$\Upsilon(5S)$ (including Bs decays), $\Upsilon(2S)$ and $\Upsilon(1S)$ Results at B Factories

Paoti Chang

3rd Workshop on Theory, Phenomenology and Experiments on Flavour Physics July 5-7, 2010

Capri Island, Italy

7/7/2010 Paotii Chang

Introduction

- Successful B factories for 10 years:
 - CP violation and CKM, rare B decays, tau physics, $\gamma\gamma$ physics
 - Charm mixing and decays, charmonium
 - Discovering XYZ particles, studying Bs decays ...
- Bs physics: complementary to LHCb

Direct measurement, detecting π^0 , η ..., missing particles ...

 Pay more attention to bottomonium spectroscopy, new physics ...

The Duel of B Factories

Paotii Chang

Successful Operation

e⁺e⁻ Hadronic cross-section

- $\Upsilon(4S) \rightarrow B\overline{B}, B = B^+ \text{ or } B^0$
- $\Upsilon(5S) \rightarrow B^{(*)}B^{(*)}, B^{(*)}B^{(*)}\pi,$

BBππ, **B**_s^(*)**B**_s^(*), Υ(**1S**) ππ ...

 $M = 10.865 \pm 0.008 \text{ GeV/c}^2$

 $\Gamma = 110\pm13 \text{ MeV} \Rightarrow \Upsilon(10860)$ Is this really $\Upsilon(5S)$?

Need measurements.

7/7/2010 Paotii Chang

Observation of $\Upsilon(5S) \rightarrow \Upsilon(NS)\pi\pi$

- Took Data at 10867 MeV
- total 21.6 fb⁻¹ in 2006
- Search for $\mu^+\mu^-\pi^+\pi^-$ events
- Observe unexpectedly large

 $\Upsilon(5S) \rightarrow \Upsilon(NS)\pi\pi$ signals

K.-F. Chen et al. (Belle colla.) PRL 100, 112001 (2008)

Process	$\sigma(\mathrm{pb})$	$\mathcal{B}(\%)$	$\Gamma({ m MeV})$
$\Upsilon(1S)\pi^+\pi^-$	$1.61 \pm 0.10 \pm 0.12$	$0.53 \pm 0.03 \pm 0.05$	$0.59 \pm 0.04 \pm 0.09$
$\Upsilon(2S)\pi^+\pi^-$	$2.35 \pm 0.19 \pm 0.32$	$0.78 \pm 0.06 \pm 0.11$	$0.85 \pm 0.07 \pm 0.16$
$\Upsilon(3S)\pi^+\pi^-$	$1.44^{+0.55}_{-0.45} \pm 0.19$	$0.48^{+0.18}_{-0.15} \pm 0.07$	$0.52^{+0.20}_{-0.17} \pm 0.10$
$\Upsilon(1S)K^+K^-$	$0.185^{+0.048}_{-0.041}\pm0.028$	$0.061^{+0.016}_{-0.014}\pm0.010$	$0.067^{+0.017}_{-0.015} \pm 0.013$

Width, Mass and Angular Distributions

Anomalously large partial width at $\Upsilon(10860)$

	$\Gamma_{\Upsilon(1S)\pi^+\pi^-}$	$\Gamma_{e^+e^-}$	$\Gamma_{\rm total}$	Process
	$0.0060 { m MeV}$	0.612 keV	$0.032~{\rm MeV}$	$\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-$
	$0.0009 { m MeV}$	0.443 keV	$0.020~{\rm MeV}$	$\Upsilon(3S) \to \Upsilon(1S) \pi^+ \pi^-$
larger	$0.0019 { m MeV}$	0.272 keV	$20.5 { m MeV}$	$\Upsilon(4S) \to \Upsilon(1S) \pi^+ \pi^-$
by > 10 ²	$0.59~{ m MeV}$	$0.31 \ \mathrm{keV}$	$110~{\rm MeV}$	$\Upsilon(10860) \to \Upsilon(1S)\pi^+\pi^-$

- Histogram: phase space
- Shaded area: model from $\psi' \rightarrow J/\psi \ \pi\pi$; good for $\Upsilon(4S)$
- Rescattering Mechanism:
 Υ(5S) → B'B'ππ→ Υ(1S) ππ
 Yu. Simonov, JETP Lett. 87, 121
- Other states: Yb near Y(5S) W.-S. Hou, PRD 74, 017504

