstat

A,RGI : NP’ly known (to ≈ 1% accuracy)
[Nf = 0 : H., Kurth & Sommer, 2003;Nf = 2 : Della Morte, Fritzsch & H., 2007 ]

◮ 〈B(s) |Astat
0 | 0 〉 : known for Nf = 0 and in progress for Nf = 2

[ LPHAA
Collaboration , Blossier et al., arXiv:1006.5816 ]

⇒ 〈B(s) |Astat
0 | 0 〉RGI −→ FB, FBs

by multiplying with CPS

A closer look at the ”conversion function” CPS and γmatch :

Matching ⇔ ΦQCD(m) = C̃match(m,µ)×Φ(µ) + O(1/m)

C̃match(m,µ) = 1 + c1(m/µ) ḡ2(µ) + . . .

◮ m ↔ heavy (b) quark mass dependence on the QCD side

◮ µ ↔ (arbitrary) renormalization scale dependence in the effective theory

◮ this fixes the (finite) renormalization C̃match ←→ ”matching scheme”



QCD observables FB, FBs
: independent of renormalization scheme & scale

⇒ the µ – dependence is artificial, only the mass dependence is for real
⇒ choose a convenient and common scale:

µ = m⋆ = m(m⋆) g⋆ = ḡ(m⋆)

C̃match(m⋆,m⋆) = Cmatch(g⋆) = 1 + c1(1)g2
⋆

+ . . .

Eliminate the scheme dependence by passing to the RGI matrix element:

ΦRGI = exp

{

−

∫ ḡ(µ)

dx
γ(x)

β(x)

}

Φ(µ)

⇒ ΦQCD = Cmatch(g⋆)Φ(µ) = Cmatch(g⋆) exp

{∫g⋆

dx
γ(x)

β(x)

}

ΦRGI

≡ exp

{∫g⋆

dx
γmatch(x)

β(x)

}

ΦRGI defines γmatch

◮ γmatch(g⋆) = m⋆

ΦQCD
∂ΦQCD

∂m⋆

describes the full physical mass dependence . . .

◮ . . . but there is still a scheme dependence through the choice of m, ḡ



Remove this renormalization scheme dependence by reparametrization in
terms of renormalization group invariants Λ ,M (= RGI heavy quark mass) :

ΦQCD = CPS (M/Λ)×ΦRGI , CPS (M/Λ) = exp

{∫g⋆(MΛ )

dx
γmatch(x)

β(x)

}

To evaluate CPS , insert γmatch(g⋆)
g⋆→0

∼ − γ0g
2
⋆

− γmatch
1 g4

⋆
− γmatch

2 g6
⋆

+ . . .

⇒ leading large-mass behaviour via M
Φ
∂Φ
∂M

∣∣
Λ

= M
CPS

∂CPS

∂M

∣∣∣
Λ

=
γmatch(g⋆)

1−τ(g⋆)
:

CPS
M→∞

∼
(
2b0g

2
⋆

)−γ0/(2b0)
∼ [ log(M/Λ) ]

γ0/(2b0)

CPS perturbatively under control ? [ 3-loop AD by Chetyrkin & Grozin, 2003 ]

Nf = 0, 2

RGI-ratio M/Λ : can be fixed in numerical
simulations without perturbative errors

Full (logarithmic) mass dependence ∈ CPS

Fig. seems to indicate that the remaining
O

(
ḡ6(mb)

)
errors are relatively small

→ however: a premature conclusion . . .

For B-Physics: ΛMS/Mb ≈ 0.04



An application ( Nf = 0)
Interpolation between the static limit and the charm region

Della Morte, Dürr, Guazzini, H., Jüttner & Sommer, JHEP0802(2008)078

Looks good: under a reasonable smoothness assumption, interpolate the
mass dependence (linearly) in the inverse PS mass to the physical point

FPS follows the heavy quark scaling law, no 1/(r0mPS)
2 – effects are visible

→ 1/m – expansion appears to work very well even for charm quarks
← surprising; needs further confirmation, as the perturbative CPS is used

Question: What is the accuracy of perturbation theory involved in this ?



