${\cal B}$ Physics in the LHC Era: Selected Topics

Robert Fleischer

Nikhef Theory Group

3rd Workshop on Heavy Flavour Physics Capri, 5–7 July 2010

- Setting the Stage
- Focus on two Topics:
 - Search for New Physics in $B_s \rightarrow \mu^+ \mu^-$
 - Search for New Physics in $B_s \rightarrow J/\psi \phi$
- Concluding Remarks

Setting the Stage

Status of the Standard Model

- The Standard Model (SM) is still very healthy:
 - Survived the era of EW precision tests in the '90s at LEP and SLC!
 - But what causes EW symmetry breaking?
 - Higgs mechanism or an alternative?

$$\rightarrow$$
 SM fit $m_H = (87^{+35}_{-26})$ GeV.

CDF & DØ \rightarrow ATLAS & CMS

- Quark flavour physics and CP violation:
 - Many new insights through data + theory \dots

– Still a large territory is unexplored: \rightarrow | LHCb

- We have indications that the SM *cannot* be complete:
 - Neutrino masses $\neq 0$: suggest see-saw mechanism, GUT scenarios ...
 - Baryon asymmetry of the Universe (SM cannot generate it ...)
 - The long-standing problem of dark matter ...

 \oplus fundamental theoretical questions (hierarchy problem, ...)

(New) Flavour Physics: Where Do We Stand?

- Lessons from the *B*, *D*, *K*, ... data collected so far:
 - CKM matrix is the dominant source of flavour and CP violation.
 - New effects not yet established, although there are potential signals: hadronic $b \to s$ penguins, $B_s^0 - \bar{B}_s^0$ mixing, $B \to \tau \nu$, $(g-2)_{\mu}$, ...
- Implications for the structure of New Physics:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm NP}(\varphi_{\rm NP}, g_{\rm NP}, m_{\rm NP}, ...)$$

- Large characteristic NP scale $\Lambda_{\rm NP}$, i.e. not just \sim TeV, which would be bad news for the direct searches at ATLAS and CMS, or (and?) ...
- Symmetries prevent large NP effects in FCNCs and the flavour sector; most prominent example: *Minimal Flavour Violation (MFV)*.
- <u>Comments:</u>
 - MFV is still far from being experimentally established!
 - There are various non-MFV scenarios with room for sizeable effects :-) SUSY, WED, LHT, Z' models, 4th generation, ...
 - Nevertheless, we have to be prepared to deal with "smallish" NP effects :-(

Status of the Unitarity Triangle

- Continuously updated analyses: $[\rightarrow talk by Marco Ciuchini]$
 - CKMfitter Collaboration [http://ckmfitter.in2p3.fr/];
 - UTfit Collaboration [http://www.utfit.org]:

The Challenge to Detect NP in Flavour Physics

- The key problem: strong interactions \rightarrow "hadronic" uncertainties
 - The theory is formulated in terms of quarks, while flavour-physics experiments use their QCD bound states, i.e. B, D and K mesons.
 - In calculations of the relevant transition amplitudes, we encounter process-dependent, non-perturbative "hadronic" parameters!?

[\rightarrow lattice QCD: lots of progress (e.g., B_K), but still a long way to go...

 \rightarrow talk by Jochen Heitger]

- The *B*-meson system is a *particularly promising* flavour probe:
 - Simplifications through the large b-quark mass $m_b \sim 5 \,\text{GeV} \gg \Lambda_{\text{QCD}}$.
 - Offers various strategies to eliminate the hadronic uncertainties and to determine the hadronic parameters from the data.
 - Tests of SM relations that could be spoiled by NP \ldots
- Two attractive ways for NP to manifest itself: \rightarrow FCNCs
 - Contributions @ decay amplitude level to rare SM processes.
 - Contributions to $B_q^0 \overline{B}_q^0$ mixing $(q \in \{d, s\})$.