Energy Scans

- scan by Both Belle and BaBar Belle: Υ(NS) ππ scan BaBar: R_b = σ(bb)/σ(μ⁺μ⁻)
- Scan results:

	Mass (MeV/c^2)) $\Gamma ({\rm MeV}/c^2)$
Belle $(\Upsilon(NS\pi\pi))$	$10888.4^{+3.0}_{-2.9}$	$30.7^{+8.7}_{-7.7}$
Belle (R_b)	10879 ± 3	46^{+9}_{-7}
BaBar (R_b)	10876 ± 2	43 ± 4
PDG2008	10865 ± 8	110 ± 13

- Compared to Y(10860) in PDG mass is higher, width is narrower
- 3.2σ deviation on peak and width between Belle's Υ(NS) ππ and BaBar's R_b

Y(5S), Y(2S), and

What we want to know

- Is there a peak at 10910 MeV/c²?
- Same shapes for R_b and $\Upsilon(NS)\pi\pi$?
- Consistent R_b values for two exp.?
- \Rightarrow 2nd Belle energy scan (5,6/2010)
 - Fine scan btw. 10.75 and 11.05 GeV

- Ali's tetraquark model
- Explain the BaBar R_b spectrum.
 PLB 684, 28-39 (2010)
- Explain Belle's $M(\pi\pi)$ and angular
- distribution for $\Upsilon(5S) \rightarrow \Upsilon(NS) \pi \pi$ evts
- More on $\Upsilon(5S),\,\Upsilon(6S)$ and btw 4S&5S PRL 104, 162001 (2010)

Hadronic fractions

• Identify B meson in 5 decay modes f(X)=N(X)/N(bb)

Decay mode	Yield	Efficiency, %	$f(B^{+/0}), \%$	f(B⁺) =(72.1 ^{+3.9} _{-3.8} ± 5.0)%
$B^+ \rightarrow J/\psi K^+$	221^{+16}_{-15}	3.41	$89.0^{+6.3}_{-6.1}\pm8.0$	f(B ^o) =(77.0 ^{+5.8} / ₋₅₆ ± 6.1)%
$B^0 \rightarrow J/\psi K^{*0}$	105 ± 11	1.30	$85.3^{+9.2}_{-8.8} \pm 8.8$	0.0
$B^+ \rightarrow \bar{D}^0(K\pi)\pi^+$	215 ± 21	0.97	$64.0 \pm 6.2 \pm 4.9$	f(B) = (73.7 ± 3.2 ± 5.1)%
$B^+ \rightarrow \bar{D}^0(K3\pi)\pi^+$	275 ± 32	1.17	$68.3^{+8.0}_{-8.1} \pm 6.4$	$(58.9 \pm 10.0 \pm 9.2)\%$ (CLEO.2006)
$B^0 \rightarrow D^- \pi^+$	247 ± 25	1.80	$72.9 \pm 7.4 \pm 6.4$	(38.9 ± 10.0 ± 9.2)% (CLEO 2000)
			$\Rightarrow f(B_{s})=($	$(19.5 \pm \frac{3.0}{2.2})$ % (PDG, Belle+CLEO)

Two-Body Decays

Three-Body Decays

Channel	Yield (π^+) , events	Fraction over large $M_{\rm bc}$ %	Fraction per $b\bar{b}$ event %	
$B\bar{B}\pi$	$0.2^{+7.2}_{-6.9}$	$0.2^{+6.8}_{-6.5}$	$0.0 \pm 1.2 \pm 0.3$	Theory, 3-body fractions:
$B\bar{B}^*\pi + B^*\bar{B}\pi$	$38.3^{+10.5}_{-9.8}$	$41.6^{+12.1}_{-11.4}$	$7.3^{+2.3}_{-2.1} \pm 0.8$	~0.03% : L'Lellouch et al Nucl Phys B405:55,1993 ~0.03% : Yu.Simonov et al hep-ph:0805.4518
$B^*ar{B}^*\pi$	$4.8^{+6.4}_{-5.9}$	$5.9^{+7.8}_{-7.2}$	$1.0^{+1.4}_{-1.3} \pm 0.4$	
Residual		$52.3^{+15.9}_{-15.0}$	$9.2^{+3.0}_{-2.8} \pm 1.0$	Residual is too large for BB $\pi\pi$.
Large $M_{\rm bc}$		100	$17.5^{+1.8}_{-1.6} \pm 1.3$	ISR ~4% to Υ (4S) and ~6% to above Υ (4S)

B_s **Physics**

B_s Decay Results

- $B_{s} \rightarrow D_{s}^{*-}\pi^{+}$, $D_{s}^{(*)-}\rho^{+}$ PRL 104, 231801 (2010)
 - Dominated by spectator process (like $B_{u,d}$) test of HQET, factorization ...
 - Large statistics to study B_s properties mass, width, angular distributions ...