Accuracy of perturbation theory in the matching
Bekavac, Grozin, Marquard, Piclum, Seidel & Steinhauser, NPB833(2010)46

Cmatch(g⋆) now known to N3LO for various bilinears OΓ = ψl(x) Γ ψh(x)

→ γmatch
Γ : 3-loop, γmatch

Γ − γmatch
Γ ′ : 4-loop (unknown 4-lp AD in HQET cancels)

⇒ Ratios of conversion functions reflect perturbative 4-loop precision:

CΓ/Γ ′ = CΓmatch(m,µ)
/
CΓ

′
match(m,µ)

Example

CPS/V = CPS/CV

x-axis ∝ g2
⋆
(M/Λ)

For B-physics:

ΛMS/Mb ≈ 0.04

1/ ln(ΛMS/Mb) ≈ 0.3

PT is badly behaved

for beauty and even

worse for charm



”We find that the perturbative series for fB∗/fB and fTB∗/fB∗ converge very
slowly at best.” [ quote from Bekavac at al., 2010 ]

Freedom to ”optimize” the scale [ R. Sommer, private communication ]

µ = s−1m⋆ = m(m⋆) , ĝ = ḡ
(
s−1m⋆

)
CΓ (M/Λ) = exp

{∫ ĝ
dx
γ̂match
Γ (x)

β(x)

}

Matching below m⋆,

expect s > 1 is better

Decrease of terms in

perturbative series

improved, once s & 4

However:

α(mb/4) is not small,

series unreliable again



”We find that the perturbative series for fB∗/fB and fTB∗/fB∗ converge very
slowly at best.” [ quote from Bekavac at al., 2010 ]

Freedom to ”optimize” the scale [ R. Sommer, private communication ]

µ = s−1m⋆ = m(m⋆) , ĝ = ḡ
(
s−1m⋆

)
CΓ (M/Λ) = exp

{∫ ĝ
dx
γ̂match
Γ (x)

β(x)

}

Matching below m⋆,

expect s > 1 is better

Decrease of terms in

perturbative series

improved, once s & 4

However:

α(mb/4) is not small,

series unreliable again

→ Effective scale is well below µ = mb; asymptotic convergence of PT only
improved far beyond mb, where it is of limited use for us

⇒ Accuracy of perturbative matching is hard to assess for b- and c-physics



”We find that the perturbative series for fB∗/fB and fTB∗/fB∗ converge very
slowly at best.” [ quote from Bekavac at al., 2010 ]

Freedom to ”optimize” the scale [ R. Sommer, private communication ]

µ = s−1m⋆ = m(m⋆) , ĝ = ḡ
(
s−1m⋆

)
CΓ (M/Λ) = exp

{∫ ĝ
dx
γ̂match
Γ (x)

β(x)

}

Matching below m⋆,

expect s > 1 is better

Decrease of terms in

perturbative series

improved, once s & 4

However:

α(mb/4) is not small,

series unreliable again

→ Effective scale is well below µ = mb; asymptotic convergence of PT only
improved far beyond mb, where it is of limited use for us

⇒ Error estimates in the literature seem much too optimistic . . .



”We find that the perturbative series for fB∗/fB and fTB∗/fB∗ converge very
slowly at best.” [ quote from Bekavac at al., 2010 ]

Freedom to ”optimize” the scale [ R. Sommer, private communication ]

µ = s−1m⋆ = m(m⋆) , ĝ = ḡ
(
s−1m⋆

)
CΓ (M/Λ) = exp

{∫ ĝ
dx
γ̂match
Γ (x)

β(x)

}

Matching below m⋆,

expect s > 1 is better

Decrease of terms in

perturbative series

improved, once s & 4

However:

α(mb/4) is not small,

series unreliable again

⇒ ḡ2l(mb) ∝
[
2b0 ln

(
mb/ΛQCD

)]−l mb→∞
≫ ΛQCD/mb: Pert. matching theor.

