Exclusive B production at CMS with the first LHC data

Simone Paoletti

INFN - Sez. di Firenze

On behalf of the CMS Collaboration

3rd Workshop on Theory, Phenomenology and Experiments in Heavy Flavour Physics July 5-7 2010 Capri (Italy)

The LHC Accelerator Schedule

- After Sep. 2008 a long effort to repair, consolidate and commission the LHC
- Nov-Dec 2009 startup:
 - established collisions at 0.9 TeV and 2.36 TeV
- 2010:
 - New machine protection and ramp commissioning
 - Established collisions at 7 TeV (30th March):
 - ✓ system/beam commissioning continued
 - ✓ squeeze beams
 - \checkmark increase beam intensities
 - Full machine protection qualification

CMS: Integrated Luminosity 2010

Plan for ~ continuous running up to the end of 2011. The challenge:

- O(100) pb⁻¹ by the end of 2010
- $\sim 1 \text{ fb}^{-1}$ by the end of 2011
- Iuminosities up to 10+33 cm-2s-1

http://cms.cern.ch

ECAL

HCAL

Muons

Solenoid coil

- Pixels (100x150 μm²)
- ~ 1 m² 66M channels
- Silicon Microstrips
- ~ 210 m² 9.6M channels

MUON BARREL Drift Tubes (DT) and **Resistive Plate Chambers (RPC)**

The muon detection

- Large rapidity coverage: lηl < 2.4
- Excellent muon momentum resolution
- Redundant trigger system
- Three types of reco muons:
 - stand alone muons:
 - ✓ muon spectrometer only
 - global muons
 - ✓ reconstruction initiated in muon detector and matched to a track in the silicon tracker
 - tracker muons
 - ✓ tracks in the tracker matched to segments in the muon chambers
 - ✓ enhance the acceptance for low p_T muons (down to p_T ~ 3GeV in the barrel region)

Cathode Strip Chambers (CSC): position, momentum and Lv-1 Trigger

The CMS Silicon Tracker

• Pixel:

✓ 66M channels
 ✓ 100x150 µm² pixels
 ✓ 3 layers + 2 disks at each end

Strips:

✓ 9.6M channels (198m²)
 ✓ pitches: 80-180 μm
 ✓ 10-12 layers

- Rely on robust and precise point determination along the tracks:
 - √ lηl < 1.5 √ σ(p_t)/p_t ~ 1-2% (p_t~100 GeV)
 - ✓ IP resolution: ~10-20µm (p_t = 100-10 GeV)

Very good tracker performance

B Physics program at LHC

- O(1 pb⁻¹)
 - Measure $\sigma(pp \rightarrow b\overline{b} + X)$
- O(10 pb⁻¹)
 - Exclusive B decays:
 ✓ production σ
 - √ lifetime ratios
- O(100 pb⁻¹)
 - B_c meson
 - Mixing in the $B_{\mbox{\scriptsize s}}$ sector
- O(>~1 fb ⁻¹)
 - More advanced B_s physics: $\sqrt{\Delta\Gamma_s}$
 - $✓ B_s → \mu^+\mu^- FCNC → New$ Physics

b production at the LHC

- bb pair production is the dominant source of b at the LHC
- Theory-experiment comparison of cross-sections not always straightforward:
 - NLO contributions are important
 - sensitivity to the adopted b-fragmentation models
 - control of exp. systematics and backgrounds
 ✓ always look for new physics !
- Main contributions come from one LO and two NLO processes:

flavor creation: gluon fusion (dominant). Back-to-back high-p⊤ b

g sesses sesses b

flavor excitation Asymmetric transverse momentum for the two b quarks gluon splitting.

b at low p_{T} and close in direction

Study of the b production at LHC

- The angular correlation between b and b quarks is sensitive to the contribution of main NLO processes
- The measurement of the B production cross section using exclusive B decays can test b production theory
- Both studies may be performed at LHC with the first few tens of pb⁻¹ of data

LHC experiments may integrate over a larger rapidity range and explore higher p_T regions

bb azimuthal correlations

- CMS plans to measure Δφ correlation in bb events:
 - b (b) \rightarrow J/ ψ + X with J/ ψ \rightarrow $\mu^+\mu^-$
 - \overline{b} (b) $\rightarrow \mu$ + X

- "clean" 3 µ signature accessible right from LHC startup
- keep good efficiency and granularity in the small Δφ region where NLO processes dominate

Events with $\mu + J/\psi \rightarrow \mu^+\mu^-$ in the final state are selected and analyzed in bins of $\Delta \phi(J/\psi,\mu)$

- Analysis requirements:
 - Good vertexing for $J/\psi \rightarrow \mu^+\mu^-$
 - High quality reconstruction for third muon
 - Pt > 3 GeV and lηl<2.4 for all three muons

