

NP constraint by rare decays at the B factories Christoph Schwanda

Austrian Academy of Sciences On behalf of the Belle collaboration

Third Workshop on Theory, Phenomenology and Experiments in Heavy Flavour Physics July 5-7, 2010, Capri, Italy

Belle and Babar's datasets

2

$B \rightarrow \tau v$

$B \rightarrow \tau v$ in the Standard Model

- Theoretically clean in the SM
 - pure leptonic decay, thus small hadronic effects
 - $-Br(B \rightarrow \tau v) = (1.20 \pm 0.25) \times 10^{-4}$
 - Assuming $|V_{ub}| = (4.32 \pm 0.33) \times 10^{-3}$ [HFAG summer 2008] and
 - f_B = 190 ± 13 MeV [HPQCD arXiv:0902.1815]

Sensitive to the charged Higgs H⁺

$$\mathcal{B}(B^- \to \tau^- \bar{\nu}) = \mathcal{B}_{\rm SM} \times r_H$$

$$r_{H} = \left(1 - \tan^{2}\beta \frac{m_{B^{-}}^{2}}{m_{H^{-}}^{2}}\right)^{2}$$

W.S.Hou, PRD 48, 2342 (1993)

- Type II Higgs doublet model
- Amplitude of the charged Higgs diagram proportional to $m_{b}m_{\tau}tan^{2}\beta$
- Enhancement for large tan β or small m_{H+}

Measurement of B $\rightarrow \tau v$

Reconstruction of B_{tag}

- Reconstruct either hadronic or semileptonic decays of B_{tag}
- Remove the corresponding particles from the event to reduce combinatorial background

Reconstruction of B_{sig}

- Challenging even in tagged events: two neutrinos for hadronic ($\tau \rightarrow \pi \nu$), three for leptonic ($\tau \rightarrow \mu \nu \nu$) τ decay mode in the final state
- Extract signal from remaining energy distribution (signal peak at zero)

PRL 97, 251802 (2006)

First evidence – hadronic tag

449M BB

- Hadronic tag
- Two leptonic (evv, μvv) and three hadronic (πv , $2\pi v$, $3\pi v$) τ modes
- 17.2^{+5.3}-4.7 signal events
- 3.5 sigma significance (including systematics)

Br(B → $\tau\nu$) = (1.79^{+0.56}_{-0.49}(stat)^{+0.46}_{-0.51}(syst)) x 10⁻⁴

arXiv:1006.4201

submitted to PRD

BaBar's results

PRD 77, 011107(2008) PRD 81, 051101 (2010)

383M BB

459M BB

Constraints on NP

Constraints on NP (2)

• 2.4 sigma difference between $B \rightarrow \tau v$ measurement and CKM fitter value (excluding $B \rightarrow \tau v$)

$B \rightarrow D^{(*)} \tau v$

Also sensitive to H⁺

- Different theory uncertainties
 - No dependence of the decay constant f_B
 - $|V_{cb}|$ cancels in the ratio Br(B \rightarrow D^(*) $\tau \nu$)/Br(B \rightarrow D^(*) $|\nu$)
- More observables

– q²-distribution, τ polarization, D^{*} polarization

535M BB

- Reconstruct signal side first $- D^{*+} \rightarrow D^0 \pi^+$
 - $D^0 \rightarrow K^-\pi^+, K^-\pi^+\pi^0$

-
$$\tau^+ \rightarrow e^+ \nu \nu$$
, $\pi^+ \nu$

 Inclusively reconstruct tag side

$$- P_{tag} = \Sigma P_i, E_{tag} = \Sigma E_i$$

- Background suppression with E_{mis}, X_{mis} and E_{vis}
- 60^{+12}_{-11} signal events with 5.2 σ significance

Br(B⁰ → D^{*-} $\tau^+\nu$) = (2.02^{+0.40}_{-0.37}(stat) ± 0.37(syst))%

Extension to B⁺ decays

- Signal side
 - D^{*0} \rightarrow D⁰ π^0 , D⁰ \rightarrow K⁻ π^+ , K⁻ $\pi^+\pi^0$
 - τ⁺ → e⁺νν, μ⁺νν, π⁺ν
- Strong D^{*0}/D^0 crossfeed \rightarrow simultaneous measurement of $D^{*0}\tau\nu$ and $D^0\tau\nu$ by fitting M_{tag} vs. P_{D0}

PRL 100, 021801 (2008) PRD 79, 092002 (2009) BaBar hadronic tag

Signal shown in light green resp. magenta

- First reconstruct hadronic decay of the other B
- Reconstruct D^{*0}I, D⁰I, D^{*+}I and D⁺I pairs on the signal side
- Simultaneous fit to the missing mass sqaured distribution

 $Br(B^+ \rightarrow D^0 \tau^+ \nu) =$

 $(0.67 \pm 0.37(\text{stat}) \pm 0.11(\text{syst}) \pm 0.07(\text{norm}))\%$ 35.6 ± 19.4 events (1.8 σ significance)

 $Br(B^+ \rightarrow D^{*0}\tau^+\nu) =$

 $(2.25 \pm 0.48(stat) \pm 0.22(syst) \pm 0.17(norm))\%$ 92.2 ± 19.6 events (5.3 σ significance)

Br($B^0 \rightarrow D^-\tau^+\nu$) = First evidence (1.04 ± 0.35(stat) ± 0.15(syst) ± 0.10(norm))% 23.3 ± 7.8 events (3.3 σ significance)

Br(B⁰ → D^{*-} $\tau^+\nu$) = (1.11 ± 0.51(stat) ± 0.04(syst) ± 0.04(norm)% 15.5 ± 7.2 events (2.7 σ significance)