consistent only at LO in 1/mb, a few–% error budget requires NP matching



Mass dependence in finite-volume QCD ( Nf = 2)
Della Morte, Fritzsch, H. & Sommer, PoS LATTICE2008(2008)226

Fritzsch & H., in progress

Non-perturbative computation of the heavy quark mass dependence of
heavy-light meson observables in the continuum limit of finite-volume QCD
→ Explicit pure theory tests that HQET is an effective theory of QCD
→ Constraining the large-mass behaviour of QCD by the static limit

QCD with Schrödinger Functional
boundary conditions (T , L, θ): fA(x0) = fstatA (x0) =

0

LxLxL

x

x0

0

= T

= 0

LxLxL

x

x0

0

= T

=

Renormalization [ LPHAA
Collaboration , 2005-2008 ]

◮ Fix ḡ2(L1) = 4.484 s.th. L1 ≈ 0.5 fm, L1/a = 20, 24, 32, 40 , L2 = 2L1

◮ Fix RGI (heavy) quark masses via its NP relation to bare parameters:

z ≡ L1M = Zm

M

m(µ0)
(1 + bmamq)× L1mq Zm =

Z(g0)ZA(g0)

ZP(g0,aµ0)

[ Fritzsch, H. & Tantalo, arXiv:1004.3978 ]



Mass dependence in finite-volume QCD ( Nf = 2)

The B-system in finite-volume QCD (L = L1)

◮ L1 = 0.5 fm, z– values covering the b-quark down to the charm quark region

◮ Removal of all O
(
(a
L
)n

)
effects at tree-level: O → Oimpr (a/L) =

O(a/L)

1+δ(a/L)

◮ Examples of continuum extrapolations ( B-meson mass & decay constant ) :



Mass dependence in finite-volume QCD ( Nf = 2)

The B-system in finite-volume QCD (L = L1)

◮ Tests of HQET: validating and demonstrating the applicability of HQET

◮ Verification of the approach to the spin-symmetric limit:
( B-meson mass & ratio of PS to V decay constants )

⇒ Large-mass asymptotics ( 1/z→ 0 ) confirms HQET predictions



Mass dependence in finite-volume QCD ( Nf = 2)

The B-system in finite-volume QCD (L = L1)

◮ But: some numerical evidence for the previous doubts in the reliability of PT
in the b-quark region is found with YPS,YV and its effective theory predictions

YPS(L, z)/CPS(M/Λ) = XRGI(L) + O(1/z)

YPS(L, z;θ) ∝ ZA

fA(L/2,θ)√
f1(θ)

XRGI(L;θ) ∝ Zstat
A,RGI

fstatA (L/2,θ)√
fstat1 (θ)

︸ ︷︷ ︸
=Xstat(θ)
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The B-system in finite-volume QCD (L = L1)

◮ But: some numerical evidence for the previous doubts in the reliability of PT
in the b-quark region is found with YPS,YV and its effective theory predictions
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Mass dependence in finite-volume QCD ( Nf = 2)

The B-system in finite-volume QCD (L = L1)

◮ Consider ratios instead, where CPS cancels completely:

YPS(z;θ1)

YPS(z;θ2)
=

Xstat(θ1)

Xstat(θ2)
+ O(1/z)

⇒ These turn smoothly & unconstrained into effective theory predictions



Determination of HQET parameters at O(1/m)
Blossier, Della Morte, Garron & Sommer, arXiv:1001.4783

Vector of the NHQET = 5 parameters in SHQET,AHQET
0 up to O(1/mb) :

ω =

(
ωstat

ω(1/m)

)

