CP Violation at LHCb Early Results and Prospects

- LHCb started physics run at 7 TeV since March 31st: how far did we go for B Physics?
- Not so far yet, limited integrated luminosity, but
 - Bulk of lumi delivered in a handful of solar days
 - High efficiency of LHCb DAQ
 - Detector and trigger fully operational
- First B candidates showing up

It is just matter of how fast the machine will ramp up!

- ♦ Bottom and charm production cross sections just get a reduction of a factor 0.5 → limited effect on physics reach
 - What really matters, instead, is the real value of the beauty production cross section → measure it!

Scaling with energy predicted by Pythia 6.4

LHCb key features

 LHCb is a dedicated B physics experiment, though can do charming things as well

- Large beauty production cross section
 - \bullet Expected in the range 200-500 μb for a c.m.s. energy of 7-14 TeV
- All b-hadron zoology available
 - B⁺, B⁰, B_s, B_c, b-baryons
- LHCb acceptance optimised for forward $b\overline{b}$ production \rightarrow Forward single arm spectrometer 1.9< η <4.9
 - b-hadrons produced at low angle
 - Correlated bb-production in same hemisphere

- Instantaneous lumi at IP8 intentionally moderated to 2x10³² cm⁻¹s⁻² (design value) in order to limit the number of multiple interactions per bunch crossing
 - 2x10³² is not a magic number → optimal running conditions could be even reached with somewhat higher lumi
 - Nominal LHCb year → L=2 fb⁻¹
 - 10¹² bb pairs at 14 TeV in 4π
- In 2010 a first phase with a reduced number of bunches
 - LHC could not exceed a lumi around 10³¹cm⁻²s⁻¹
- Luminosity now rapidly increasing, although with still few bunches
 - Many interactions per crossing → not ideal conditions, but still manageable
- Don't have a crystall ball, but the programme is to collect 200 pb⁻¹ in 2010 and 1 fb⁻¹ in 2011

Vertexing is crucial for trigger and offline selection

Trigger on impact parameter

Measurement of decay distance (and then proper decay time)

Resolution on primary vertex

- Primary Vertex (PV) is determined by fitting to a common vertex all the track segments reconstructed in the vertex detector
 - Still about 40% difference between data and MC, but rapidly improving

X and Y resolutions as a function of the number of tracks forming the vertex

Resolution on impact parameters

- Impact parameter (IP)
 - Closest approach of a track to a primary vertex
- IP resolution is mainly due to
 - Multiple scattering in the detector material and beam pipe
 - VELO misalignments and hit resolutions.
- 15-40% discrepancy between MC and data
 - Not dramatic, but lot of work going on to understand and fix some residual effects

Impact Parameter resolution in Y IP_v Resolution Vs 1/p₊ 0.09 VELO Closed LHCb VELO Preliminary 🛨 2010 Data 0.08 Sim. 300 µm Foil Sim. 250 µm Foil 0.07 0.06 E 0.05 0.04 0.03 2010 Data: 15.7 + 24.4/p₊ μm 0.02 Sim. 300 µm Foil: 11.5 + 20.6/p_ µm 0.01 Sim. 250 μm Foil: 11.9 + 19.3/p μm 0 0.5 1.5 2 1 1/p_ (c/GeV

Tracking efficiency in data and MC

Good agreement between data and MC for track Tracking efficiency vs p_T inclusive distributions and efficiency efficiency 0.8 LHCb preliminary \sqrt{s} = 7 TeV **Overall performances close to** 0.6 expectations 0.4 Dт eta Dt. Data 0.2 10 Monte Carlo 10 10 ⁸⁰⁰ p_ [MeV] 200 400 600 10 10° 1010 MC - data MC - data [GeV 11

Hadronic Particle Identification

- RICH aligned with tracking system
- K and π rings clearly visible

Calorimeter and Muon ID in Ulrik's talk

Entries

5000

4000

3000

2000F

1000E

1000

RICH PID

- **Alignment and calibration** work ongoing
 - Angular resolutions close to expectations

ᢧᢑ᠕ᡙ᠕ᡔᢧ

 $\phi \rightarrow KK$?