Focus on 2 Topics:

Search for New Physics

in

 $\underline{B_s \to \mu^+ \mu^-}$

The Rare Decays $B_q ightarrow \mu^+ \mu^ (q \in \{d,s\})$

• Originate from Z penguins and box diagrams in the Standard Model:

• Corresponding low-energy effective Hamiltonian: [Buchalla & Buras (1993)]

$$\mathcal{H}_{\text{eff}} = -\frac{G_{\text{F}}}{\sqrt{2}} \left[\frac{\alpha}{2\pi \sin^2 \Theta_{\text{W}}} \right] V_{tb}^* V_{tq} \eta_Y Y_0(x_t) (\bar{b}q)_{\text{V-A}} (\bar{\mu}\mu)_{\text{V-A}}$$

- α : QED coupling; Θ_W : Weinberg angle.
- η_Y : short-distance QCD corrections (calculated ...)
- $Y_0(x_t \equiv m_t^2/M_W^2)$: "Inami-Lim function", with top-quark dependence.
- <u>Hadronic matrix element</u>: \rightarrow very simple situation:
 - Only the matrix element $\langle 0|(\bar{b}q)_{V-A}|B_q^0\rangle$ is required: f_{B_q}

 \Rightarrow | belong to the cleanest rare B decays!

- SM predictions: [Buras ('09); lattice input: Lubicz & Tarantino ('09)]
 - Use the data for the ΔM_q to trade f_{B_q} into \hat{B}_q :

$$\frac{\mathsf{BR}(B_q \to \mu^+ \mu^-)}{\Delta M_q} = 4.4 \times 10^{-10} \frac{\tau_{B_q}}{\hat{B}_q} \frac{Y^2(\nu)}{S(\nu)}$$

- Expression holds in CMFV models. Application to the SM gives:

$$BR(B_s \to \mu^+ \mu^-) = (3.6 \pm 0.4) \times 10^{-9}$$
$$BR(B_d \to \mu^+ \mu^-) = (1.1 \pm 0.1) \times 10^{-10}$$

– The error is dominated by the lattice result $\hat{B}_q = 1.22 \pm 0.12$.

- Most recent experimental upper bounds from the Tevatron:
 - CDF collaboration @ 95% C.L.: [CDF Public Note 9892 (2009)] BR $(B_s \to \mu^+ \mu^-) < 4.3 \times 10^{-8}$, BR $(B_d \to \mu^+ \mu^-) < 7.6 \times 10^{-9}$
 - DØ collaboration @ 90% C.L. (95% C.L.): [DØ, arXiv:1006.3469 [hep-ex]]

 $\mathsf{BR}(B_s \to \mu^+ \mu^-) < 4.2 \,(5.1) \times 10^{-8} \Rightarrow | \text{ still a long way (?)}$

NP may enhance BRs significantly...

Babu & Kolda, Dedes et al., Foster et al., Carena et al., Isidori & Paradisi, ...

• Example of a recent analysis: \rightarrow supersymmetric flavour models:

Prospects for $B_s ightarrow \mu^+ \mu^-$ @ LHCb

• At LHCb, the extraction of $BR(B_s^0 \to \mu^+\mu^-)$ will rely on normalization channels $(B_u^+ \to J/\psi K^+, B_d^0 \to K^+\pi^- \text{ and/or } B_d^0 \to J/\psi K^{*0})$:

$$\mathsf{BR}(B_s^0 \to \mu^+ \mu^-) = \mathsf{BR}(B_q \to X) \frac{\epsilon_X}{\epsilon_{\mu\mu}} \frac{N_{\mu\mu}}{N_X} \frac{f_q}{f_s}$$

- ϵ factors are total detector efficiencies.
- ${\cal N}$ factors denote the observed numbers of events.
- f_q are fragmentation functions, which describe the probability that a b quark will fragment in a B_q meson ($q \in \{u, d, s\}$).
- <u>A closer look shows</u>: f_q/f_s is the major source of uncertainty
 - Limits the ability to detect a 5σ deviation from the SM at LHCb to $BR(B_s^0 \rightarrow \mu^+\mu^-) > 11 \times 10^{-9}$ (assuming $\Delta f_d/f_s = 13\%$).
 - BR(B_s) measurements by Belle($\Upsilon(5S)$) will also be limited to $\geq 13\%$.
 - Consequently, the determinations of f_d/f_s are not sufficient to meet the high precision at LHCb :-(

[LHCb Collaboration, B. Adeva *et al.*, LHCb-PUB-2009-029, arXiv:0912.4179v2]

