Flavour Physics Effects of a 4th Generation

Stefan Recksiegel TUM Capri, 7th July 2010

Flavour Physics Effects of a 4th Generation

- Why (not) four generations ?
- 2 SM4: The SM with a 4th Generation
- 3 Flavour Physics Constraints
- 4 Numerical results
- **5** Scaling Scenarios
- 6 Dimensional Analysis
 - How long is the coastline of Britain ?
 - The effective dimension of the parameter space of SM4

Why (not) four generations ?

There are only three light neutrinos:

See-Saw (or whatever) different for 4G, Dirac mass ? Not a problem.

There are only three light neutrinos:

See-Saw (or whatever) different for 4G, Dirac mass ? Not a problem.

There are only three light neutrinos:

See-Saw (or whatever) different for 4G, Dirac mass ? Not a problem.

Also, potential problems with EW precision observables:

Non-decoupling radiative corrections to

Electroweak Precision Observables (EWPO)

T parameter and $Zb\bar{b}$ vertex corrections are modified.

Upper bound on s_{34} as a function of $m_{t'}$:

$$|\sin\theta_{34}| \le \frac{M_W}{m_{t'}}$$

(Chanowitz '09)

 \rightarrow We have taken care of this.

Also, potential problems with EW precision observables:

Non-decoupling radiative corrections to

Electroweak Precision Observables (EWPO)

T parameter and $Zb\bar{b}$ vertex corrections are modified.

Upper bound on s_{34} as a function of $m_{t'}$:

$$|\sin\theta_{34}| \le \frac{M_W}{m_{t'}}$$

(Chanowitz '09)

 \rightarrow We have taken care of this.

The most obvious extension to the SM

- Avoid necessity for light Higgs See above: Modification of EWPO, "blue band plot" changes
- SU(5) gauge coupling unification possible without SUSY
- Electroweak baryogenesis might be viable
- Relieve tension in SM3 fits
- . . .
- Interesting phenomenology

- The most obvious extension to the SM (A. Lenz: "The most boring extension to the SM")
- Avoid necessity for light Higgs See above: Modification of EWPO, "blue band plot" changes
- SU(5) gauge coupling unification possible without SUSY
- Electroweak baryogenesis might be viable
- Relieve tension in SM3 fits
- . . .
- Interesting phenomenology

- The most obvious extension to the SM
- Avoid necessity for light Higgs See above: Modification of EWPO, "blue band plot" changes
- SU(5) gauge coupling unification possible without SUSY
- Electroweak baryogenesis might be viable
- Relieve tension in SM3 fits
- . . .
- Interesting phenomenology

- The most obvious extension to the SM
- Avoid necessity for light Higgs See above: Modification of EWPO, "blue band plot" changes
- SU(5) gauge coupling unification possible without SUSY
- Electroweak baryogenesis might be viable
- Relieve tension in SM3 fits
- . . .
- Interesting phenomenology

- The most obvious extension to the SM
- Avoid necessity for light Higgs See above: Modification of EWPO, "blue band plot" changes
- SU(5) gauge coupling unification possible without SUSY
- Electroweak baryogenesis might be viable
- Relieve tension in SM3 fits
- . . .
- Interesting phenomenology

- The most obvious extension to the SM
- Avoid necessity for light Higgs See above: Modification of EWPO, "blue band plot" changes
- SU(5) gauge coupling unification possible without SUSY
- Electroweak baryogenesis might be viable
- Relieve tension in SM3 fits
- . . .
- Interesting phenomenology

- The most obvious extension to the SM
- Avoid necessity for light Higgs See above: Modification of EWPO, "blue band plot" changes
- SU(5) gauge coupling unification possible without SUSY
- Electroweak baryogenesis might be viable
- Relieve tension in SM3 fits
- . . .
- Interesting phenomenology

SM4: The SM with a 4th Generation

The SM with a 4th Generation

The 4th Generation has been well studied, e.g. "find ti fourth":