- CP eigenstates $(D_{s}^{(*)+}D_{s}^{(*)-}, J/\psi\eta^{(')}, J/\psi f_{0}(980), K^{+}K^{-})$
 - window for non-SM CP violations $\beta_{s}, \Delta \Gamma_{s} / \Gamma_{s}$
 - Rare decays $(B \rightarrow KK)$

CKM angle ϕ_3/γ , NP in penguin loop $\arg(V_{tb}^{*2}V_{ts}^{2}) = 0$ for B_s

Observation of $B_s \rightarrow D_s^{*-}\pi^+$, $D_s^{*-}\rho^+$

```
• reconstruct D_s^{\star-} \rightarrow D_s^- \gamma
```


Mode	$\mathcal{B}(10^{-3})$	HQET (10 ⁻³)
$B_s^0 \to D_s^{*-} \pi^+$	$2.4^{+0.5}_{-0.4}\pm 0.3\pm 0.4$	2.8
$B_s^0 \rightarrow D_s^- \rho^+$	$8.5^{+1.3}_{-1.2} \pm 1.1 \pm 1.3$	7.5
$B_s^0 \rightarrow D_s^{*-} \rho^+$	$11.9^{+2.2}_{-2.0}\pm 1.7\pm 1.8$	8.9

• $D_{s}^{*} - \rho^{+}$: scalar to vector vector $\frac{d^{2}\Gamma}{d\cos\theta_{D_{s}^{*}}d\cos\theta_{\rho}} \propto 4f_{L}\sin^{2}\theta_{D_{s}^{*}}\cos^{2}\theta_{\rho} + (1 - f_{L})\left(1 + \cos^{2}\theta_{D_{s}^{*}}\right)\sin^{2}\theta_{\rho}$ Efficiency, M_{bc} & ΔE PDFs all depend on f_{L} MC study $\gamma/7/2010$ $\gamma/7/2010$ Paotii Chang $\gamma/7/2010$ Paotii Chang $\gamma/7/2010$

Observation of $B \rightarrow D_s^{*-} \rho^+$

► $N(B_s^*\bar{B}_s^*) = 77.8^{+14.5}_{-13.4}(\text{stat.}) \pm 3.3(\text{fit}) \text{ events } (7.4\sigma \text{ significance})$

$$\mathcal{B}(\mathsf{B}^0_{\mathsf{s}} \to \mathsf{D}^{*-}_{\mathsf{s}} \rho^+) = \left(11.8^{+2.2}_{-2.0}(\mathrm{stat.}) \pm 1.7(\mathrm{syst.}) \pm 1.8(\mathsf{f}_{\mathsf{s}})\right) \times 10^{-3}$$

 $f_L = 1.05^{+0.08}_{-0.10} + 0.03_{-0.04}$ or $f_L \in [0.93, 1.00]$ at 68% C.L.

$B_{S} \rightarrow D_{S}^{(*)+} D_{S}^{(*)-}$

- Cabibbo favored and CP eigen state.
- Dominates $\Delta \Gamma_{s}^{CP}$ [Aleksan et al., Z. Phys., C54, 653 (1992)]

 $\frac{\Delta \Gamma_{s}^{CP}}{\Gamma_{s}} = \frac{2 \times \mathcal{B} \left(B_{s}^{0} \rightarrow D_{s}^{(*)+} D_{s}^{(*)-} \right)}{1 - \mathcal{B} \left(B_{s}^{0} \rightarrow D_{s}^{(*)+} D_{s}^{(*)-} \right)} \text{, assuming no CPV}$

• Measure $\mathcal{B}(B \longrightarrow D_{s}^{(*)-} D_{s}^{(*)-})$ with D decay into six states:

 $D_{s}^{+} \rightarrow \phi \pi^{+}, \ K_{s}K^{+}, \ \phi \rho^{+}, \ \overline{K}^{*0}K^{+}, \ K_{s}K^{*+} \ and \ \overline{K}^{*0}K^{*+}$

- Identify $D_s^{*+} \rightarrow D_s^+ \gamma$ with $E\gamma > 50$ & $|M_{D_s^*}-M_{D_s}| < 120 \text{ MeV}$
- One candidate per event based on χ^2 of M(D) and M(D*)
- Suppress continuum events using Fox-Wolfram moments

Extract of $B_{\rm S} \rightarrow D_{\rm S}^{(*)+} D_{\rm S}^{(*)-}$

Mode	Y	ϵ	${\mathcal B}$	S
	(events)	$(\times 10^{-4})$	(%)	
$D_s^+ D_s^-$	$8.5^{+3.2}_{-2.6}$	3.31	$1.03^{+0.39+0.15}_{-0.32-0.13} \pm 0.21$	6.2
$D_s^{*\pm} D_s^{\mp}$	$9.2^{+2.8}_{-2.4}$	1.35	$2.75^{+0.83}_{-0.71}\pm0.40\pm0.56$	6.6
$D_s^* D_s^*$	$4.9^{+1.9}_{-1.7}$	0.643	$3.08^{+1.22}_{-1.04} \pm 0.56 \pm 0.63$	3.2
sum	$22.6_{-3.9}^{+4.7}$		$6.85^{+1.53+1.26}_{-1.30-1.25} \pm 1.41$	

consistent with CDF first observation first evidence

 Simultaneously fit three samples and consider their cross-feed

$$\Rightarrow \frac{\Delta \Gamma_s}{\Gamma_s} = (14.7^{+3.6+4.4}_{-3.0-4.3} \pm 0.4)\%$$
CDF: (12 ± 10)% [PRL 100, 121803]
D0: (7.2 ± 3.0)% [PRL 102, 091901]

B_s Decays to J/ $\psi \eta^{(\prime)}$

• First observation of $B_s \rightarrow J/\psi \eta$ yield = 14.9± 4.1; sig. = 7.3 σ vield = 10.7± 4.6; sig. = 3.8 σ

 $\mathcal{B} = (2.32 \pm 0.87 \stackrel{+0.32}{_{-0.28}} \pm 0.42 \text{(fs)}) \times 10^{-4}$ $\mathcal{B} = (3.1 \pm 1.2 \stackrel{+0.5}{_{-0.6}} \pm 0.4 \text{(fs)}) \times 10^{-4}$

7/7/2010 Paotii Chang

$B_{\rm s}$ Decays to KK, J/ ψ f₀

 $B_{\rm s} \rightarrow {\rm KK}$

 $B_{\rm s} \rightarrow {\rm J}/{\rm \psi}{\rm f}_0, {\rm f}_0 \rightarrow \pi^+\pi^-$

$\Upsilon(1S)$ and $\Upsilon(2S)$

Υ(1S) Radiative Decays 102 M Υ(1S)

• Search for charmonium-like states in radiative $\Upsilon(1S)$ decays

X(3872) , X(3915), Y(4140), X(4350), X_{cJ}, η_c ...

- Search for C parity even state
- X(3872) \rightarrow J/ $\psi \pi^{+}\pi^{-}(\pi^{0})$
 - $J/\psi \rightarrow e^+e^-$, $\mu^+\mu^-$; E_{γ} >3.5 GeV
 - Recoil mass of J/ $\psi \pi^+\pi^-(\pi^0)$ Consistent with γ_{200}
 - to suppress ISR⇒ |cosθ_γ| < 0.9

² Υ(1S) Radiative Decays Cont.

