Risultati recenti e prospettive da esperimenti nello spazio

Silvia Rainò Dipartimento di Fisica , Università di Bari & INFN – Sezione di Bari

- Actual space experiments are providing an outstanding view of the high energy universe with their great potential for discovery.
 Recent results from space are allowing significant steps forward in
 - Understanding the mechanisms of particle acceleration in AGNs, pulsars, and SNRs
 - Providing information about particle interaction mechanisms at very high energies
 - Resolving the gamma-ray sky: unidentified sources and diffuse emission.
 - Probing DM and early universe
 - The study of the acceleration mechanisms of CRs to understand their origin, production and propagation

Space experiments

Big italian effort among the main space experiments

High Energy Gamma-Ray Astrophysics: AGILE and FERMI

08/04/2010

08/04/2010

The EGRET heritage

Data from April 5, 1991 to October 3, 1995

3rd EGRET catalog :

- ✤ 271 sources above 100 MeV
 - ✓ 6 pulsars
 - ✓ 73 blazars (AGNs)
 - ✓ 170 unidentified

• But some limitations :

Rather poor angular resolution (~6deg at 100 MeV) and limited effective area x field of view

- Localization limitation -> identification limitation
- Not so many sources to perform population studies
- Limited sensitivity to variability

08/04/2010

AGILE in orbit since April 2007

Light instrument :

- 100 kg
- Tracker : 12 (x,y) planesCalorimeter : 1.5 X0

AGILE

Astrorivelatore Gamma a Immagini Leggero combines for the first time -a gamma-ray imager - GRID (30 MeV- 30 GeV)

-with a hard X-ray imager - SuperAGILE (18-60 keV)

Fermi in orbit since June 2008

- Fermi is an International Science Mission exploring the gamma –ray sky by means of its two main instruments:
 - GLAST Burst Monitor (GBM) : 8 keV to 40 MeV
 - Large Area Telescope (LAT) : 20 MeV to > 300 GeV
- Huge energy range: including largely unexplored band for a total of >7 energy decades! Large Area Telescope
- **Strategy:**
 - Sensitivity : >10 times greater than EGRET
 - Survey mode ⇒ entire sky every three hours

S. Rainò - IFAE 2010, Roma 7-9 Aprile 2010

GLAST Burst Monitor (GBM)

(LAT)

LAT: Large Area Telescope

- LAT:
- modular 4x4 array
- 3 tons 650 watts

Anti-Coincidence (ACD):

- Segmented (89 tiles + 8 ribbons)
- Self-veto @ high energy limited
- 0.9997 detection efficiency

S. Rainò - IFAE 2010, Roma 7-9 Aprile 2010

Tracker/Converter (TKR):

- Si-strip detectors
- ~80 m² of silicon (total)
- W conversion foils
- 1.5 Xo on-axis
- 18XY planes
- ~10⁶ digital elx chans
- Highly granular
- High precision tracking

Calorimeter (CAL):

- 1536 CsI(Tl) crystals
- 8.6 Xo on-axis
- large elx dynamic range (2MeV-60GeV per xtal)
- Hodoscopic (8x12)
- Shower profile recon
- leakage correction

GBM: Gamma-ray Burst Monitor

(12) Sodium Iodide (Nal) Scintillation Detectors

- spectral coverage: 8 keV - 1 MeV

(2) Bismuth Germanate (BGO) Scintillation Detectors

AGILE and Fermi in space

NO LOT LOOK do	- C 45 45 44 99 L	anabuda - E 17 16 16 00	States - Edit 1 Los
EDGI LIIIIII	- 3 UZ 43 14 22 U	auðmma - 5 ar 52 no 36	AMPAGE = 34 1.1 MT

The gamma-ray sky above 100 MeV

	Ang Res (>100MeV)	Ang Res (>1 GeV)	Energy Range (GeV)	A _{eff} ·Ω (cm²⋅s)	#γ-rays
EGRET	5.8°	0.5°	0.03 – 10	750	1.4·10 ⁶
AGILE	~4°	~0.15°	0.03 – 50	1500	4·10 ⁶ /yr
Fermi	3.5°	0.1°	0.02 - 300	20000	80·10 ⁶ /yr

08/04/2010

1 year observations of AGILE

AGILE: 3C 454.3: the Crazy Diamond of 2007-2008 (Vercellone et al.