PAD 11/04/HH Strandy Autory Finnet Cleanmany • Set Ne Set Named • Deployage	Paper 1 to 25 of 627
Binufaneous Extraction of the Ferni constant and PMNS matrix elements in the presence of a louringener Helic Lake, <i>Referent Neurol.</i> , H42PH 10-10, Mir 2010. Rop. <u>Tempores with</u> PMNE 8927-1004852 (Po.pdf)	ation.
Pademanoso () pitanto (s) il la Torrico II. Il Horvina (Pistolina (Horvina) Adopto, and Pistolina (add FCE fram alfor equipments: autor tri de esti il la la la suferab de sestari il Recommunatori in la tria minimitatori	
Dynamical symmetry breaking with a fourti generation, Doesen, M. Rossone, C.A. Vapues Araue, Mar 2013, 14pp. <u>Temporary entry</u> Print adV2-radio 3267 (bugs of)	
References (LaTeX)221 (LaTeX)22.0 (Henceus (Diblick) (Howens). Address and Pasterized and PCP from a Viv cog (winters, as for code as follo if to be not as as a loci (Exception-based in the their information	
Dynamical Electroweak Symmetry Eccelling and Fourth Family. Matter Hashmada, 1820–194 1954, Mar 2010, Opp. Temporary and/ efficiency and/ efficiency and/ efficiency and/	
Pederamos II all'occupi II all'occupi II ellevinari l'Eschar i Novembra Antonic dell'Instanza dell'OCH francasci endiciona di constanza alla si alla si alla si alla si alla sa acci seri i Documentazioni in o tras internazioni	
© Patterns of Flavour Violation in the Presence of a Fourth Generation of Quarks and Leptons. Address Journs (Journ Lings, Thomas Feddmann, Tillmann Heidseck, Christian Promberger, Sedar Reckssey), "TU Prime address/2021/32 Paperp)	4.46P-750-10, Feb 2018, Tipp, <u>Temporary entry</u>
References LaTeVILIS LaTeVILIS Herman Distant Hawmork Obed 3 trees Abstract and Destruction and EDE from with one defenses as to provide as to film in the street and and in	

Burdman, Chanowitz, Frampton, Holdom, Hou, Hung, King, Soni, ...

A lot more citations (and plots) in

Buras/Duling/Feldmann/Heidsiek/Promberger/SR, arXiv:1002.2126

The SM with a 4th Generation

The 4th Generation has been well studied, e.g. "find ti fourth":

FIND TI FOURTH					
Browse Author	Format:	Citesummary	T	Sort	No Sort (fastest)
Display again					

Paper 1 to 25 of 627

1) Simultaneous Extraction of the Fermi constant and PMNS matrix elements in the presence of a fourth generation.

Heiko Lacker, Andreas Menzel, . HU-EP-10-10, Mar 2010. 16pp. Temporary entry e-Print: arXiv:1003.4532 [hep-ph]

References | LaTeX(US) | LaTeX(EU) | Harvmac | BibTeX | Keywords Abstract and Postscript and PDE from arXiv.org (mirrors: au br.cn.de.es.fr.il.in.it.jp.kr.ru.tw.uk.za.aps.lan!) Bookmarkable link to this information

2) Dynamical symmetry breaking with a fourth generation.

D. Delepine, M. Napsuciale, C.A. Vaquera-Araujo, Mar 2010. 14pp. <u>Temporary entry</u> e-Print: arXiv:1003.3267 [hep-ph]

References | LaTeXIUS) | LaTeXIEU) | Hawmac | BioTeX | Kewwords Abstract and Postscript and PDE from arXiv.org (mirrors: au br cn de es fr il in it jp kr ru tw uk za aps lan)) Bookmarkable link to this information

3) Dynamical Electroweak Symmetry Breaking and Fourth Family.

Michio Hashimoto, .KEK-TH-1354, Mar 2010. 8pp. Temporary entry e-Print arXiv:1003.0081 [hep-ph]

References | LaTeX(US) | LaTeX(EU) | Harvmac | BibTeX | Keywords Abstract and Postscript and PDF from arXiv org (mirrors: au br cn de es fr il in it jp kr ru tw uk za aps lan)) Bookmarkable link to this information

4) Patterns of Flavour Violation in the Presence of a Fourth Generation of Quarks and Leptons.