ωstat =
(
mbare , ln(ZHQET

A )
)t

ω(1/m) =
(
cHQET
A , ωkin , ωspin

)t

ωi classical static

value value

mbare mb mstat
bare

ln(ZHQET
A ) 0 ln(Zstat

A,RGICPS)

cHQET
A −1/(2mb) acstat

A

ωkin 1/(2mb) 0

ωspin 1/(2mb) 0

⇒ Trick: non-perturbative matching of HQET to QCD in a finite volume
[ H. & Sommer, JHEP0402(2004)022 ]

QCD 1/mb ≫ a

Matching conditions

ΦQCD
i = ΦHQET

i

for observables Φi
(renormal. quantities,
computable for a→0)

HQET1/mb ≪ L



NP matching in L = L1

Suitable observables in the Schrödinger functional, L = T = L1 ≈ 0.5 fm

Φi(L1,M,a) i = 1, . . . ,NHQET

Matching conditions for i = 1, . . . ,NHQET (note: a↔ g0)

lim
a→0

ΦQCD
i (L1,M,a) = ΦQCD

i (L1,M, 0) = ΦHQET
i (L1,M,a)

Conveniently, one chooses observables linear in ωi, e.g.

Φ(L,M,a) = η(L,a) + φ(L,a)ω(M,a)

Φ1 = L 〈B(L) | H | B(L) 〉 L→∞
∼ LmB

Φ2 = ln
(
L3/2 〈Ω(L) |A0 | B(L) 〉

)
L→∞

∼ ln
(
L3/2 FB

√
mB/2

)

· · ·

η =




Γ stat = 〈B(L) | H | B(L) 〉stat
ζA = ln

(
L3/2 〈Ω(L) |A0 | B(L) 〉stat

)

· · ·


 φ =



L 0 · · ·
0 1 · · ·
· · ·






Step scaling to L = L2

Matching volume L1 ≈ 0.5 fm has very small a, but larger a are needed
⇒ Gap to large volume & practicable lattice spacings, where physical

quantities (mB, FB) are extracted, bridged by finite-size scaling steps

Fully NP, CL can be taken everywhere, L→ 2L via Step Scaling Functions
ΦHQET
i (2L) = σi

({
ΦHQET
j (L), j = 1, . . . ,NHQET

})
2L = 2L1 ≈ 1.0 fm



Step scaling to L = L2

Finite-size scaling to L2 = 2L1 :

Amounts to solve a matrix equation to obtain the HQET parameters at
larger lattice spacings . . .
. . . corresponding to β–values for simulations in large volume, ”L∞”,
where a B-meson in HQET fits comfortably



1.) Continuum limit a = 0.025 fm, . . . , 0.012 fm

Φi(L1,M, 0) = lim
a/L1→0

ΦQCD
i (L1,M,a)

2.) HQET parameters for a = 0.05 fm, . . . , 0.025 fm

ω(M,a) ≡ φ−1(L1,a) [Φ(L1,M, 0) − η(L1,a) ]

=



L−1

1 Φ1(L1,M, 0) − Γ stat(L1,a)

Φ2(L1,M, 0) − ζA(L1,a)

· · ·




3.) Insert into Φ(L2,M,a)

Φ(L2,M, 0) = lim
a/L2→0

[η(L2,a) + φ(L2,a)ω(M,a) ]

= lim
a/L2→0



L2 [ Γ stat(L2,a) − Γ stat(L1,a) ]

ζA(L2,a) − ζA(L1,a)

· · ·




︸ ︷︷ ︸
finite SSFs

+



L2

L1
Φ1(L1,M, 0)

Φ2(L1,M, 0)

· · ·




︸ ︷︷ ︸
QCD mass dependence

4.) Repeat 2.) for L1 → L2 to obtain ω(M,a) for a = 0.1 fm, . . . , 0.05 fm

ω(M,a) ≡ φ−1(L2,a) [Φ(L2,M, 0) − η(L2,a) ]



Use of the HQET parameters

These HQET parameters can finally be exploited for phenomenological
applications in the B(s)– meson system, e.g. to

calculate the b-quark mass and the B(s)– meson decay constant:

mB = mbare + Estat +ωkinEkin +ωspinEspin

Φ√
2
≡ FB

√
mB/2 = ZHQET

A

(
1 + bstat

A amq

)
pstat

×
(
1 + cHQET

A pδA +ωkinpkin +ωspinpspin

)