\rightarrow Proposal of a New Strategy:

$$\rightarrow$$
 measure f_d/f_s at LHCb:

• Decays should be robust with respect to NP

 \Rightarrow

• Decays should be well suited for LHCb

R.F., Nicola Serra & Niels Tuning, arXiv:1004.3982 [hep-ph]

$ar{B}^0_s ightarrow D^+_s \pi^-$ & $ar{B}^0_d ightarrow D^+ K^-$

- Decays have interesting features:
 - Only contributions from colour-allowed tree-diagram-like topologies.
 - Hadronic amplitudes are related by the $U\mbox{-spin}$ symmetry.
 - Decays are known as prime examples for "factorization":

$$\mathcal{A}(\bar{B}_q^0 \to D_q^+ P^-) = \frac{G_F}{\sqrt{2}} V_q^* V_{cb} a_1(D_q P) f_P F_0^{(q)}(m_P^2) (m_{B_q}^2 - m_{D_q}^2)$$

[Bjorken ('89); Dugan & Grinstein ('91); Beneke et al. ('00); Bauer et al. ('01)]

- QCD factorization (QCDF): [Beneke, Buchalla, Neubert & Sachrajda (2000)]
 - a_1 is found as a quasi-universal quantity $|a_1| \simeq 1.05$ with very small process-dependent "non-factorizable" corrections.

 $\rightarrow |$ so far no application, but ...

- We can use these decays for the determination of f_d/f_s @ LHCb:
 - Ratio of branching ratios:

$$\frac{\mathsf{BR}(\bar{B}_{s}^{0} \to D_{s}^{+}\pi^{-})}{\mathsf{BR}(\bar{B}_{d}^{0} \to D^{+}K^{-})} \sim \frac{\tau_{B_{s}}}{\tau_{B_{d}}} \left| \frac{V_{ud}}{V_{us}} \right|^{2} \left(\frac{f_{\pi}}{f_{K}} \right)^{2} \left[\frac{F_{0}^{(s)}(m_{\pi}^{2})}{F_{0}^{(d)}(m_{K}^{2})} \right]^{2} \left| \frac{a_{1}(D_{s}\pi)}{a_{1}(D_{d}K)} \right|^{2}$$

- Ratio of the number of signal events observed in the experiment:

$$\frac{N_{D_s\pi}}{N_{D_dK}} = \frac{f_s}{f_d} \frac{\epsilon_{D_s\pi}}{\epsilon_{D_dK}} \frac{\mathsf{BR}(\bar{B}^0_s \to D^+_s\pi^-)}{\mathsf{BR}(\bar{B}^0_d \to D^+K^-)},$$

- Determination of f_d/f_s :

$$\frac{f_d}{f_s} = 12.88 \times \frac{\tau_{B_s}}{\tau_{B_d}} \times \left[\mathcal{N}_a \,\mathcal{N}_F \left(\frac{\epsilon_{D_s \pi}}{\epsilon_{D_d K}} \frac{N_{D_d K}}{N_{D_s \pi}} \right) \right]$$
$$\mathcal{N}_a \equiv \left| \frac{a_1(D_s \pi)}{a_1(D_d K)} \right|^2, \quad \mathcal{N}_F \equiv \left[\frac{F_0^{(s)}(m_\pi^2)}{F_0^{(d)}(m_K^2)} \right]^2$$

Experimental Prospects @ LHCb

• $\frac{\bar{B}^0_d \to D^+ K^-}{\text{the } D^+ \to K^+ \pi^+ \pi^-}$ and $\bar{B}^0_s \to D^+_s \pi^-$ can be exclusively reconstructed using the $D^+ \to K^+ \pi^+ \pi^-$ and $D^+_s \to K^+ K^- \pi^+$ channels:

 \Rightarrow identical $K^+K^-\pi^+\pi^-$ final states

 \Rightarrow small uncertainty on $\epsilon_{D_s\pi}/\epsilon_{D_dK}$

- Toy Monte Carlo, generating a 0.2 fb^{-1} sample (\rightarrow end of 2010):
 - Expect about 5500 $\bar{B}^0_s \rightarrow D^+_s \pi^-$ and 1100 $\bar{B}^0_d \rightarrow D^+ K^-$ events:

$$\Rightarrow$$
 7.5% error for $r \equiv (\epsilon_{D_s \pi} N_{D_d K}) / (\epsilon_{D_d K} N_{D_s \pi})$