1050

without **RICH**

LHC_b

Efficiencies and misidentification rates will be calibrated with real data (K_s , Λ , ϕ and D^*) Efficiency and misid rate vs momentum for charged Kaons

Significant samples of long lived strange particles starting to be available

■ Long life allows selection of pure samples without need of PID observables → samples are to a large extent PID unbiased and can be used for calibrating RICH system response

LHCb trigger design

- Using design luminosity the trigger
 40 MHz
 is optimized for B
 physics
 Level-0
- But, low luminosity in 2010...
 - some 10³¹ cm⁻²s⁻¹
 - trigger thresholds can be relaxed → large gain in D efficiency → good year for charm physics!

	charm	had. B	Lep. B	
Nominal Iumi	10%	40%	90%	
Low lumi (2010)	50%	80%	>90%	

Large transverse energy and momentum in calorimeter and muon systems

Associate Level-0 signals with tracks, especially those in VELO displaced from Primary Vertex

Full detector info available for inclusive and exclusive selections

Trigger startup in this early phase

Interaction rate	L0 output rate	HLT1 output rate	HLT2 output rate
Up to 2 kHz	Up to 2 kHz		
Up to 25 kHz	Up to 25 kHz	2 kHz	
Up to 300 kHz	Up to 300 kHz	10 kHz	2 kHz

L0 always passing through so far

- minimum bias and random triggers
- Couple of weeks of HLT1 exercising real rejection
- During summer expect 2 months of continuous running
 - Lot of stat. expected

LHCb B physics programme Main Items

Selected key measurements

- Search for $B_s \rightarrow \mu\mu$
- Mixing-induced CP violation in $B_s \rightarrow J/\psi \phi$, $B_s \rightarrow \phi \phi$, ...
- Charmless 2-body B decays
- CKM angle γ from tree-level B decays
- **B**_s $\rightarrow \phi \gamma$ and other radiative B decays
- Asymmetries in B⁰ → K^{*}I⁺I[−] decays

Roadmap note

- LHCb-PUB-2009-029, <u>arXiv:0912.4179v2 [hep-ex]</u>, Feb 2010
- Nominal assumptions there:
 - 2 fb⁻¹ per year at 25 ns bunch spacing
 - √s = 14 TeV
 - Beauty production cross section 500 µb

• no PID used: $\Lambda/\overline{\Lambda}$ separated on Armenteros-Podolansky plot

First clean heavy flavour signals available (not yet B eh!)

sd

entries per 0.2

180E

160E

140E

120 100

80F

60E

40F-

LHCb

Preliminary

 $\sqrt{s} = 7$ TeV Data

 $N_{evt} = 1278$

 τ = (0.398 ± 0.026) ps

- ♦ Clean sample of D⁰→h⁺h⁻
- Simple check: measurement of D⁰ lifetime
 - Use pure $D^0 \rightarrow K^-\pi^+$ selection (S/B ~ 22)
 - Simple minded approach for the moment
 - Fit only the tail of the proper time distribution, where efficiency is constant

Direct CP violation studies in the charm sector

Relevant modes

- Singly Cabibbo-suppressed decays, where NP may enter in gluonic Penguin
- 3-body decays with Dalitz plot analyses
- $D^+ \rightarrow K^+K^-\pi^+$ is an excellent mode
 - With also the good feature of having Cabibbo-favoured $D_s^+ \rightarrow K^+K^-\pi^+$ and $D^+ \rightarrow K^+\pi^-\pi^+$ decays to be used as control channels

- About 5 million events ere expected in 0.1 fb⁻¹
 - an order of magnitude more than B-factory samples

J/ ψ signal very rich \rightarrow extremely important for calibration issues

- alignment, tracking studies, proper time calibration
- momentum resolution, mass scale
- Muon identification
- ψ's play a central role in the LHCb physics programme
 - quarkonium production, polarization, etc.
 - bottom physics with both inclusive and exclusive and b \rightarrow J/ ψ decays

NFN

stituto Nazionale li Fisica Nucleare

$B^+ \rightarrow J/\psi K^+$ candidate (x-y plane projection)

First signal seen combining two modes $B^0 \rightarrow D^+\pi^-$ and $B^+ \rightarrow D^0\pi^+$

Prospects for HCO Mixing-induced CPV in $B_s \rightarrow J/\psi\phi$

- **B**_s mixing phase can be accessed with **B**_s \rightarrow J/ $\psi \phi$ in the same way as 2β with $B^0 \rightarrow J/\psi K^0$
- **Phase 2** β_s small in SM, hence very sensitive to NP contributions
 - $2\beta_s = 0.036 \pm 0.002 \text{ rad (SM)}$
- LHCb expectation

LHCb

With 1 fb⁻¹ and full time and angular analysis of flavour-tagged $B_s \rightarrow J/\psi \phi$ decays:

 $\sigma(\varphi_s(J/\psi\phi)) \sim 0.07 \text{ rad}$

Already during 2010 stat. for competitive sensitivity is expected

Prospects with γ from tree decays

• Tree-level determination of CKM angle γ using interference between b \rightarrow c and b \rightarrow u tree-level diagrams in B_(s) \rightarrow D_(s)K

Prospects with charmless charged 2-body B decays

	Current	LHCb
	knowledge	stat.
$\mathcal{A}^{CP}_{K^+\pi^-}$	$-0.098^{+0.012}_{-0.011}$	0.008
$\mathcal{A}^{\mathcal{CP}}_{\pi^+K^-}$	$0.39 \pm 0.15 \pm 0.08$	0.05
$\mathcal{A}^{CP}_{p\pi-}$	$0.03 \pm 0.17 \pm 0.05$	0.05
\mathcal{A}^{CP}_{pK-}	$0.37 \pm 0.17 \pm 0.03$	0.03
$\mathcal{A}^{dir}_{\pi^+\pi^-}$	0.38 ± 0.06	0.13
$\mathcal{A}^{mix}_{\pi^+\pi^-}$	-0.65 ± 0.07	0.13
$\operatorname{Corr}(\mathcal{A}_{\pi^+\pi^-}^{dir}, \mathcal{A}_{\pi^+\pi^-}^{mix})$	0.08	-0.03
$\mathcal{A}^{dir}_{K^{+K-}} \ \mathcal{A}^{mix}_{K^{+K-}} \ Corr(\mathcal{A}^{dir}_{K^{+K-}}, \mathcal{A}^{mix}_{K^{+K-}})$	Unmeasured	0.15 0.11 0.02
$\frac{\mathcal{BR}(B^0 \to \pi^+\pi^-)}{\mathcal{BR}(B^0 \to K^+\pi^-)}$	0.264 ± 0.011	0.006
$\frac{\mathcal{BR}(B^0 \to K^+ K^-)}{\mathcal{BR}(B^0 \to K^+ \pi^-)}$	$0.020 \pm 0.008 \pm 0.006$	0.005
$\frac{f_s \mathcal{BR}(B^0_s \to K^+ K^-)}{f_d \mathcal{BR}(B^0 \to K^+ \pi^-)}$	$0.347 \pm 0.020 \pm 0.021$	0.006
$\frac{f_s \mathcal{BR}(B^0_s \rightarrow \pi^+ K^-)}{f_d \mathcal{BR}(B^0 \rightarrow K^+ \pi^-)}$	$0.071 \pm 0.010 \pm 0.007$	0.004
$\frac{f_s \mathcal{BR}(B_s^0 \to \pi^+\pi^-)}{f_d \mathcal{BR}(B^0 \to K^+\pi^-)}$	$0.007 \pm 0.004 \pm 0.005$	0.002
$\frac{\overline{f_{\Lambda_b} \mathcal{BR}(\Lambda_b \to p\pi^-)}}{\overline{f_d \mathcal{BR}(B^0 \to K^+\pi^-)}}$	$0.0415 \pm 0.0074 \pm 0.0058$	0.0016
$\frac{f_{\Lambda_b} \mathcal{BR}(\Lambda_b \rightarrow pK^-)}{f_d \mathcal{BR}(B^0 \rightarrow K^+\pi^-)}$	$0.0663 \pm 0.0089 \pm 0.0084$	0.0018

LHCb stat. sensitivity with 500 fb⁻¹

- Competitive measurements already possible with L=200 pb⁻¹
 - E.g. $B_s \rightarrow K\pi$ charge asymmetry, relative BR's, ...
 - B_s→KK Lifetime
- With 500 pb⁻¹ we will overcome the Bfactory stat. in the B_d sector and measurements of time dependent CP asymmetries will be possible
 - Maybe first measurement of B_s→KK time dependent CPV
- Time dep. CP asymm. sensitive to γ and NP

LHCb is fully operational

- Recorded lumi so far around 14 nb⁻¹
- Even with such a low luminosity, many interesting signals already observed
- Currently LHCb expects to collect approximately L=0.2 fb⁻¹ in 2010 and L=1 fb⁻¹ at the end of 2011 at √s=7 TeV
 - Center of mass energy of 7 TeV does not represent a major problem for 2010–2011, factor 2 in bb production cross section (value of which is still unknown)
- New Physics searches already very competitive with 2010-2011 run
 - In particular using D decays, measuring the B_s mixing phase from B_s→J/ψφ, γ with tree decays from B→DK modes and with loops from B→hh modes
- Waiting for more statistics..... thank you!