Histogram: J/ψ sideband bkg

Histogram: off peak data

7/7/2010 Paotii Chang

Search for Light Higgs

- NMSSM introduces single CP-odd light Higgs (PRD73, 111701(R), 2006)
 - $A^{0} = (\cos \theta_{A}) a_{MSSM} + (\sin \theta_{A}) a_{singlet}$
 - $-\,\mathcal{B}\,{
 m can}$ be as high as 10⁻⁴
 - direct search by B factory if M(A⁰)<2m_b
- HyperCP observed 3 $\Sigma \rightarrow p\mu^+\mu^-$ events Interpreted as light scalar to two muons
- First search by CLEO: $\Upsilon(1S) \rightarrow \gamma A^0$
- BaBar search for $\Upsilon(2S/3S) \rightarrow \gamma A^0$ $A^0 \rightarrow \mu^+\mu^-$, $A^0 \rightarrow \tau^+\tau^-$, $A^0 \rightarrow \text{invisible}$ **3 PRLs!**

Search for $A^0 \rightarrow \mu^+ \mu^-$

- •1 γ + balanced h⁺h⁻
- $\text{E}\gamma > 0.2$ GeV; one h is identified as μ
- Kinematic fit on $\gamma \mu^+ \mu^-$ by constraining $\mu \mu$ vertex and Υ energy
- Search for peak in m_R by performing ~2000 ML fits from 0.212 to 9.3 GeV/c²

Search for $A^0 \rightarrow \tau^+ \tau^-$, invisible

- Require only one photon with $E_{v} > 0.1$ GeV.
 - Tag $\tau\tau$ using e⁺e⁻, $\mu^+\mu^-$ e[±] μ^+
 - No other particles for the invisible mode

 $\begin{array}{l} \mathsf{BF}(\Upsilon(3S) \to \gamma \mathsf{A}^0) \times \ \mathsf{BF}(\mathsf{A}^0 \to \tau^+ \tau^\text{-}) < (1.5\text{-}16) \times \ 10^{\text{-}5} \\ \\ \mathsf{B}_{\mathsf{A}}\mathsf{B}_{\mathsf{A}}\mathsf{R} \ \mathsf{PRL} \ 103, \ 181801 \ 2009 \end{array}$

 $BF_{TOT} < (0.7-31) \times 10^{-6}$ arXiv:0808.0017 [hep-ex]

Search for light Dark Matter

Υ (3S)→ Υ (1S) $\pi^+\pi^-$, Υ (1S) → $\chi\chi$

- Require only two charged particles
 with recoiled mass btw 9.4 and 9.52
- Use multivariate method to reduce GeV/c² non-peaking background
- Peaking background comes from $\Upsilon(1S)$ daughters outside the acceptance
- Estimate Peaking bkg yield from MC and validate using ($\pi\pi$ +1,2 tracks) data

Fit yield: 2326 ± 105 Bkg pred: 2444 ± 123 Signal: $-118 \pm 105 \pm 24$

BF(𝔅(1S)→invisible) = (-1.6±1.4(stat)±1.6(syst)) × 10⁻⁴ < 3.0 × 10⁻⁴ at 90% CL BABAR PRL 103, 251801 (2009) ~10× improvement over prior UL

Belle PRL98, 132001 (2007)

Other New Physics Search

• Search for lepton flavor violation • Test for Lepton Universality

Prime leptons are monogenetic

	$\mathcal{B}(10^{-6})$	UL (10 ⁻⁶)
$\mathcal{B}(\Upsilon(2S) \to e^{\pm}\tau^{\mp})$	$0.6^{+1.5+0.5}_{-1.4-0.6}$	<3.2
$\mathcal{B}(\Upsilon(2S) \rightarrow \mu^{\pm} \tau^{\mp})$	$0.2^{+1.5+1.0}_{-1.3-1.2}$	<3.3
$\mathcal{B}(\Upsilon(3S) \rightarrow e^{\pm} \tau^{\mp})$	$1.8^{+1.7+0.8}_{-1.4-0.7}$	<4.2
$\mathcal{B}(\Upsilon(3S) \to \mu^\pm \tau^\mp)$	$-0.8^{+1.5+1.4}_{-1.5-1.3}$	<3.1

BABAR PRL 104, 151802 2010

- M(μμ) vs M_R(ππ)
- $-\Upsilon(1S) \rightarrow \tau^+ \tau^-$ M_R($\pi\pi$) only
- No deviation of two branching fractions

 $\begin{array}{l} {\sf R}_{\tau\mu}(\Upsilon(1S)) = 1.005 \pm 0.013({\sf stat}) \pm 0.022({\sf syst}) \\ \\ {\sf PRL} \ 104, 191801 \ 2010 \end{array}$