Mass splittings, such as (radial) excitation energies of B(s)– states
and the B(s) − B∗

(s)
mass difference to O(1/mb):

∆EHQET
n,1 =

(
Enstat − E1

stat

)
+ωkin

(
Enkin − E1

kin

)
+ωspin

(
Enspin − E1

spin

)

∆EP−V = 4
3
ωspinE

1
spin

Eiy , py : plateau averages of (bare) effective HQET energies

and matrix elements in large volume

Note: The power-divergent δm drops out in energy differences



Some examples of Nf = 0 results
Blossier, Della Morte, Garron, von Hippel, Mendes, Simma & Sommer, arXiv:1004.2661

Excited state energy levels, a ≈ (0.1, 0.08, 0.05) fm, L ≈ 1.5 fm, T = 2L

◮ CF matrices Cstat
ij (t) =

∑
x,y

〈
Oi(x0 + t, y)O∗

j (x)
〉
stat

& Ospin/kin insertions

◮ GEVP: all-to-all propagators, t– dilution, Gaussian smeared variational basis



Some examples of Nf = 0 results

Excited state energy levels, a ≈ (0.1, 0.08, 0.05) fm, L ≈ 1.5 fm, T = 2L

◮ CF matrices Cstat
ij (t) =

∑
x,y

〈
Oi(x0 + t, y)O∗

j (x)
〉
stat

& Ospin/kin insertions

◮ GEVP: all-to-all propagators, t– dilution, Gaussian smeared variational basis

◮ Linear a–term suppressed by 1/mb, physical O(1/mb) corrections are small

◮ Divergences cancel after proper NP renormalization
⇒ Strong numerical evidence for the renormalizability of HQET



Some examples of Nf = 0 results
Blossier, Della Morte, Garron, von Hippel, Mendes, Simma & Sommer, arXiv:1006.5816

Matrix elements in the B-meson system via applying the same techniques

Important remark:
Here, the full factor Zstat

A = Zstat
A,RGICPS(Mb/Λ) is implicitly evaluated

non-perturbatively, i.e., CPS irrelevant in the context of NP matching !
HYP & GEVP lead to (2 – 3)% precision for FBs

in the continuum limit

r0 = 0.5 fm: FstatBs
= 229(3)MeV , Fstat+1/m

Bs
= 212(5)MeV

( using r0 = 0.45 fm leads to ≃ 15% increase, but O(1/m2
b) corrections are small )



Some examples of Nf = 0 results

Computation of FBs
in HQET matches at mBs

with a straight interpolation
between the QCD charm sector (around FDs

) and FstatBs

◮ In this comparison, CPS just enters to compensate for the logarithmic scaling
of Φ with mb, i.e., CPS = perturbative ”relic” in interpolation strategies

◮ Given the unclear precision of PT, interpolation methods to be taken with
care, as the inherent perturbative [αs(mb)]

3– errors are difficult to estimate

◮ Anyway, data points beyond charm computationally challenging for Nf > 0



First physical results in the two-flavour theory

Which ingredients are needed ?
Recall the strategy . . .



First physical results in the two-flavour theory

Which ingredients are needed ?

S1 NP matching of HQET to QCD in finite volume with a relativistic b,
to perform the power-divergent subtractions

◮ Crucial element of this step:
Calculation of the heavy quark mass dependence of heavy-light
meson observables in the continuum limit of finite-volume QCD (L1)

◮ . . . already discussed above

S2,3,4 HQET computations in small & intermediate volumes
◮ Evaluation of the HQET step scaling functions to connect the small

matching (L1 ≈ 0.5 fm) to the intermediate volume (L2 = 2L1 ≈ 1 fm)
◮ Interpolation of the resulting HQET parameters to the large-volume