- Dominant uncertainty from $BR(D_s \rightarrow K^+K^-\pi) = (5.50 \pm 0.28)\%$.
- Extrapolation to 1 fb⁻¹ (\rightarrow end of 2011):
 - The statistical uncertainty becomes essentially negligible.
 - The total uncertainty is reduced to $\Delta r \sim 5.6\% \rightarrow$ looks nice! [Study with full LHCb simulation in progress (N. Serra & N. Tuning *et al.*)]

Theoretical Uncertainties $\rightarrow U$ -Spin-Breaking Effects

$$\frac{f_d}{f_s} = 12.88 \times \frac{\tau_{B_s}}{\tau_{B_d}} \times \left[\mathcal{N}_a \,\mathcal{N}_F \left(\frac{\epsilon_{D_s \pi}}{\epsilon_{D_d K}} \frac{N_{D_d K}}{N_{D_s \pi}} \right) \right]$$

• Non-factorizable, *U*-spin-breaking effects:

$$\mathcal{N}_a \equiv \left| \frac{a_1(D_s \pi)}{a_1(D_d K)} \right|^2 \approx 1 + 2\Re(a_1^{\rm NF}(D_s \pi) - a_1^{\rm NF}(D_d K))$$

- $a_1^{\rm NF}$ describe non-universal, i.e. process-dependent, non-factorizable contributions, which cannot be calculated reliably.
- However, they arise as power corrections to the heavy-quark limit, i.e. they are suppressed by at least one power of $\Lambda_{\rm QCD}/m_b$, and are - in the decays at hand - numerically expected at the few percent level [Beneke, Buchalla, Neubert & Sachrajda (2000)]
- *Moreover:* we are only sensitive to an SU(3)-breaking difference:

 $\Rightarrow \mid 1 - \mathcal{N}_a$ conservatively expected to be at most a few percent

 \rightarrow | Note: we can experimentally test factorization:

- The PDG value of BR $(\bar{B}^0_d \rightarrow D^+ K^-) = (2.0 \pm 0.6) \times 10^{-4}$ agrees with the QCDF prediction 2.5×10^{-4} in the heavy-quark limit.
- Recent $B_s \to D_s^{(*)} \pi, D_s^{(*)} \rho$ measurements by Belle @ $\Upsilon(5S)$ are also in agreement with factorization [Belle Collaboration, arXiv:1003.5312 [hep-ex]].
- A stringent factorization test will be feasible by combining the LHCb measurement of $BR(\bar{B}^0_d \rightarrow D^+K^-)$ with the BaBar & Belle data for the differential semileptonic $\bar{B}^0 \rightarrow D^+\ell^-\bar{\nu}_\ell$ rate at $q^2 = M_K^2$:

$$\frac{\mathsf{BR}(\bar{B}_q^0 \to D_q^+ P^-)\tau_{B_q}}{d\Gamma(\bar{B}_q^0 \to D_q^+ \ell^- \bar{\nu}_\ell)/dq^2|_{q^2 = m_P^2}} = 6\pi^2 |V_q|^2 f_P^2 |a_1(D_q P)|^2 X_P,$$

where X_P deviates from 1 below the percent level.

[Bjorken ('89); Beneke, Buchalla, Neubert & Sachrajda ('00)]

Factorizable, U-spin-breaking effects:
$$\mathcal{N}_F \equiv \left[\frac{F_0^{(s)}(m_\pi^2)}{F_0^{(d)}(m_K^2)}\right]^2$$

- $B_s \rightarrow D_s$ form factors have so far received only small attention:
 - Heavy-meson chiral perturbation theory [Jenkins & Savage ('92)]
 - QCD sum rules [Blasi *et al.* ('92)]: $\rightarrow N_{\rm F} = 1.3 \pm 0.1$
- We can obtain a *lower* bound on $BR(B_s^0 \to \mu^+ \mu^-)$:
 - Assumption: $\mathcal{N}_F > 1$ [radius of B_s^0 is smaller than that of the B_d^0]

$$\Rightarrow \ \mathsf{BR}(B^0_s \to \mu^+ \mu^-) > \underbrace{\mathsf{BR}(B^0_s \to \mu^+ \mu^-)_0}_{\text{assumes } \mathcal{N}_F = 1}$$

- Interesting probe for NP.
- Benchmark for non-perturbative calculations: \rightarrow lattice QCD
 - In order to match experiment, it is sufficient to calculate the U-spin-breaking corrections to $F_0^{(s)}(m_\pi^2)/F_0^{(d)}(m_K^2)$ at the level of 20%.