Lepton momentum and q² distributions

• Kinematic distributions in the signal region $m_{miss}^2 > 1 \text{ GeV}^2$

 q² or other kinematic distributions are expected to give better sensitivity to the charged Higgs than the rate alone

$b \rightarrow s\gamma$ decays

NP sensitivity

- Flavor changing neutral currents (FCNC)
 - Forbidden at tree level in the SM
 - New, heavy particles likely to appear at loop level
- Rich program
 - Branching fraction and moments
 - (Time-dependent) CP asymmetry
 - Isospin asymmetry

$$\Delta_{0-} = \frac{\Gamma(\overline{B}^0 \to \overline{K}^{*0} \gamma) - \Gamma(B^- \to K^{*-} \gamma)}{\Gamma(\overline{B}^0 \to \overline{K}^{*0} \gamma) + \Gamma(B^- \to K^{*-} \gamma)}$$

PRL 103, 211802 (2009)

Exclusive: $B \rightarrow K^*(892)\gamma$

Branching Fractions

$$\begin{split} \mathcal{B}(B^0 \to K^{*0} \gamma) &= (4.47 \pm 0.10 \pm 0.16) \times 10^{-5} \\ \mathcal{B}(B^+ \to K^{*+} \gamma) &= (4.22 \pm 0.14 \pm 0.16) \times 10^{-5} \end{split}$$

• CP asymmetry

$$\label{eq:alpha} \begin{split} \mathcal{A} &= -0.003 \pm 0.017 \pm 0.007 \\ -0.033 < \mathcal{A} < 0.028 \quad \text{(90\% CL)} \end{split}$$

SM prediction: ~1% (Nucl. Phys. B 434, 39 (1995))

Isospin asymmetry

 $\begin{array}{l} \Delta_{0-} = 0.066 \pm 0.021 \pm 0.022 \\ 0.017 < \Delta_{0-} < 0.116 \quad \mbox{(90\% CL)} \end{array}$

SM prediction: 2~10%

(PRD 72, 014013 (2005), Phys. Lett. B 539, 227(2002))

PRL 103, 211802 (2009)

Exclusive: $B \rightarrow K \eta \gamma$

Branching Fractions

 $\begin{aligned} \mathcal{B}(B^+ \to \eta K^+ \gamma) &= (7.7 \pm 1.0 \pm 0.4) \times 10^{-6} \\ \mathcal{B}(B^0 \to \eta K^0 \gamma) &= (7.1^{+2.1}_{-2.0} \pm 0.4) \times 10^{-6} \end{aligned}$

- Integrated charge asymmetry $\mathcal{A}_{ch} = (-9.0^{+10.4}_{-9.8} \pm 1.4) \times 10^{-2}$
- Time-dependent CPV

First result for this mode

$$S = -0.18^{+0.49}_{-0.46} \pm 0.12$$

$$C = -0.32^{+0.40}_{-0.39} \pm 0.07$$

cf. $B^0 \rightarrow K_s^0 \rho^0 \gamma$ (Belle 657M BB)	DDI 101
$S = 0.11 + 0.35^{+0.05}_{-0.09}$	251601,
C = -0.05 +- 0.18 +- 0.06	(2008)

Exclusive: $B \rightarrow K\eta'\gamma$

arXiv:0810.0804 submitted to PRD

657M BB

772M BB

Exclusive: $B \rightarrow K\phi\gamma$

$B \rightarrow X_s \gamma$ inclusive

• Two sub-samples

- untagged, lepton tagged

- Photon energy cut

 pushed down to 1.7 GeV
- BF, first and second moments are measured

 $\mathcal{B}(B \to X_s \gamma) = (3.45 \pm 0.15 \pm 0.40) \times 10^{-4}$ $1.7 \,\text{GeV} < E_{\gamma}^{\text{c.m.s.}} < 2.8 \,\text{GeV}$ ightarrow Consistent with NNLO SM calculation

$$\begin{aligned} \mathcal{B}(\bar{B} \to X_s \gamma) &= (3.15 \pm 0.23) \times 10^{-4} \\ \text{for } E_\gamma > 1.6 \text{ GeV} \end{aligned}$$

Misiak et al., PRL 98, 022002 (2007)

Constraints on NP

• $B \rightarrow X_s \gamma$ puts strong constraints on NP models

$b \rightarrow sl^+l^-$ decays

NP sensitivity

- Two orders of magnitude smaller than b \rightarrow s γ
- Electroweak penguin and W⁺W⁻ box contribute in SM at lowest order → sensitive to the sign of C₇
- Observables
 - Branching fraction, q² distribution
 - K^* longitudinal polarization (F_L)
 - Forward-background asymmetry (A_{FB})

Exclusive: $B \rightarrow K^{(*)}|^+|^-$

384M BB

PRD 79, 031102 (2009)

$$\mathcal{B}(B \to K^* \ell^+ \ell^-) = (1.11^{+0.19}_{-0.18} \pm 0.07) \times 10^{-6}$$

$$\mathcal{B}(B \to K \ell^+ \ell^-) = (0.394^{+0.073}_{-0.069} \pm 0.020) \times 10^{-6}$$

Belle data favors sign-flipped scenario

30

Summary

- Tauonic and semitauonic decays
 - These decays are now well established and provide strong constraints on the charged Higgs
- FCNC decays
 - Rich opportunity to explore NP
 - Present measurements set strong constraints for NP models
- Looking forward to analyses with the full B factory dataset (Belle reprocessing), results from hadron colliders and to Super B factories