These background categories:

- *Prompt* $J/\psi \rightarrow$ "non flying" J/ψ
- Fake Muon \rightarrow low d_{xy}
 - ✓ μ not from b: mis-reconstructed muons ("punch through") or K,π decays in flight (*DIF*)
- Fake $J/\psi \rightarrow flat M_{\mu+\mu}$
 - These include real bb~ events where the wrong μ combination is used to reconstruct the J/ψ

Probability Density Functions for $M_{\mu+\mu-}$, L_{xy} and d_{xy} are worked out on MC for the signal and each background category

Unfolding required: $\Delta \Phi(J/\psi,\mu) \rightarrow \Delta \phi(b,\overline{b})$

Perspective:

MC study @ $\sqrt{s} = 10$ TeV and L_{int} = 50 pb⁻¹ (CMS PAS BPH-08-004)

- > 7000 signal events
- Jσ/dΔφ measured with 15-25 % accuracy in each Δφ bin.

Measurement of the differential production cross section for B⁺ and B⁰ mesons

- B+ $\rightarrow J/\psi$ K+ and B⁰ $\rightarrow J/\psi$ K^{0*} channels
 - Br(B \rightarrow J/ ψ K) ~ O(10⁻³)
 - ✓ branching, mass, lifetime, decay dynamics known very accurately
 - ✓ systematics reduced w.r.t inclusive $B \rightarrow J/\psi X$
 - ✓ dominant background processes (prompt J/ψ + incl. b) are identified using M_B and proper decay length of the reconstructed B.
- Also measure the lifetime ratio: τ_{B+}/τ_{B0}
 - ✓ sensitive tests of the CMS detector commissioning with very early data
- Feasibility of this measurement with first Lint~ 10 pb⁻¹ demonstrated via a MC study @ √s = 10 TeV
 CMS PAS BPH-09-001
 - Expected 100-200 evts/pb⁻¹

Acceptance and trigger

- μ -acceptance: $P_{t\mu}$ >2.5 GeV, $l\eta l$ <2.4
- Dimuon trigger: $p_t > 3 \text{ GeV}$

B Reconstruction

- $J/\psi \rightarrow \mu^+\mu^-$:
 - muon vertexing
 - opposite charge
 - tracker matching
 - $M(\mu^+\mu^-) = M_{J/\Psi} \pm 150 \text{ MeV}$
- K+:
 - good quality track
 - $N_{hits} > 3, \chi^2/ndf < 5$
 - pt > 0.8 GeV

K^{0*} → K π:

- two good quality tracks
- opposite charge
- $p_t > 0.5 \text{ GeV}$
- $M(K \pi) = M(K^{0^*}) \pm 120 MeV$

- Kinematic fit of J/ψ + track(s)
 - M($\mu^+\mu^-$) constrained to the J/ ψ mass
- One B candidate per event selected based on the best vertex probability
 - 4.95 < M(B) < 5.55 GeV required
- Selection efficiency:
 - 11.6% for $B^+ \rightarrow J/\psi K$
- 8.6% for $B^0 \rightarrow J/\psi \ K0^*$

• Yield and B lifetime are obtained through a simultaneous fit to mass and proper decay length distributions for the whole sample with $p_t^B > 9$ GeV

$$\mathcal{L} = \exp\left(-\sum_{i} n_{i}\right) \prod_{j} \left[\sum_{i} n_{i} \mathcal{P}_{i}(M_{B}; \vec{\alpha}_{i}) \mathcal{P}_{i}(ct; \vec{\beta}_{i})\right].$$

yields for signal and individual background sources and B lifetime are floated in the fit

The effect of the "QCD" background is negligible and is included in the systematic error

probability density functions for M_B and *ct* are modeled "a-priori" for signal and each background source on independent MC samples

MC results with $\int \mathscr{L} dt = 10 \text{ pb}^{-1} @ \sqrt{s} = 10 \text{ TeV}$

Differential cross sectio

- The same fit procedure is repeated dividing the sample into bins of the p_T of the B candidate
- Only signal and background yields are floated
 - ✓ The B lifetimes are fixed to the global fit values
- dσ(pp → B + X)/dp^{TB} can be measured up to p^{TB} ~ 30 GeV with a statistical error lower than 10% (the systematic error dominated by the luminosity determination at startup) with L_{int} = 10 pb⁻¹.

