UT*fit* : 10th anniversary update 2000-2010

Third Workshop on Theory, Phenomenology and Experiments in Heavy Flavour Physics

July 5-7 2010, Capri, Italy

Collaboration

Maurizio

Vincenzo

Carlo

Marco Ciuchini

3rd Flavour Physics Workshop "Capri 2010" Page 2

- i) SM: UT+predictions (sin2 β , Δm_s , β_s , BR(B $\rightarrow \tau \nu$), etc.) lattice parameters (B_K, f_{Bs}, B_{Bs}, f_{Bs}/f_{Bd}, B_{bs}/B_{Bd})
- ii) NP: UT+ Δ F=2 NP amplitude parameters UUT+MFV (low and high tan β) scale generic NP scale analysis BR(B $\rightarrow \tau v$) in the 2HDM and MSSM

<u>Anniversary gift</u>:

- new site at www.utfit.org (soon)
- all analyses enhanced & updated

The CKM matrix

$$\begin{vmatrix} 0.9742(2) & 0.2255(6) & 3.6(1) \cdot 10^{-3} e^{-i70(3)^{\circ}} \\ -0.2253(6) e^{i0.034(1)^{\circ}} & 0.9734(2) e^{-i0.0018(1)^{\circ}} & 4.12(4) \cdot 10^{-2} \\ 8.7(2) \cdot 10^{-3} e^{-i22.1(7)^{\circ}} & -4.04(4) \cdot 10^{-2} e^{i1.08(4)^{\circ}} & 0.99915(2) \end{vmatrix}$$

Standard parametrization (PDG) $\sin \Theta_{12} = 0.2255 \pm 0.0006 \quad \sin \Theta_{23} = (4.115 \pm 0.045) \cdot 10^{-2}$ $\sin \Theta_{13} = (3.61 \pm 0.12) \cdot 10^{-3} \quad \delta = (69.9 \pm 3.0)^{\circ}$

 $\begin{array}{ll} \mbox{Wolfenstein parametrization} \\ \lambda = 0.2255 \pm 0.0006 & \mbox{A} = 0.81 \pm 0.01 \\ \rho = 0.132 \pm 0.021 & \eta = 0.364 \pm 0.013 \end{array}$

SM <u>predictions</u>: B_d & K

	Prediction	Measurement	Pull(σ)
sin2 B	0.761±0.034	0.654±0.026	+2.5
γ	(69.8±3.1)°	(73±11)°	< 1
α	(86±4)°	(94±7)°	-1.0
V _{cb} ·10 ³	42.6±1.0	40.8±0.5	+1.6
V _{ub} ·10 ³	3.59±0.15	3.94±0.26	-1.2
ε _κ ·10 ³	1.894±0.180	2.229±0.010	-1.9
B(B→τν)	(79±7)·10 ⁻⁶	(172±28)·10⁻ ⁶	-3.2

- the theory error in sin2β from B → J/ΨK is small and fully under control. A conservative bound obtained from data is included in the analysis
- * BR(B $\rightarrow \tau v$) wants a large $|V_{ub}|$. Its theoretical uncertainty, due to f_B , is controlled by the fit
- * the ϵ_{κ} deviation is triggered by improvements in B_{κ} from the lattice and the inclusion of the ξ term à la Buras-Guadagnoli(+Isidori). Yet the ϵ_{κ} formula is not under control at the few percent level
- * $|V_{ub}|$ from semileptonic decays is debatable (incl. vs excl., models, f.f.,...). Yet a simple shift of the central value cannot reconcile sin2 β and BR(B $\rightarrow \tau v$) (and ϵ_{κ})

SM predictions: B_s

	Prediction	Measurement	Pull(σ)
$\Delta m_s [ps^{-1}]$	18.3±1.2	17.77±0.12	< 1
β _s	(1.08±0.04)°	Tevatron	2.1
$\Delta\Gamma_{s}$ [ps ⁻¹]	0.11±0.02	average	0.0*
a ^s sl ·10 ⁵	1.7±0.4	-170±910	< 1
α _{μμ} ·10 ⁴	-1.7±0.5	-95.7±29.0	3.2

New CDF measurement of $\beta_{s}\text{--}\Delta\Gamma_{s}$ not included yet

^{3&}lt;sup>rd</sup> Flavour Physics Workshop "Capri 2010"

- * the new CDF measurement of B_s → J/Ψφ reduces the significance of the deviation, but large values are still possible. The likelihood is not available yet, a CDF Bayesian study is also underway
- the new DØ measurement of $a_{\mu\mu}$ points to large β_s , but also to a large $\Delta \Gamma_s$ requiring a non-standard Γ_{12} . If confirmed, two options (both unlikely IMO): i. huge (tree-level-like) NP contributions to Γ_{12} : needed a factor ~2.5 (question: why in Γ_{12} only?) ii. bad failure of the OPE for Γ_{12} . Yet no evidence of it in lifetimes. If true, can we trust semileptonic decays to ~5% level or less?