2007-2008-2009, Donnarumma et al. 2009)

AGILE: Giant flare of 3C454.3 in Dec 2009

The AGILE gamma-ray sky, 3-4 December, 2009. Detection of the strongest gamma-ray flaring source ever observed: the black hole ("Crazy Diamond") in the active galaxy 3C 454.3 (z=0.859, $F_y > 2000 \ 10^{-8}$ ph. cm⁻² s⁻¹, $L_{iso} = 6 \times 10^{49}$ erg s⁻¹, for $\delta = 10$, $L_{iet} \approx 1$ Earth/sec)

the Vela pulsar

the black hole "Crazy Diamond" in the galaxy 3C 454.3

08/04/2010

AGILE and Cygnus X-3

- AGILE detects several gammaray flares from Cygnus X-3, and also weak persistent emission above 100 MeV
- very interesting correlations with radio and X-ray spectral state changes
- gamma-ray flares usually before radio flares

1 year observations: Fermi

arXiv: 1002.2280

1451 sources (>4.1 σ) ✓ ~600 blazars ✓ ~ 60 pulsars

Fermi observation of pulsars

Gamma ray observations of pulsars in 6 months from the Fermi Gamma-ray Space Telescope

6 O New pulsars discovered in a blind search

- 8 Illisecond radio pulsars
- 3 (O Young radio pulsars

6 68 Russers seen by Compton Observetory EGREFATS ture Roma 7-9 Aprile 2010

Gamma-ray Pulsar catalog: A.Abdo et al. ApJS, 187, 460₁₈

Fermi observation of pulsars

Gamma ray observations of pulsars in 6 months from the Fermi Gamma-ray Space Telescope

In the 1FGL catalog using 11 months data: $\rightarrow \sim 60$ pulsars

6 O New pulsars discovered in a blind search

- 8 Millisecond radio pulsars
- 3 Synthesis States 2 States 2

6 68 Russen by Compton Observatory EGREFATS turger Roma 7-9 Aprile 2010

Gamma-ray Pulsar catalog: A.Abdo et al. ApJS, 187, 460

Fermi observation of pulsars

According to Science Fermi pulsars are 2nd among the Top 10 Scientific Breakthroughs of 2009

> Gamma-ray Pulsar catalog: A.Abdo et al. ApJS, 187, 460

About LAT pulsars

- Generally (but not always), pulse profiles have 2 peaks, separated by \geq 0.2 of rotational phase.
- Generally (but not always), gamma peak offset from radio.

About LAT pulsars

- Generally (but not always), pulse profiles have 2 peaks, separated by \geq 0.2 of rotational phase.
- Generally (but not always), gamma peak offset from radio.
- Energy spectra well described by a power-law with exponential cut-offs, with cut-off energy at ~1 to ~5 GeV.

About LAT pulsars

- Generally (but not always), pulse profiles have 2 peaks, separated by \geq 0.2 of rotational phase.
- Generally (but not always), gamma peak offset from radio.
- Energy spectra well described by a power-law with exponential cut-offs, with cut-off energy at ~1 to ~5GeV.
- Favors outer magnetospheric emission.