Perspective

- Measurement with data at √s = 7 TeV ongoing
 ✓ factor ~ 0.75 in cross section w.r.t. √s = 10 TeV
 ✓ substantial yield gain using lower trigger thresholds
- Also: $B^0 \rightarrow J/\psi \ K^0_s$, $B_s \rightarrow J/\psi \ \varphi$, $\Lambda_b \rightarrow J/\psi \ \Lambda_0$

Measured parameters:

 $M(\mu\mu K) = 5.268 \text{ GeV}/c^{2}$ $M(\mu\mu) = 3.135 \text{ GeV}/c^{2}$ $p_{T}(B) = 18.6 \text{ GeV}/c$ $p_{T}(\mu^{+}) = 10.1 \text{ GeV}/c$ $p_{T}(\mu^{-}) = 3.4 \text{ GeV}/c$ $p_{T}(K^{-}) = 5.3 \text{ GeV}/c$ $Prob(\chi^{2}) = 0.844$ $L_{xy} = 1.93 \text{ mm}$ $\sigma(L_{xy}) = 0.11 \text{ mm}$ $L_{xy}/\sigma(L_{xy}) = 18$

 $\sqrt{s} = 7 \text{ TeV}$ $\int \mathscr{L} dt = 16 \text{ nb}^{-1}$

The tools are there ... V0 reconstruction

CMS PAS TRK-10-001

CMS PAS TRK-10-001

$\Phi \rightarrow K^+K^-$

- the Si-strip analog readout allows to reconstruct the charge deposited on hits forming a track
- individual channel calibration is performed via MIP signal
- a correction for the crossed path length is applied
- Particle mass is estimated from p and dE/dx

- p_T > 0.5 GeV/c;
- normalized $\chi^2 < 2.0$;
- at least 5 hits;
- |η| < 2.0;
- ld_{xy}l < 0.3 cm;
- p > 1 GeV/c or dE/dx \rightarrow M_K ± 200 MeV

also D reconstruction

- Clear evidence of mass peaks
 - 7 TeV collisions
 - O(107) minimum bias events
- mass and σ_M in good agreement with MC
 - validate the tracker pattern recognition, momentum resolution,B-field and p scale, secondary decay vertex quality

... and $J/\psi \rightarrow e^+e^-$

Studies in this channel limited by:

- higher trigger thresholds
- bremsstrahlung in the tracker material
- charged hadrons combinatorial background

Reconstruction of $B_s \rightarrow J/\psi \Phi$ decays

- The B_{S⁰} meson at LHC:
 - measure Δm_s , $\Delta \Gamma_s$
 - weak phase Φ_{CKM} → possible hints for NP
- MC study performed by CMS (see V. Ciulli et al., CMS NOTE-2006/121. See also: T. Speer, Capri2006, A.Starodumov, M. Biasini, Capri 2008):

 $\Delta\Gamma_s / \Gamma_s$ can be measured @ 20% precision with $\int \mathscr{L} = 1.3 \text{ fb}^{-1} @ 14 \text{ TeV}$

- selection based on Pt, vertexing, inv. mass
- unbinned max-like fit to the time evolution of the angular distibution:

$$P = \varepsilon(t, \Theta) \cdot f(\Theta, \alpha, t)$$

efficiency diff. decay rate
$$\frac{d^{4} \Gamma(B_{s}(t))}{d^{3} \Theta dt} = f(\Theta, \alpha, t) = \sum_{i} b^{(i)}(\alpha, t) g^{(i)}(\Theta)$$

observables:
$$\Gamma_{H_{i}} \Gamma_{S_{i}} \Delta m_{s}$$
 theory

- Updated study for first few pb⁻¹ @ 7 TeV ongoing
- Max Likelihood. fit to inv. mass and lifetime distributions for signal and background processes (like for the B \rightarrow J/ ψ K)
 - M_{Bs} and τ_{Bs} measurements possible since the first pb⁻¹ of data
 - ~ 500 evts. after 10 pb⁻¹ of data

Search for the B_c meson

- unique properties of the $B_{c^{\pm}}$:
 - two heavy quarks of different flavor
 - only weak decays possible
 - $\tau_c < \tau_{Bc} < \tau_b$
- still large the theoretical uncertainties

 $\sqrt[4]{\sigma(B_c)} \sim 10^{-3} \sigma(B^+)$ $\sqrt[4]{\tau_{Bc}} \sim 0.46 \text{ ps}$

X.W. Meng, J.Q. Tao, G.M. Chen CMS NOTE- 2006/118

(See also: T. Speer, Capri2006, A.Starodumov, M. Biasini, Capri 2008)

- Based on a MC study @ 14 TeV
 - CMS has the possibility to observe the $B_c \rightarrow J/\psi \, \pi \, decays$
 - ~ 120 events in 1 fb⁻¹
 - 15 MeV mass resolution
 - τ_{Bc} measured with 0.045 ps error

Study for 7 TeV ongoing

Conclusions

- LHC is delivering proton-proton collisions at $\sqrt{s} = 7$ TeV
 - luminosity is constantly increasing

 \checkmark up to ~ 1 fb⁻¹ integrated luminosity may be expected by the end of 2011