Andrzej J. Buras, Bjorn Duling, Thorsten Feldmann, Tillmann Heidsieck, Christoph Promberger, Stefan Recksiegel, .TUM-HEP-750-10, Feb 2010. 79pp. Temporary entry e-Print arXiv:1002.2126 [hep-ph]

References | LaTeXICUS | LaTeXICU | Harvmac | BibTeX | Keywords | Otled 3 times Abstract and Postscript and PDE from arXiv.org (mirrors: au br cn de es fr il in it jp kr ru tw uk za aps lan) } Bookmarkable link to this information

> PAU 1 POURH Bourdy Auftor | Farmat Cleasurymany • | Soit Iva Set National • Display again

Paper 1 to 25 of 627

Flavour Physics Effects of a 4th Generation

The SM with a 4th Generation

The 4th Generation has been well studied, e.g. "find ti fourth":

Burdman, Chanowitz, Frampton, Holdom, Hou, Hung, King, Soni, ...

A lot more citations (and plots) in

Buras/Duling/Feldmann/Heidsiek/Promberger/SR, arXiv:1002.2126

The CKM Matrix for 4 generations

Five additional parameters: θ_{14} , θ_{24} , θ_{34} , δ_{14} and δ_{24} . (+masses, +leptons) V_{CKM4} can be written as the product of a **new matrix** and V_{CKM3} :

$$V_{CKM4} = \begin{pmatrix} c_{14} & 0 & 0 & e^{-i\delta_{14}}s_{14} \\ -e^{i(\delta_{14} - \delta_{24})}s_{14}s_{24} & c_{24} & 0 & e^{-i\delta_{24}}c_{14}s_{24} \\ -e^{i\delta_{14}}c_{24}s_{14}s_{14} & -e^{i\delta_{24}}s_{24}s_{34} & c_{34} & c_{14}c_{24}s_{34} \\ -e^{i\delta_{14}}c_{24}c_{34}s_{14} & -e^{i\delta_{24}}s_{34}s_{24} & -s_{34} & c_{14}c_{24}s_{34} \end{pmatrix} \\ \times \begin{pmatrix} c_{12}c_{13} & c_{13}s_{12} & e^{-i\delta_{13}}s_{13} & 0 \\ -c_{23}s_{12} - e^{i\delta_{13}}c_{12}s_{13}s_{23} & c_{12}c_{23} - e^{i\delta_{13}}s_{12}s_{13}s_{23} & c_{13}s_{23} & 0 \\ s_{12}s_{23} - e^{i\delta_{13}}c_{12}c_{23}s_{13} & -e^{i\delta_{13}}c_{23}s_{12}s_{13} - c_{12}s_{23} & c_{13}c_{23} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

New mixing, new phases \Rightarrow SM4 goes **beyond MFV**

 $(c_{14} = \cos \theta_{14}, \ldots)$

The CKM Matrix for 4 generations

Five additional parameters: θ_{14} , θ_{24} , θ_{34} , δ_{14} and δ_{24} . (+masses, +leptons) V_{CKM4} can be written as the product of a **new matrix** and V_{CKM3} :

$$V_{CKM4} = \begin{pmatrix} c_{14} & 0 & 0 & e^{-i\delta_{14}s_{14}} \\ -e^{i\delta_{14}-\delta_{24}}s_{14}s_{24} & c_{24} & 0 & e^{-i\delta_{24}}c_{14}s_{24} \\ -e^{i\delta_{14}}c_{24}s_{14}s_{34} & -e^{i\delta_{24}}s_{24}s_{34} & c_{34} & c_{14}c_{24}s_{34} \\ -e^{i\delta_{14}}c_{24}c_{34}s_{14} & -e^{i\delta_{24}}c_{34}s_{24} & -s_{34} & c_{14}c_{24}c_{34} \end{pmatrix} \\ \times \begin{pmatrix} c_{12}c_{13} & c_{13}s_{12} & e^{-i\delta_{13}}s_{12}s_{13}s_{23} & c_{13}s_{23} & 0 \\ -c_{23}s_{12} - e^{i\delta_{13}}c_{12}c_{23}s_{13} & -e^{i\delta_{13}}c_{23}s_{12}s_{13}s_{23} & c_{13}s_{23} & 0 \\ s_{12}s_{23} - e^{i\delta_{13}}c_{12}c_{23}s_{13} & -e^{i\delta_{13}}c_{23}s_{12}s_{13} - c_{12}s_{23} & c_{13}c_{23} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

New mixing, new phases \Rightarrow SM4 goes beyond MFV !