γ-ray Bursts sky map with Fermi

Multi-Wavelength Campaign on 3C 279

- Bright FSRQ, z=0.536
- ~300 d intense campaign
- Coincidence of γ-ray flare and change in optical polarization (KANATA)
- . Indicates
 - Co-spatiality of γ-ray and optical emission
 - Non-axisymmetric structure of the emission zone
 - . Curved trajectory along the jet

08/04/2010

High energy electron spectrum

Phys.Rev.Lett.102:181 101,2009. – citations 271 Cited across a broad range - cosmic-ray, astronomy, particle physics (D0, BABAR) 08/04/2010 S. Rainò - IFAE 2010, Roma 7-9 Aprile 2010 26

Interpretation of Fermi-LAT results

- Anomalous features in the electron spectrum are excluded (disprove ATIC claim of strong spectral feature)
- The electron spectrum is harder than the one expected from conventional diffusive models (GALPROP, based on pre-Fermi data)

• Possible interpretations:

- harder electron spectrum at the source
 - GALPROP assumes a source electron spectrum with spectral index γ =2.54 above 4 GeV and a diffusive coefficient ${\sim}E^{1/3}$
- presence of a local source of high energy electrons and positrons
 - Nearby Pulsar or DM annihilation
 - this interpretation allows also to explain the increase in the e+/(e++e-) ratio observed by PAMELA above 10GeV (see next slides)
- Potentials for:
 - Anisotropies, thanks to good angular resolution ---> on-going effort
 - Energy extension:
 - Low energy: orbit-dependent
 - High energy (> 1 TeV) to find TeV spectral cut-off : requires specific new CAL recon

Extended electron spectrum

One year statistics: 8 ·10⁶ events Extended Energy Range: 7 GeV – 1 TeV

08/04/2010

Pamela

08/04/2010

PAMELA detectors

Main requirements → high-sensitivity antiparticle identification and precise momentum measure

Design Performance

- AntiprotonsPositrons
- Electrons
- Protons
- Electrons+positrons
- Light Nuclei (He/Be/C)
- AntiNuclei search

80 MeV - 150 GeV

50 MeV – 270 GeV

up to 400 GeV

up to 700 GeV

up to 2 TeV

up to 200 GeV/n

sensitivity of 3x10⁻⁸ in He/He

- → Simultaneous measurement of many cosmic-ray species
- → New energy range
- → Unprecedented statistics

Recent results: antiproton-proton ratio

Positron to All Electron Fraction

Nature 458, 697, 2009

 $\Phi(e^+) + \Phi(e^-)$ increases above 10 GeV Consistent with positrons originating from an additional "primary" source: -Nearby Pulsars -Microquasars

The positron fraction

 $\Phi(e^+)$

-Dark matter annihilation

AMS experiment

08/04/2010

What is aiming AMS?

AMS is a large acceptance (~ 0.5 m².sr) spectrometer designed to operate in the International Space Station (ISS) for a long duration stay (3 years)

- ✓ Good particle identification power (including photons)
- ✓ Able to measure cosmic spectra from 500 MeV to few TeV
- Charge identification up to Iron (Z=26) and light isotopic separation
- Search for antimatter and darkmatter with unprecedent sensitivity

Credit: D.Grandi S. Rainò - IFAE 2010, Roma 7-9 Aprile 2010

From AMS1 to AMS2

Improved capabilities

- ✓ larger acceptance $\sim 0.5 \ m^2.sr$
- ✓ Superconducting magnet a magnetic field ~ 8 times larger
- ✓ larger silicon Tracker 8 double-sided layers $\sim 6.5 m^2$ silicon surface
- a momentum resolution improved a factor ~ 10

New Detector systems

- New Cerenkov Detector (RICH)
- Electromagnetic Calorimeter (ECAL)
- Transition Radiation Detector (TRD)

TRD: Transition Radiation Detector

TOF: (s1,s2) Time of Flight Detector

MG: Magnet TR: Silicon Tracker ACC: Anticoincidence Counter AST:

Amiga Star Tracker

TOF: (s1,s2) Time of Flight Detector

RICH: Ring Image Cherenkov Counter

EMC; Electromagnetic Calorimeter

Credit: D.Grandi S. Rainò - IFAE 2010, Roma 7-9 Aprile 2010

Electromagnetic energy measurement

Conclusions

Credit: D.Grandi

Measurement	statistics	energy	physics goals
e^+	$\sim 10^7$	400 GeV	
\bar{p}	$\sim 10^6$	400 GeV	Dark Matter
γ S	$\sim 10^5$	$10^3 { m GeV}$	
$\overline{\mathrm{D}}$	\sim 10	8 GeV/A	
D	$\sim 10^8$	8 GeV/n	
³ He	$\sim 10^8$	8 GeV/n	Astrophysics
¹⁰ Be	$\sim 10^5$	7 GeV/n	
Measurement	sensitivity	rigidity	physics goals
He/He	10^{-9}	10 ³ GV	Antimatter
$\overline{\mathrm{C}}/\mathrm{C}$	10 ⁻⁸	10 ³ GV	

S. Rainò - IFAE 2010, Roma 7-9 Aprile 2010

Conclusions

- The outstanding results from space experiments in orbit are transforming our views of high energy astrophysics
- Data from AGILE, FERMI and PAMELA keep pouring in, so expect more advances in the coming future
- More accurate measurements of CR fluxes are on the way from Fermi and PAMELA. Critical new results are expected from AMS.
- AMS will be launched in the second half of 2010 and installed on the International Space Station

Thank you!

08/04/2010

08/04/2010

Exploring the High Energy Universe

Space experiments:

- Photons:
 - Directly pointing towards the source direction
 - Understand the mechanisms of particle acceleration in AGNs, pulsars, and SNRs
 - Probe DM and early universe
 - Resolve the gamma-ray sky: unidentified sources and diffuse emission.
 - Make connections with ground experiments:
 - MW studies
 - Cross calibrations
- Charged particles:
 - CRs are deviated by magnetic fields
 - Provide information about particle interaction mechanisms at very high energies
 - Study of their acceleration mechanisms to understand their origin: production and propagation
 - Anisotropy studies

Fermi-LAT Instrument Performance

The Large Area Telescope on the Fermi Gamma-ray Space Telescope Atwood, W. B. et al. 2009, ApJ, 697, 1071

Pulsars: where we started

EGRET ---> 6 pulsars

Active Galactic Nuclei (AGN)

D. Nallio

- Active galactic nuclei (AGN) are galaxies with extraordinarily luminous cores powered by super massive black holes
- In the standard model of AGN, cold material close to the central black hole forms an accretion disc
- At least some accretion discs produce jets, twin highly collimated and fast outflows that emerge in opposite directions from close to the disc
- Blazars are objects emitting nonthermal radiation across the entire electromagnetic spectrum from a relativistic jet that is viewed closely along the line of sight

Fermi view of 3C454.3

Fermi: Vela X PWN

08/04/2010

- Spectra shown for mid-latitude range \rightarrow EGRET GeV excess in this region of the sky is not confirmed

- Sources are a minor component
- LAT errors are systematics dominated and estimated ~10%

 Work on diffuse emission with some different modeling approaches over the entire sky and broader energy range is in progress
 S. Raino - IFAE 2010, Roma 7-9 Aprile 2010

AGILE: Vela X PWN spectrum (Pellizzoni et al., *Science*, 30 dic. 2009)

Antiproton Flux

The AMS Detector Particles are identified by their mass, charge and energy.

TOF Mass, Charge, Energy

Silicon Tracker Mass, Charge, Energy

ECAL Electrons, Gamma-rays

Credit: D.Grandi

S. Rainò - IFAE 2010, Roma 7-9 Aprile 2010

Magnet Mass, ± Charge, Energy

RICH Mass, Charge, Energy

Detector Requirements

Credit: 2DoGrandi S. Rainò - IFAE 2010, Roma 7-9 Aprile 2010

Charge measurement (Z) with Tracker

Cosmic runs 2009 : RICH mass reconstruction

cosmic rays : proton mass reconstructed with the RICH (aerogel \checkmark and NaF radiators)

Credit: D.Grandi

Cosmic runs 2009 : TOF mass reconstruction

 cosmic rays : proton and deuteron masses reconstructed with the TOF