”L∞” lattice spacings (β = 5.2, 5.3, 5.5)

S5 HQET computations in large volume
◮ Extract HQET energies & matrix elements, using Nf = 2 dynamical

configurations in large volume (”L∞”, periodic b.c.’s) produced by CLS
◮ Action: NP’ly O(a) improved Nf = 2 Wilson ; algorithm: DD-HMC
◮ Problem of slowed sampling of topological modes with decreasing a

less relevant, because HQET can afford to work with coarser lattices



HQET energies & matrix elements (preliminary)
LPHAA

Collaboration , in progressPreliminary Nf = 2 HQET results in large volume
◮ Gauge configuration ensembles with Nf = 2 NP’ly O(a) improved

Wilson fermions generated within Coordinated Lattice Simulations
(= community European team effort, employing Lüscher’s DD-HMC)

β a [ fm ] L3 × T mπ [MeV ] # traj. sep.

5.2 0.08 323 × 64 700 110 16

323 × 64 370 160 16

5.3 0.07 323 × 64 550 152 32

323 × 64 400 600 32

483 × 96 300 192 16

483 × 96 250 350 16

5.5 0.05 323 × 64 430 250 20

483 × 96 430 30 16

◮ High numerical accuracy of lattice HQET thanks to technical advances:
[ Hasenfratz & Knechtli, 2001; Lüscher & Wolff, 1990; Foley et al., 2005; LPHAA

Collaboration 2004-2009 ]

⋄ HYP-smeared static actions, giving improved statistical precision

⋄ solve the Generalized EigenValue Problem for a correlator matrix to
cleanly quantify systematic errors from excited state contaminations

⋄ Variant of the stochastic all-to-all propagator method for light quarks



HQET energies & matrix elements (preliminary)

Static energies (β = 5.3,a ≈ 0.07 fm) & extrapolation to the chiral limit,
where the uncertainty due to r0/a is still large [ Scale setting preliminary ]



HQET energies & matrix elements (preliminary)

B-meson decay constant (FB): renormalized (not O(a) improved) matrix
element of Astat

0 , data well described by HMχPT



HQET energies & matrix elements (preliminary)

Spin-splitting: situation for O(1/m) terms of energies is encouraging



HQET parameters (preliminary)
LPHAA

Collaboration , in progressAfter evolution to L2 where 5.3 . β . 5.8

Φ1 = L 〈B(L) | H | B(L) 〉 Φ2 = ln
(
L3/2 〈Ω(L) |A0 | B(L) 〉

)

O(m) O(1)

O(1/m) O(1/m)

(a finer lattice resolution is still running)



b-quark mass interpolation (preliminary)
LPHAA

Collaboration , in progressNow insert ω1 ∈ ω(M,a) for Nf = 2:
mB = ω1 + Estat = mbare + Estat = ω1 + Estat

= lim
a→0

[
Estat − Γ stat(L2,a)

]
a = (0.1 − 0.05) fm

+ lim
a→0

[
Γ stat(L2,a) − Γ stat(L1,a)

]
a = (0.05 − 0.025) fm

+
1

L1
lim
a→0

Φ1(L1,Mb,a) a = (0.025 − 0.012) fm

Analysis with r0m
(exp)

B , r0 = (0.475± 0.025) fm [ Scale setting preliminary ]

◮ mMS
b (mb)

stat =

4.255(25)r0
(50)stat+renorm(?)a GeV

◮ NP renormalization; no CL yet in the
large volume part (only β = 5.3)

◮ Error dominated by ≈ 1% on ZM in
L1M = ZM Z (1 + bmamq)× L1mq

◮ Dependence on the matching
kinematics is very small



b-quark mass interpolation (preliminary)
LPHAA

Collaboration , in progressNow insert ω1 ∈ ω(M,a) for Nf = 2:
mB = ω1 + Estat = mbare + Estat = ω1 + Estat

= lim
a→0

[
Estat − Γ stat(L2,a)