 $(c_{14} = \cos \theta_{14}, \ldots)$

Minimal Flavour Violation ↔ Non-MFV

(Buras et al. 01, D'Ambrosio et al. 02)

Models are **MFV** if there are **no new sources** of Flavour Violation (i.e. only SM-Yukawa).

Examples of **MFV**:

- Universal extra dimensions (UED) (Appelquist, Cheng, Dobrescu)
- SUSY with universal soft-scalar masses and trilinear soft terms proportional to Yukawa couplings (squark, quark masses aligned)
- Little Higgs without T-parity (no mirror quarks)

Examples of non-MFV:

- General SUSY (squark mass matrices not aligned with quarks)
- Littlest Higgs with T-parity (mirror quarks, new mix. matrix)
- SM4

Minimal Flavour Violation \leftrightarrow Non-MFV

(Buras et al. 01, D'Ambrosio et al. 02)

Models are **MFV** if there are **no new sources** of Flavour Violation (i.e. only SM-Yukawa).

Examples of **MFV**:

- Universal extra dimensions (UED) (Appelquist, Cheng, Dobrescu)
- SUSY with universal soft-scalar masses and trilinear soft terms proportional to Yukawa couplings (squark, quark masses aligned)
- Little Higgs without T-parity (no mirror quarks)

Examples of non-MFV:

- General SUSY (squark mass matrices not aligned with quarks)
- Littlest Higgs with T-parity (mirror quarks, new mix. matrix)
- SM4

Minimal Flavour Violation \leftrightarrow Non-MFV

(Buras et al. 01, D'Ambrosio et al. 02)

Models are **MFV** if there are **no new sources** of Flavour Violation (i.e. only SM-Yukawa).

Examples of **MFV**:

- Universal extra dimensions (UED) (Appelquist, Cheng, Dobrescu)
- SUSY with universal soft-scalar masses and trilinear soft terms proportional to Yukawa couplings (squark, quark masses aligned)
- Little Higgs without T-parity (no mirror quarks)

Examples of **non-MFV**:

- General SUSY (squark mass matrices not aligned with quarks)
- Littlest Higgs with T-parity (mirror quarks, new mix. matrix)
- SM4

The theoretical framework

SM4 goes beyond MFV, but **operator structure** of the SM3 effective Hamiltonian remains intact (c.f. LHT, but unlike SUSY).

 \Rightarrow Introduce generalised complex master functions

$$S_i, X_i, Y_i, Z_i, D'_i, E'_i, E_i (i = K, d, s)$$

Observables can be written in terms of these functions, e.g. **BB** mixing:

$$M_{12}^{q} = \frac{G_{F}^{2}}{12\pi^{2}} F_{B_{q}}^{2} \hat{B}_{B_{q}} m_{B_{q}} M_{W}^{2} \lambda_{t}^{(q)*2} \eta_{B} S_{q}^{*}$$

Just like **SM3**, but $S_0 \rightarrow S_q$.

Master Functions

The new master functions are composed of the old functions, e.g.

$$S_q = S_0(x_t) + \left(rac{\lambda_{t'}^{(q)}}{\lambda_t^{(q)}}
ight)^2 S_0(x_{t'}) + 2rac{\lambda_{t'}^{(q)}}{\lambda_t^{(q)}} S_0(x_t, x_{t'}) \,,$$

and CKM(4) factors,

$$\lambda_i^{(K)} = V_{is}^* V_{id}, \quad \lambda_i^{(d)} = V_{ib}^* V_{id}, \quad \lambda_i^{(s)} = V_{ib}^* V_{is}.$$

Similar to the SM(3) case, **unitarity**, e.g.:

$$\lambda_u^{(K)} + \lambda_c^{(K)} + \lambda_t^{(K)} + \lambda_{t'}^{(K)} = 0.$$

Flavour Physics Constraints

Flavour Physics Constraints

Flavour Physics Observables

We require the observables

$$\varepsilon_{K}, \quad \Delta M_{K}, \quad \Delta M_{q}, \quad \Delta M_{d}/\Delta M_{s}, \quad S_{\psi K_{s}}$$

to lie inside their experimental 1σ ranges.

