Top, W and Z: rassegna sperimentale - risultati recenti da Tevatron-

> Silvia Amerio INFN Padova

IFAE 2010 – Roma – 7-9 Aprile

1 MIN -

Tevatron

- Circumference 6.2 km
- Run I (1987-1995)
- Run II (since 2001)
- Surpassed design luminosity

Tevatron

Тор

- Heaviest quark
- Discovered at Tevatron in 1995
- At Tevatron mainly produced through qq annihilation
- t \rightarrow Wb, no hadronization: its properties can be measured directly

Top mass : summary of the results

0 - S. Amerio

Integrated Luminosity (pb⁻¹)

200

Top mass at CDF L = 4.8 fb⁻¹

Lepton+Jets with the Matrix Element Method & Neural Network discriminant to distinguish signal from background. b-tagging algorithm, increased muon acceptance

2D likelihood L= Π Pevt(M_{top}, JES, f_{top}(M_{top}, JES)) In situ calibration of the JES using the W mass

This is the most precise measurement ever done.

M_{top} = 172.8 ± 0.7 (stat) ± 0.6 (JES) ± 0.8 (syst) GeV/c² = 172.8 ± 1.3 (total) GeV/c²

Top – anti top mass difference

Particles and antiparticles have the same mass: test of CPT invariance. Measured with matrix element method in lepton + jets events

 $L = 1 \, fb^{-1}$

Top antitop spin correlations

Top short lifetime \rightarrow spin correlations at ttbar production can be observed New production mechanisms could modify SM characteristic spin correlations

We measure the spin correlation coefficient k

 $\kappa = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\uparrow\downarrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\uparrow\downarrow) + N(\uparrow\downarrow)}$

L = 4.3 fb⁻¹

Lepton + jets channel Helicity Axis k(SM) = 0.40

Opposite helicity fraction f_0 fitting $\cos(\theta_d)\cos(\theta_b)$ and $\cos(\theta_l)\cos(\theta_d)$ to Same and Opposite helicity and bgnd templates

K= 0.60 ± 0.50 (stat) ± 0.16 (syst)

Top antitop spin correlations

Top short lifetime \rightarrow spin correlations at ttbar production can be observed New production mechanisms could modify SM characteristic spin correlations

We measure the spin correlation coefficient k

 $\kappa = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\uparrow\downarrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\uparrow\downarrow) + N(\uparrow\downarrow)}$

$L = 4.2 \text{ fb}^{-1}$

Dilepton channel

Beam Axis K(SM) = 0.8

k obtained fitting $cos(\theta_1)cos(\theta_2)$ to templates w/ different k input values

Top Quark Charge

 $SM \rightarrow$ top quark has charge + 2/3 and decays in W⁺b 4th generation scenario -> the observed top quark is a non-SM particle with charge 4/3

Lepton + jets channel

1) Identify 2 b-jets

- Secondary vertex tagger
- Soft lepton tagger
 2) Associate the b-jet to the hadronic/leptonic W
- Kinematic fitter
 3) Determine the flavor of the leptonic b
 - Soft lepton tagger

Excludes Q_{top} = 4/3 at 95% C.L.

IFAE 2010 - S. Amerio

L = 2.7 fb⁻¹

Single top: Tevatron combination

Very challenging measurement: small cross section and large backgrounds.

Need for sophisticated multivariate techniques (NN, BDT, ME, LL) CDF and D0 observe single top at 5 σ level (compatible at 1.6 σ with each other)

Combined cross section uncertainty from 22% to 19%

Combined V_{tb} uncertainty from 14% (CDF) and 11% (D0) to 8%

Top quark width

Top short lifetime \rightarrow large width For M_{top} = 175 GeV, Γ = 1.5 GeV Deviations from prediction can signal contributions from decays to non SM particles (t->H⁺b)

First indirect and most precise determination of the top quark width.

Search for new physics: heavy t'

Heavy t' production *suggested in 4th generation models and Little Higgs models*

Search for t' t' in Lepton + Jets events 2D fit on (H_T, M_{Reco}) distribution

Excluded $M_{t'}$ < 335 GeV/c² at 95% CL.

W

 Precise M_w measurement helps to tighten the constraints on the SM Higgs boson mass

W width tests the SM

W mass

World's best result from D0

Mw = 80.402 ± 0.043 GeV

 $L = 1 \, fb^{-1}$

W mass extracted from transverse variables by means of fit to templates with varying input M_w

It requires precise measure of lepton momentum and hadronic recoil

It uses $Z \rightarrow ee$ events for calibration

$$M_T = \sqrt{2 p_T^e p_T^\nu} (1 - \cos \phi_{e\nu})$$

$$\mathbf{p}_T^e \quad p_T^{\nu} \left(\mathbf{E}_T = \left| \mathbf{\vec{p}}_T^e + \mathbf{\vec{p}}_T^{recoil} \right| \right)$$

Main systematics:

- Electron energy scale
- Parton Density Functions

W mass

World's average = 80.399 ± 0.023 GeV/c² Tevatron's average = 80.376 ± 0.031 GeV/c²

Prospects: more data are being analyzed by CDF (2.4 fb⁻¹) and D0 (4.4 fb⁻¹)

Effort to reduce systematic errors:

 Higher Z → II statistics will reduce electron energy scale uncertainty

• Measurements (*W charge asymmetry, Z rapidity*) to reduce PDF uncertainty.

Tevatron expects total uncertainty < 25 MeV

Tevatron combination more precise than LEP direct measurement

W width

Powerful test of Standard Model Measured by a fit to the high-end tail of the transverse mass peak

ΓwsM = 2.091 ± 0.002 GeV/c²

Tevatron average doesn't include the new D0 result \rightarrow 10 MeV expected improvement.