- The CMS experiment is collecting data with excellent quality:
 - exclusive B decays into a J/ ψ offer clean experimental signatures well suited for the startup phase
 - Monte Carlo studies at √s=10-14 TeV are being ported to the present LHC energy regime of 7 TeV

✓ generally lower trigger thresholds w.r.t. 14 TeV studies are applied

- A rich physics program with exclusive B decays is envisaged:
 - Exclusive B mass peaks (since the first ~1 pb⁻¹ of data)
 - b production cross section with exclusive B states and bb correlations (requiring order of 10 pb⁻¹ of data)
 - B_c observation, mass and lifetime measurements (~ 100 pb⁻¹)
 - B_s mixing sector and $\Delta\Gamma_s$ with ~ 1 fb⁻¹.

Reserve

FCNC: Bs $\rightarrow \mu + \mu -$

- highly suppressed in the SM
 - Br(B_s⁰ \rightarrow $\mu^{+}\mu^{-}$)= (3.42 ± 0.54) × 10⁻⁹
- sensitive probe of NP
 - MSSM rate proportional to $tan^6 \beta$
- analysis at MC level performed by CMS
 - yield normalized to the B[±] \rightarrow J/ ψ K[±] channel
 - with 1 fb⁻¹ luminosity and $\sqrt{s} = 14$ TeV it is expected to pose a 95% c.l. limit: Br(B_s⁰ $\rightarrow \mu^+\mu^-$) $\leq 1.9 \times 10^{-8}$.

Event Selection and Measured Parameters

• Selection

- Two muons (global or tracker) satisfying quality criteria, passing the trigger, making a good vertex, and having p_T > 3.0 GeV.
- Charged track with pT > 900 MeV, at least three hits, and χ^2 /ndof < 5
- Require a good 3-trk vertex with mass constraint on the dimuon
- Parameters
 - Prob(χ^2) = probability of 3-trk vertex
 - L_{xy} = transverse decay length of 3-trk vertex
 relative to primary vertex
 - $-\sigma(L_{xy})$ = error on transverse decay length

Measured parameters: $M(\mu\mu K) = 5.268 \, \text{GeV}/c^2$ $M(\mu\mu) = 3.135 \, \text{GeV}/c^2$ $p_{T}(B) = 18.6 \, \text{GeV}/c$ $p_T(\mu^+) = 10.1 \,\text{GeV/c}$ $p_T(\mu^-) = 3.4 \, \text{GeV}/c$ $p_T(K^-) = 5.3 \, \text{GeV}/c$ $Prob(\chi^2) = 0.844$ $L_{xv} = 1.93 \,\mathrm{mm}$ $\sigma(L_{xv}) = 0.11 \,\mathrm{mm}$ $L_{xv}/\sigma(L_{xv}) = 18$

- Significance of the signed 3D impact parameter for all tracks selected for b-tagging for jets with $p_T > 40$ GeV and $|\eta| < 1.5$
- Right plot: zoom into the central region

Nov-Dec 2009

- √s=900 GeV @ LHC injection energy
 - 300K events
 - First LHC collisions December 2009 (~15 µb-1/10µb-1)
- √s=2.36 TeV
 - 20K events
 - Delivered/recorded ~ $1.2\mu b$ -1/0.4 μb -1

D⁺ search

Inclusive D⁰

• Selection criteria

- ▷ 'good' runs
- transverse momentum cuts
 - $p_{\perp}(K) > 1.25 \,\mathrm{GeV}$ $p_{\perp}(\pi) > 1.0 \,\mathrm{GeV}$
 - $p_{\perp}(D^0) > 3.0 \,\mathrm{GeV}$
- Vertexing cuts

▷ D^0 momentum vs. PV-SV direction $\angle(\vec{p}_{D^0}, \overline{PV:SV}) < 0.1$

• MC expectations

- ▶ Peak: $1.863 \pm 0.002 \,\text{GeV}$
- $\triangleright~$ Width: $0.014\pm0.002\,\text{GeV}$

- Data: ~37M events
- Reconstruct $D^* \to D^0 \pi_S$, $D^0 \to K \pi$
 - Kinematic selection:
 - $p_T > 600$ MeV/c for K and π
 - p_T > 250 MeV/c for π_S
 - p_T > 5.0 GeV/c for D*
 - Select D^{\star} candidate with highest p_{T} if there is more than one in an event
 - Track quality:
 - $N_{hit} > 5$ (except for π_S)
 - χ^2 / ndof < 2.5
 - $|d_{xy}| < 1mm; |\Delta z| < 1cm$
 - Mass windows
 - |M(Kπ) PDG| < 25 MeV/c²
 - Unbinned extended ML fit (RooFit)
 - Signal = Gaussian
 - Bkg = threshold function for ΔM and quadratic for M(K π)