Υ (1S,2S) analysis under way

Preliminary

- $\Upsilon(2S) \rightarrow \gamma + \eta_b$
- $\chi_{b0} \rightarrow \gamma + \Upsilon(1S)$
- $\Upsilon(2S) \rightarrow \eta + \Upsilon(1S)$
- $\chi_{bJ} \rightarrow$ double charmonium
- $\Upsilon(2S) \rightarrow \gamma + A_0$
- $\Upsilon(1S)$ lepton universality from $\Upsilon(2S) \rightarrow \Upsilon(1S) + \pi^+\pi^-$
- Y(1S) → inclusive di-baryons

Summary

- Data taken in other Υ(nS) resonances provide opportunities to understand physics and search for new phenomena.
- Υ (5S): 1. Scan results and large Υ (nS) $\pi\pi$ decay rates
 - 2. 2-body and 3-body B meson production
 - 3. Bs physics: DG/G, BF for various decay modes
- Υ (1-3S): 1. Decays to charmonium and charmonium-like stats
 - 2. NP searches: Search for light Higgs, light dark matter test for lepton flavor violations, test for lepton Univ.
 ⇒ All have the best limits.
- Looking forward to next generation B factory.

BackUp

7/7/2010 Paotii Chang

Anomalous Large Partial Width

Proce	ess	$\sigma(\mathrm{pb})$		$\mathcal{B}(\%)$	$\Gamma(M$	feV)
$\Upsilon(1S$	$\pi^{+}\pi^{-}$	$1.61 \pm 0.10 \pm 0$.12 0.53	$\pm 0.03 \pm 0.$	$05 0.59 \pm 0$	0.04 ± 0.09
$\Upsilon(2S$	$\pi^{+}\pi^{-}$	$2.35\pm0.19\pm0$.32 0.78	$\pm 0.06 \pm 0.$	$11 0.85 \pm 0$	0.07 ± 0.16
$\Upsilon(3S$	$\pi^{+}\pi^{-}$	$1.44^{+0.55}_{-0.45} \pm 0.1$	19 0.48	$8^{+0.18}_{-0.15} \pm 0.0$	$7 0.52^{+0.}_{-0.}$	$^{20}_{17} \pm 0.10$
$\Upsilon(1S$	$)K^+K^-$	$0.185^{+0.048}_{-0.041} \pm 0.$	028 0.061	$^{+0.016}_{-0.014} \pm 0.0$	$0.067^{+0.0}_{-0.0}$	$_{015}^{017} \pm 0.013$
		Process	$\Gamma_{\rm total}$	$\Gamma_{e^+e^-}$	$\Gamma_{\Upsilon(1S)\pi^+\pi^-}$	
	$\Upsilon(2S)$	$\rightarrow \Upsilon(1S)\pi^+\pi^-$	$0.032 { m MeV}$	7 0.612 keV	$0.0060 { m MeV}$	
	$\Upsilon(3S)$	$\rightarrow \Upsilon(1S)\pi^+\pi^-$	$0.020 { m MeV}$	V 0.443 keV	$0.0009 { m MeV}$	
	$\Upsilon(4S)$	$\rightarrow \Upsilon(1S)\pi^+\pi^-$	$20.5 { m MeV}$	0.272 keV	$0.0019 { m MeV}$	larger
	$\Upsilon(10860$	$) \rightarrow \Upsilon(1S) \pi^+ \pi^-$	$110 { m MeV}$	$0.31 \ \mathrm{keV}$	$0.59~{ m MeV}$	by > 10 ²

- Rescattering Mechanism: $\Upsilon(5S) \rightarrow B'B'\pi\pi \rightarrow \Upsilon(1S) \pi\pi$
- More than one state: Yb near Y(5S)

Ali's Tetraquark Interpretation

 $\Upsilon(5S)$ and $\Upsilon(6S)$

There are two mass states

in $Y^{(1)}$ since q = u, d

Phys.Lett.B684:28-39,2010

-	M[MeV]	$\Gamma[MeV]$	φ [rad.]
$\Upsilon(5S)$	10864 ± 5	46 ± 8	1.3 ± 0.3
$\Upsilon(6S)$	11007 ± 0.3	40 ± 2	0.88 ± 0.06
$Y_{[b,l]}$	$10900 - \Delta M/2 \pm 2$	28 ± 2	4.4 ± 0.2
$Y_{[b,h]}$	$10900 + \Delta M/2 \pm 2$	28 ± 2	1.9 ± 0.2

7/7/2010 Paotii Chang

2 0.6

0.

0.2

0

10 6