For ΔM_K we employ a larger range due to the large **hadronic uncertainty**, the SM3 **short distance contribution** is only 70% of the measured value.

Also, we impose (looser) constraints on $Br(B \to X_s \ell^+ \ell^-)$, $Br(B \to X_s \gamma)$, $Br(K^+ \to \pi^+ \nu \bar{\nu})$ and $B_{s,d} \to \mu^+ \mu^-$.

We generate a **large number of random points** in parameter space and keep only those that satisfy all **tree level CKM constraints** and those listed above.

Numerical results

Violation of Universality

In SM3 (•), the functions are real and independent of the meson system !

Violation of Universality

Colour coding

$${
m Br}(B_{
m s} o\mu^+\mu^-)$$
 is correlated with ${
m S}_{\psi\phi}$, ${
m Br}(B_{
m d} o\mu^+\mu^-)$ is not !

Colour coding

Exp. bounds: Br $(B_s \to \mu^+ \mu^-) \le 3.3 \ (5.3) \cdot 10^{-8}$, Br $(B_d \to \mu^+ \mu^-) \le 1 \cdot 10^{-8}$.

 $S_{\psi\phi}$ can go up to the current measured value!

Colour coding

Exp. bounds: Br $(B_s \to \mu^+ \mu^-) \le 3.3 \ (5.3) \cdot 10^{-8}$, Br $(B_d \to \mu^+ \mu^-) \le 1 \cdot 10^{-8}$.

 $Br(B_{s/d} \rightarrow \mu^+ \mu^-)$ can be significantly enhanced! (\rightarrow LHCb)

Colour coding II

Dark blue/light blue indicates size of $Br(K_L \to \pi^0 \nu \bar{\nu})$.

 $Br(K_L \to \pi^0 \nu \bar{\nu})$ can be significantly enhanced !

Interesting decay channel because theoretically very clean measure of CP.

Colour coding II

Dark blue/light blue indicates size of $Br(K_L \to \pi^0 \nu \bar{\nu})$.

 $Br(K_L \to \pi^0 \nu \bar{\nu})$ can be significantly enhanced !

Interesting decay channel because theoretically very clean measure of LP.

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ and $K_L \rightarrow \pi^0 \nu \bar{\nu}$

Reminder: Scenarios restrict B_s , but large effects in K system possible !

Br($\mathcal{K}_L \to \pi^0 \nu \bar{\nu}$) can be large, close to the Grossman-Nir-bound !

Interesting: Large $K^+ \to \pi^+ \nu \bar{\nu}$ only for large $K_L \to \pi^0 \nu \bar{\nu}$. \Rightarrow Structure of BRs, correlation with $K_L \to \mu^+ \mu^-$

Flavour Physics Effects of a 4th Generation

Comparison with other NP models

How can we distinguish between different models of New Physics ?

Littlest Higgs with T parity and **Randall-Sundrum** produce similar signatures for $K_L/K^+ \rightarrow \pi \nu \bar{\nu}$, **4G** is different !

(Thanks to U. Haisch for RS plot)

Comparison with other NP models

How can we distinguish between different models of New Physics ?

Littlest Higgs with T parity and Randall-Sundrum produce similar signatures for $K_L/K^+ \rightarrow \pi \nu \bar{\nu}$, 4G is different !

(Thanks to U. Haisch for RS plot)

CP asymmetries as a function of $S_{\psi\phi}$

Direct \mathcal{CP} in the Kaon system: ε'/ε

arepsilon'/arepsilon depends strong on two hadronic parameters: R_6 and R_8

All values of the hadr. param. are **consistent** with experiment in SM4...

Direct \mathcal{CP} in the Kaon system: ε'/ε

... but ε'/ε can still give constraints, e.g. on $S_{\psi\phi}$: Impose ε'/ε bound!