 \rightarrow should be feasible.

Resulting NP Reach for $B_s \rightarrow \mu^+ \mu^-$ at LHCb

- Contours corresponding to the detection of a 5σ NP signal for the bound and the extracted value of the $B_s \rightarrow \mu^+\mu^-$ branching ratio:
 - Assuming Gaussian distribution of the errors for branching ratios.
 - Variation of $\mathcal{N}_F \in [1.2, 1.4]$ and $\mathcal{N}_a \in [0.97, 1.03]$ (which does essentially not affect the contours).

 \Rightarrow $B_s \rightarrow \mu^+ \mu^-$ NP reach at LHCb is increased by ~ 2

Search for New Physics

Key Channel: $B_s ightarrow J/\psi \phi$

• CP violation in $B^0_s \to J/\psi\phi$: \to probes NP in $B^0_s - \bar{B}^0_s$ mixing

[Dighe, Dunietz & Fleischer (1998); Dunietz, Fleischer & Nierste (2000); ...]

- Recent updates from the Tevatron: $[\phi_s = -2\beta_s]$
 - DØ plot includes the anomalous like-sign dimuon charge asymmetry;

Run II Preliminary

 $L = 5.2 \, \text{fb}^{-1}$

– CDF plot uses only $B_s \rightarrow J/\psi \phi$.

 $[\rightarrow talks by Rick Jesik (DØ) \& Diego Tonelli (CDF)]$

Prospects for ϕ_s Measurements at the LHC

- Experimental reach @ LHCb: very impressive ...
 - One nominal year of operation, i.e. $2 \, {\rm fb}^{-1}$: $\sigma(\phi_s)_{\rm exp} \sim 1^{\circ}$
 - LHCb upgrade with integrated lumi of 100 fb⁻¹: $\sigma(\phi_s)_{exp} \sim 0.2^{\circ}$
- <u>However:</u> SM penguin effects were so far fully neglected!

$$\xi_{(\psi\phi)_f}^{(s)} \propto e^{-i\phi_s} \left[1 - \underbrace{2i\lambda^2 a_f e^{i\theta_f} \sin\gamma + \mathcal{O}(\lambda^4)}_{\text{penguin effects}} \right]$$

- What is the impact of these corrections?
- How can they be controlled?
- Theory has to match experiment ...

[S. Faller, R.F. & T. Mannel (2008); see also M. Ciuchini et al. (2005)]

Closer Look @ SM Penguin Effects

• CP asymmetries:

$$\frac{|A_f(t)|^2 - |\overline{A}_f(t)|^2}{|A_f(t)|^2 + |\overline{A}_f(t)|^2} = \frac{\hat{A}_D^f \cos(\Delta M_s t) + \hat{A}_M^f \sin(\Delta M_s t)}{\cosh(\Delta \Gamma_s t/2) - \mathcal{A}_{\Delta\Gamma}^f \sinh(\Delta \Gamma_s t/2)}$$

• Impact of hadronic effects:

$$\eta_f \hat{A}_{\mathrm{M}}^f / \sqrt{1 - (\hat{A}_{\mathrm{D}}^f)^2} = \sin(\phi_s + \Delta \phi_s^f)$$

$$\sin \Delta \phi_s^f = \frac{2\epsilon a_f \cos \theta_f \sin \gamma + \epsilon^2 a_f^2 \sin 2\gamma}{N_f \sqrt{1 - (\hat{A}_{\rm D}^f)^2}}$$

$$\cos\Delta\phi_s^f = \frac{1 + 2\epsilon a_f \cos\theta_f \cos\gamma + \epsilon^2 a_f^2 \cos 2\gamma}{N_f \sqrt{1 - (\hat{A}_{\rm D}^f)^2}},$$

$$N_f \equiv 1 + 2\epsilon a_f \cos\theta_f \cos\gamma + \epsilon^2 a_f^2$$

Illustration of the Effects

• Dependence of $\Delta \phi_s^f$ on a_f for different θ_f :