UT parameters in the presence of NP

Model-independent determination of the CKM parameters assumptions: * three generations * no NP in tree-level decays (* no large NP EWP in $B \rightarrow \pi\pi$) $\bar{\rho} = 0.139 \pm 0.040$ $\bar{\eta} = 0.368 \pm 0.026$

Parameterization of generic NP contributions to the mixing amplitudes K mixing amplitude (2 real parameter): $\operatorname{Re} A_{\kappa} = C_{\Delta m_{\kappa}} \operatorname{Re} A_{\kappa}^{SM} \operatorname{Im} A_{\kappa} = C_{\varepsilon} \operatorname{Im} A_{\kappa}^{SM}$ B_d and B_s mixing amplitudes (2+2 real parameters): $A_{q}e^{2i\phi_{q}} = C_{B_{q}}e^{2i\phi_{B_{q}}}A_{q}^{SM}e^{2i\phi_{q}^{SM}} = \left(1 + \frac{A_{q}^{NP}}{A_{q}^{SM}}e^{2i(\phi_{q}^{NP} - \phi_{q}^{SM})}\right)A_{q}^{SM}e^{2i\phi_{q}^{SM}}$ $\phi_d^{SM} = \beta$, $\phi_s^{SM} = -\beta_s$ **Observables**: $\Delta m_{q/K} = C_{B_{a}/\Delta m_{\kappa}} (\Delta m_{a/K})^{SM}$ $\varepsilon_{\kappa} = C_{\varepsilon} \varepsilon_{\kappa}^{SM}$ $a_{CP}^{B_d \to J/\psi K_s} \to \sin 2(\beta + \phi_B)$ $a_{CP}^{B_s \to J/\psi \phi} \to -\beta_s + \phi_B$ $\Delta \Gamma^{q} / \Delta m_{q} = \operatorname{Re} \left(\Gamma_{12}^{q} / A_{q} \right)$ $a_{SL}^q = \operatorname{Im}\left(\Gamma_{12}^q/A_q\right)$

Results for the NP parameters (i)

Results for the NP parameters (ii)

 C_{B_s} = 0.96±0.10 [0.79, 1.18] ϕ_{Bs} = (-20±8)°U(-68±8)° [-38, -6]°U[-82, -51]°

Deviation from the SM is at 2.5s (including $a_{\mu\mu}$ from DØ but not the new CDF measurement)

Implications for the NP amplitudes

The ratio of NP/SM contributions is:

< 30% @95% p. (preferred ~10%) in B_d mixing

< 220% @95% p. (preferred ~60% & ~180%) in B_s

see also Lunghi & Soni, Buras et al., Ligeti et al.

Conclusions (i)

- * SM UT analysis (still) displays a good overall consistency and no significant failure
- * Yet tensions are present in BR(B $\rightarrow \tau v$) and sin2 β (and to a lesser extent in ϵ_{κ})
- * The two tensions pull $|V_{ub}|$ in opposite directions: no " V_{ub} explanation" possible
- * Predictions for B_s physics also show tensions in $a_{\mu\mu}$ and in ϕ_s from $B_s \rightarrow J/\psi\phi$
- * $a_{\mu\mu}$ and $B_s \rightarrow J/\psi\phi$ point to large but different value of ϕ_s (assuming standard Γ_{12})

Conclusions (ii)

- * $a_{\mu\mu}$ also point to a non-standard Γ_{12} (tree-level new physics or failure of the OPE?)
- * general UT analysis provides a NP-friendly determination of the CKM parameters
- * NP contribution to the B_d mixing amplitude are at 10% level (<30%@95% p.), to B_s mixing at 60% or 180% (<220%@95% p.)
 * present tensions suggest non-MFV new
 - physics contributions

Backup

independent of lattice

UT lattice+UT angles: <u>SM</u> determination of hadronic parameters

<u>Additional constraints</u>:

* BR($B_s \rightarrow \mu\mu$) < 5.8×10⁻⁸ @95% C.L. * $\Delta m_s = (17.77 \pm 0.12) \text{ ps}^{-1}$

- * additional constraints exclude the "fine-tuned" region at very large tanβ
- * bound similar to 2HDM

 $\tan \beta < 7.3 m_{H^+} / (100 \text{ GeV})$

In addition: BR(B_s $\rightarrow \mu\mu$) < 19x10⁻⁹ (5xSM) @95% prob.