(The colours correspond to different values for R_6 and R_8 on prev. slide)

Direct \mathcal{CP} in the Kaon system: ε'/ε

... but ε'/ε can still give constraints, e.g. on $S_{\psi\phi}$: Impose ε'/ε bound!

If we take ε'/ε seriously, very large values for $S_{\psi\phi}$ are excluded !

Scaling Scenarios

Scaling Scenarios

The Wolfenstein expansion

$$\lambda \equiv s_{12}, \quad s_{23} \equiv A\lambda^2, \quad s_{13}e^{i\delta_{13}} \equiv A\lambda^3(\rho + i\eta) \equiv A\lambda^3 z_{\rho}$$

can be generalised to 4G:

$$s_{14}e^{i\delta_{14}} = \lambda^{n_1}z_{\tau} , \quad s_{24}e^{i\delta_{24}} = \lambda^{n_2}z_{\sigma} , \quad s_{34} = \lambda^{n_3}B$$

 $A, B, z_i \sim \mathcal{O}(1)$

Scaling scenarios are defined by (n_1, n_2, n_3) .

We can classify the valid parameter points according to these scenarios.

Scaling Scenarios

 \rightarrow We can determine the scaling scenario (and thereby the 4G parameters) from correlations

Flavour Physics Effects of a 4th Generation

 \rightarrow We can determine the scaling scenario (and thereby the 4G parameters) from correlations.

Dimensional Analysis

Fractal Dimensions

Haussdorff dimension

A geometric shape has Haussdorff dimension d if the relationship between is mass m and length L is $m \propto L^{d}$

This coincides with the "normal life" understanding of dimensionality for integer d. For Fractals, d is not an integer.

E.g. Sierpínski triangle: mass triples when size doubles $\rightarrow d = log(3)/log(2) \approx 1.585$

The Box Counting algorithm

1/1 4/4

13/16

For **solid** objects, the fill ratio will approach a **constant**, for a **line**, it will approach 1/n ($n \times n$ boxes). For a fractal, . .

The Box Counting algorithm

13/16

For solid objects, the fill ratio will approach a constant, for a line, it will approach 1/n ($n \times n$ boxes). For a fractal, ...

We can make a logarithmic plot of the fill ratio:

The dimension of the British coastline is 1.25

(Benoît Mandelbrot, 1967)

The effective dimension of the parameter space of SM4

In SM4, the valid points in parameter space lie on a complicated structure in 10-dim. space with an effective dimension of \sim 3. In LHT, the valid points are distributed evenly over the parameter space, the exp. constraints are fulfilled by tuning the mixing parameters and the mirror fermion masses.

Dimension of parameter space of sub-Scenarios

If we restrict ourselves to certain **Scenarios** (i.e. scaling of the mixing parameters), the **effective dimension** of the parameters space **decreases**.

Effective measure of distribution of data points, correlations, tuning.

Dimension of parameter space of sub-Scenarios

If we restrict ourselves to certain **Scenarios** (i.e. scaling of the mixing parameters), the **effective dimension** of the parameters space **decreases**.

Effective measure of distribution of data points, correlations, tuning.

• The SM4 is a viable and interesting extension of the SM(3)

Contrary to popular belief, not excluded by LEP, EWPO, ...

- Spectacular effects in **Flavour Physics** observables are possible LHC(b): $S_{\psi\phi}$, $B_s \rightarrow \mu^+ \mu^-$ (physics started Mar30th)
- Tension between experimental results and SM3 can be relieved (Explanation of the S_{ψφ} anomaly involves a significant enhancement of Br(B_s→μ⁺μ⁻)!)
- arepsilon'/arepsilon seems to exclude very large values for $S_{\psi\phi}$
- The signature of SM4 is different from other NP models
- Once 4G has been found, study parameters from correlations of observables.

- The SM4 is a viable and interesting extension of the SM(3) Contrary to popular belief, not excluded by LEP, EWPO, ...
- Spectacular effects in **Flavour Physics** observables are possible LHC(b): $S_{\psi\phi}$, $B_s \rightarrow \mu^+ \mu^-$ (physics started Mar30th)
- Tension between experimental results and SM3 can be relieved (Explanation of the S_{ψφ} anomaly involves a significant enhancement of Br(B_s→μ⁺μ⁻)!)
- arepsilon'/arepsilon seems to exclude very large values for $S_{\psi\phi}$
- The signature of SM4 is different from other NP models
- Once 4G has been found, study parameters from correlations of observables.