• Dependence of \hat{A}_{D}^{f} on a_{f} for different θ_{f} :

Control Channel: $B^0_s ightarrow J/\psi ar{K}^{*0}$

• Decay topologies:

- Very similar to the $B_s^0 \rightarrow J/\psi\phi$ mode, but different CKM structure: $b \rightarrow d$ instead of $b \rightarrow s$ transition.
- Have to neglect PA and E topologies (which can be probed through $B_d^0 \rightarrow J/\psi\phi$) when relating both modes through SU(3).
- Decay amplitude: $A(B_s^0 \to (J/\psi \bar{K}^{*0})_f) = \lambda \mathcal{A}'_f \left[1 a'_f e^{i\theta'_f} e^{i\gamma}\right]$
 - Penguin term is not suppressed by λ^2 .
 - Using the working assumption as specified above:

$$\Rightarrow |\mathcal{A}_f| = |\mathcal{A}'_f|$$
 and $a_f = a'_f, \quad heta_f = heta'_f.$

- Control of the effects through $B_s^0 \to J/\psi [\to \ell^+ \ell^-] \bar{K}^{*0} [\to \pi^+ K^-]$:
 - Ratio of the CP-averaged "untagged" rates $\Gamma[f, t = 0]'$ and $\Gamma[f, t = 0]$ of the $B_s^0 \to J/\psi \bar{K}^{*0}$ and $B_s^0 \to J/\psi \phi$ modes, respectively:

$$H_f \equiv \frac{1}{\epsilon} \left| \frac{\mathcal{A}_f}{\mathcal{A}'_f} \right|^2 \frac{\Gamma[f, t=0]'}{\Gamma[f, t=0]} = \frac{1 - 2a'_f \cos \theta'_f \cos \gamma + a'_f^2}{1 + 2\epsilon a_f \cos \theta_f \cos \gamma + \epsilon^2 a_f^2}$$

– Measure the direct CP asymmetries $\hat{A}_{\mathrm{D}}^{f'}$, the counterparts of the $\hat{A}_{\mathrm{D}}^{f'}$.

- No mixing-induced CP violation as flavour-specific final state :-(
- <u>Numerical Illustration</u>: $\gamma = 65^{\circ}$, $a'_f = 0.4$, $\theta'_f = 220^{\circ}$ (consistent with $a' \in [0.15, 0.67]$ and $\theta' \in [174^{\circ}, 213^{\circ}]$ following from a $B^0 \to J/\psi \pi^0$ analysis).

[Detailed discussion, SU(3) breaking, etc.: S. Faller, R.F. & T. Mannel (2008)]

Comments & Observations

• $\Delta \phi^f_s$ is favoured to have negative sign:

 \Rightarrow interferes *constructively* with $\phi_s^{SM} = -(2.12 \pm 0.11)^{\circ}$

– Consequently, the phase shift $\Delta\phi^f_s=-1.7^\circ$ of our example yields

$$\eta_f \hat{A}^f_{\mathrm{M}} = -6.7\% \quad \Rightarrow \quad \sim 2 \times \text{na\"ive SM value!}$$

- Without the analysis described above: misinterpretation as 4σ NP effect with 2 fb^{-1} @ LHCb, and about 20σ at upgrade with 100 fb^{-1} .
- Cannot exclude that the hadronic penguin effects are actually more significant than in our example, could lead to $\eta_f \hat{A}^f_M \sim -10\%$...
- <u>Two scenarios:</u>
 - Optimistic: $\eta_f \hat{A}_M^f \sim -40\%$ would be an unambiguous signal of NP!
 - *Pessimistic:* $\eta_f \hat{A}_M^f \sim -(5...10)\%$ would require more work from TH and EXP to settle the picture...