]
a = (0.1 − 0.05) fm

+ lim
a→0

[
Γ stat(L2,a) − Γ stat(L1,a)

]
a = (0.05 − 0.025) fm

+
1

L1
lim
a→0

Φ1(L1,Mb,a) a = (0.025 − 0.012) fm

Analysis with r0m
(exp)

B , r0 = (0.475± 0.025) fm [ Scale setting preliminary ]

◮ mMS
b (mb)

stat+1/m =

4.276(25)r0
(50)stat+renorm(?)a GeV

◮ NP renormalization; no CL yet in the
large volume part (only β = 5.3)

◮ Error dominated by ≈ 1% on ZM in
L1M = ZM Z (1 + bmamq)× L1mq

◮ Dependence on the matching
kinematics is very small



b-quark mass interpolation (preliminary)
LPHAA

Collaboration , in progressNow insert ω1 ∈ ω(M,a) for Nf = 2:
mB = ω1 + Estat = mbare + Estat = ω1 + Estat

= lim
a→0

[
Estat − Γ stat(L2,a)

]
a = (0.1 − 0.05) fm

+ lim
a→0

[
Γ stat(L2,a) − Γ stat(L1,a)

]
a = (0.05 − 0.025) fm

+
1

L1
lim
a→0

Φ1(L1,Mb,a) a = (0.025 − 0.012) fm

Analysis with r0m
(exp)

B , r0 = (0.475± 0.025) fm [ Scale setting preliminary ]

◮ mMS
b (mb)

stat+1/m =

4.347(40)r0
(48)GeV (Nf = 0 ! )

◮ NP renormalization; no CL yet in the
large volume part (only β = 5.3)

◮ Error dominated by ≈ 1% on ZM in
L1M = ZM Z (1 + bmamq)× L1mq

◮ Dependence on the matching
kinematics is very small

Unquenching effect is presently not significant



b-quark mass interpolation (preliminary)
LPHAA

Collaboration , in progressNow insert ω1 ∈ ω(M,a) for Nf = 2:
mB = ω1 + Estat = mbare + Estat = ω1 + Estat

= lim
a→0

[
Estat − Γ stat(L2,a)

]
a = (0.1 − 0.05) fm

+ lim
a→0

[
Γ stat(L2,a) − Γ stat(L1,a)

]
a = (0.05 − 0.025) fm

+
1

L1
lim
a→0

Φ1(L1,Mb,a) a = (0.025 − 0.012) fm

Analysis with r0m
(exp)

B , r0 = (0.475± 0.025) fm [ Scale setting preliminary ]

◮ mMS
b (mb)

stat+1/m =

4.276(25)r0
(50)stat+renorm(?)a GeV

◮ NP renormalization; no CL yet in the
large volume part (only β = 5.3)

◮ Error dominated by ≈ 1% on ZM in
L1M = ZM Z (1 + bmamq)× L1mq

◮ Dependence on the matching
kinematics is very small

Unquenching effect is presently not significant



Conclusions & Outlook

Lattice heavy flavour physics is becoming a precision field

Lattice QCD inputs have to be pushed to few-% level (incl. a reliable
assessment of all systematics), to contribute to uncovering signals for
BSM physics in CKM analyses and resolve / support current tensions

Dynamical quark simulations (Nf = 2, 2 + 1, 2 + 1 + 1) are routine:
mπ ∼ 500 MeV (2001) → mπ . 250 MeV (2010), but the behaviour
of algorithms at small lattices spacings needs to be understood

An entirely non-perturbative renormalization & matching in HQET is
doable with considerable accuracy

◮ Pert. functions CX not needed altogether within our NP HQET strategy

◮ Physics goals of lattice HQET with 1/m– corrections:
b-quark mass, decay constants FB(s)

(1st O(1/m) computation ever !),
mass splittings, semi-leptonic form factors

◮ Continuum limit of the large volume part for Nf = 2 finished soon

◮ Nf = 4 in the longer run: add also strange & charm sea quark flavours
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