- The SM4 is a viable and interesting extension of the SM(3) Contrary to popular belief, not excluded by LEP, EWPO, ...
- Spectacular effects in Flavour Physics observables are possible LHC(b): $S_{\psi\phi}$, $B_s \rightarrow \mu^+ \mu^-$ (physics started Mar30th)
- Tension between experimental results and SM3 can be relieved (Explanation of the S_{ψφ} anomaly involves a significant enhancement of Br(B_s→μ⁺μ⁻)!)
- The element of CMA is different from other ND as
- The signature of SM4 is different from other NP models
- Once 4G has been found, study parameters from correlations of observables.

- The SM4 is a viable and interesting extension of the SM(3) Contrary to popular belief, not excluded by LEP, EWPO, ...
- Spectacular effects in Flavour Physics observables are possible LHC(b): $S_{\psi\phi}$, $B_s \rightarrow \mu^+ \mu^-$ (physics started Mar30th)
- Tension between experimental results and SM3 can be relieved

Explanation of the $S_{\psi\phi}$ **anomaly** involves a

significant enhancement of $Br(B_s \rightarrow \mu^+ \mu^-)!)$

- arepsilon'/arepsilon seems to exclude very large values for $S_{\psi\phi}$
- The signature of SM4 is different from other NP models
- Once 4G has been found, study parameters from correlations of observables.

- The SM4 is a viable and interesting extension of the SM(3) Contrary to popular belief, not excluded by LEP, EWPO, ...
- Spectacular effects in Flavour Physics observables are possible LHC(b): $S_{\psi\phi}$, $B_s \rightarrow \mu^+ \mu^-$ (physics started Mar30th)
- Tension between experimental results and SM3 can be relieved

- arepsilon'/arepsilon seems to exclude very large values for $S_{\psi\phi}$
- The signature of SM4 is different from other NP models
- Once 4G has been found, study parameters from correlations of observables.

- The SM4 is a viable and interesting extension of the SM(3) Contrary to popular belief, not excluded by LEP, EWPO, ...
- Spectacular effects in Flavour Physics observables are possible LHC(b): $S_{\psi\phi}$, $B_s \rightarrow \mu^+ \mu^-$ (physics started Mar30th)
- Tension between experimental results and SM3 can be relieved

- ε'/ε seems to exclude very large values for $S_{\psi\phi}$
- The signature of SM4 is different from other NP models
- Once 4G has been found, study parameters from correlations of observables.

- The SM4 is a viable and interesting extension of the SM(3) Contrary to popular belief, not excluded by LEP, EWPO, ...
- Spectacular effects in Flavour Physics observables are possible LHC(b): $S_{\psi\phi}$, $B_s \rightarrow \mu^+ \mu^-$ (physics started Mar30th)
- Tension between experimental results and SM3 can be relieved

- ε'/ε seems to exclude very large values for $S_{\psi\phi}$
- The signature of SM4 is different from other NP models
- Once 4G has been found, study parameters from correlations of observables.

- The SM4 is a viable and interesting extension of the SM(3) Contrary to popular belief, not excluded by LEP, EWPO, ...
- Spectacular effects in Flavour Physics observables are possible LHC(b): $S_{\psi\phi}$, $B_s \rightarrow \mu^+ \mu^-$ (physics started Mar30th)
- Tension between experimental results and SM3 can be relieved

- ε'/ε seems to exclude very large values for $S_{\psi\phi}$
- The signature of SM4 is different from other NP models
- Once 4G has been found, study parameters from correlations of observables.

Thank you!

Flavour Physics Effects of a 4th Generation

Backup Slides

Backup

Correlation between ε'/ε and $K_L \to \pi^0 \nu \bar{\nu}$

 ε'/ε does **not** really restrict $K_L \to \pi^0 \nu \bar{\nu}$:

) $Br(K_L \rightarrow \pi^0 \nu \bar{\nu})$

Flavour Physics Effects of a 4th Generation