Much more

Physics

<u>@ LHCb:</u>

Precision Measurements of γ

• Tree strategies, with expected sensitivities after 1 year of taking data:

$$\begin{split} &-B_s^0 \to D_s^{\mp} K^{\pm}: \ \sigma_{\gamma} \sim 14^{\circ} \\ &-B_d^0 \to D^0 K^*: \ \sigma_{\gamma} \sim 8^{\circ} \qquad \dots \text{ to be compared with the} \\ &-B^{\pm} \to D^0 K^{\pm}: \ \sigma_{\gamma} \sim 5^{\circ} \\ &-\dots \\ &\text{ current } B\text{-factory data: } \gamma|_{D^{(*)}K^{(*)}} = \begin{cases} (73^{+22}_{-25})^{\circ} & [\text{CKMfitter}] \\ (78 \pm 12)^{\circ} & [\text{UTfit}] \end{cases} \end{split}$$

• Decays with penguin contributions:

-
$$B_s^0 \to K^+K^-$$
 and $B_d^0 \to \pi^+\pi^-$: $\sigma_\gamma \sim 5^\circ$
- $B_s^0 \to D_s^+D_s^-$ and $B_d^0 \to D_d^+D_d^-$
- ...

- Practical challenge:
 - We encounter typically discrete ambiguities for $\gamma: \rightarrow$ have to be resolved for the search of NP! [Further info helps, U-spin decays ...]

 \Rightarrow | Will we encounter discrepancies? | [\rightarrow talk by Vincenzo Vagnoni]

Analyses of Rare B Decays

- Non-leptonic: $B^0_d \to \phi K_{\rm S}, \ B^0_s \to \phi \phi, \ \dots$
 - Hadronic sector: fix corrections through flavour symmetries.
 - Analyses of CP-violating observables, using also BRs as input.
 - New effects would immediately rule out MFV!
- Semileptonic: $B^0_d \to K^{*0} \mu^+ \mu^-$, $B^0_s \to \phi \mu^+ \mu^-$, ...
 - Hadronic sector: quark-current form factors (QCD sum rules, lattice).
 - Search for observables that are particularly robust with respect to the corresponding uncertainties:
 - * Example: 0-crossing of the forward–backward asymmetry.
- Leptonic: $B^0_s \to \mu^+ \mu^-$, $B^0_d \to \mu^+ \mu^-$
 - See discussion given above...

 \Rightarrow | Will we encounter discrepancies? |

 $[\rightarrow talks by U. Egede \& G. Buchalla]$

Other Interesting Topics

- Charm physics: $D^0 \to K^+ K^-$, ...
 - While FCNCs in the B system are sensitive to new effects in the up sector, charm physics probes the down sector (b, s, d in SM loops)!
 - D^0 - \overline{D}^0 mixing seen in the ball park of the SM, but NP could be hiding there: cannot be resolved because of long-distance QCD effects.
 - Interesting NP probe: search for CP-violating effects, which are tiny in the SM but could be enhanced through NP!
- Search for lepton flavour violation: $B^0_{d,s} \to e^{\pm} \mu^{\mp}$, $B^0_{d,s} \to \mu^{\pm} \tau^{\mp}$
 - In the SM such processes are forbidden!
 - However, they may arise in NP scenarios, such as SUSY.
 - Studies complement other searches of this phenomenon such as by means of $\mu \to e\gamma$, $\tau \to \mu\gamma$, $\tau \to \mu\mu\mu$, ...

Will we eventually see signals?

Concluding Remarks

Moving towards New Frontiers ...

- The last decade has seen many interesting B-physics results: \Rightarrow
 - CKM matrix is the dominant source of flavour and CP violation.
 - Potential signals for new phenomena, though not yet established ...
- Flavour takes part in the BIG adventure of this decade: \rightarrow LHC
 - Specific NP scenarios still leave room for sizeable effects!
 - Promising channels to find *first* NP signals @ LHCb (and the LHC):
 - $* B_s^0 \to \mu^+ \mu^-$
 - $* ~B^0_s \to J/\psi \phi$
- Theoretical topics: [\leftrightarrow strong interaction with LHCb community]
 - Further critically review SM phenomena, develop strategies to control hadronic uncertainties (preferably through data),
 - Explore the patterns in specific NP scenarios:

 \Rightarrow correlations \Rightarrow what kind of NP?

- Bring new channels to the attention of LHCb.
- Search for synergies, also with high- Q^2 physics @ ATLAS & CMS.