Tevatron (and CDF/D0 separately) measurement more precise than LEP!

Diboson

Tests of the self-interactions of the gauge bosons Deviations from SM production cross section could indicate new physics Background to many Higgs searches

Ζγ

Sensitive to aTGC ZZγ and Zγγ Background to NP and Higgs searches

D0: $Z \rightarrow vv$ L = 3.6 fb⁻¹

First observation at Tevatron (5.1 σ)

SM: $\sigma = 39 \pm 4$ fb

95% CL limits $|h_{30}^{\gamma}| < 0.033, |h_{40}^{\gamma}| < 0.0017,$ $|h_{30}^{Z}| < 0.033, |h_{40}^{\gamma}| < 0.0017$

Primary background for $H \rightarrow WW$ Look for anomalous TGC (WW γ and WWZ)

At Tevatron, first measured in $WW \rightarrow Iv Iv$: clean signature and high statistic in the final state SM: σ^{NLO} (pp $\rightarrow WW$) = 11.7 ± 0.7 pb

WW

PRL 103:191801, 2009 L = 1 fb⁻¹

Submitted to PRL, arXiv:0912.4500v1 $L = 3.6 \text{ fb}^{-1}$

σ(pp→WW) = 11.5 ± 2.1 (stat+syst) ± 0.7 (lumi) pb σ(pp→WW) = 12.1 ± 0.9 (stat) ^{+1.6} (syst) pb

Combined limits on anomalous ZWW & γWW TGC

Process	Sensitive to	Discrim. Var.	Data Used
$Wg \to lvg$	WWg	Photon Et	0.7 /fb
$WW \to IvIv$	WWg, WWZ	Lepton Ets	1 /fb
$WZ\to IvII$	WWZ	Z Pt	1 /fb
$W(W/Z) \rightarrow Ivjj$	WWg, WWZ	W/Z (dijet) Pt	1.1 /fb

First high statistic combination of limits across different diboson productions at Tevatron

Most stringent results on aTGC couplings and W magnetic dipole and electric quadrupole moment from hadronic collisions.

Future: Combination of CDF and D0 data with 5fb⁻¹ each will improve sensitivity to be competitive with LEP

Results respecting $SU(2)_L \otimes U(1)_Y$ symmetry			
Parameter	Minimum	68% C.L.	95% C.L.
$\Delta \kappa_{\gamma}$	0.07	[-0.13, 0.23]	[-0.29, 0.38]
Δg_1^Z	0.05	[-0.01, 0.11]	[-0.07, 0.16]
λ	0.00	[-0.04, 0.05]	[-0.08, 0.08]
μ_W	2.02	[1.93, 2.10]	[1.86, 2.16]
q_W	-1.00	[-1.09, -0.91]	[-1.16, -0.84]
Results for equal-couplings			
Parameter	Minimum	68% C.L.	95% C.L.
$\Delta \kappa$	0.03	[-0.04, 0.11]	[-0.11, 0.18]
λ	0.00	[-0.05, 0.05]	[-0.08, 0.08]
μ_W	2.02	[1.94, 2.09]	[1.88, 2.15]
q_W	-1.02	[-1.09, -0.94]	[-1.16, -0.87]

WW/WZ/ZZ with jets in the final state

Look for neutrinos (missing energy) and jets in the final state

 \rightarrow sensitive to lvgg and vvgg \rightarrow acceptance on WW/WZ/ZZ

1516 ± 239 (stat) ± 144 (syst) 5.3 σ significance

First observation at a hadron collider

 σ (pp \rightarrow vv) = 18.0 ± 2.8 (stat) ± 2.4 (syst) ± 1.1 (lumi) pb

SM: σ (pp \rightarrow VV) = 16.8 ± 0.5 pb

CDF RunII Preliminary Events/8GeV/c² 6 Data (3.5 fb⁻¹) EWK Uncertainty Background Diboson Signal Signal Uncertainty 0.4 0.2 0.0 -0.2 60 100 120 40 80 140 160 Dijet mass (GeV/c²)

$L = 3.5 \, \text{fb}^{-1}$

WW-WZ→ lvjj

First observation

Fit to the dijet invariant mass

Matrix element technique

 $ZZ \rightarrow 4I$

First observation at CDF

5 events observed 5.70 σ significance

First observation

See Viviana Cavaliere's talk tomorrow afternoon

See Matteo Bauce's poster this evening

Summary

Tevatron is producing high quality physics more than ever!

 Both detectors are well understood, Sophisticated analysis techniques, Join effort of CDF and D0

High precision measurements to constrain the Standard Model:

- Top mass know with a precision less than 1 %
 - Tevatron should reach 1GeV error
- W mass combination more precise than LEP average
 - < 25 MeV error achievable by Tevatron</p>

New diboson signatures explored → experimental reach expanded

Top and EW physics will play an important role at early LHC:

- LHC top factory, top fundamental tool for b-tagging, JES calibrations and bgnd to many analysis
- In 10fb⁻¹ of data, ~ 4 10⁷ W events in each channel → can reach 1 MeV of statistical sensitivity
- Increased sensitivity on aTGC (increased luminosity and diboson cross section)

CDF & D0 detectors

- Silicon tracking
- Large radius drift chamber (r=1.4m)
- 1.4 T solenoid
- Projective calorimetry (|n| < 3.5)
- Muon chambers (|η| < 1.0)
- Particle identification
- Silicon Vertex Trigger

- Silicon tracking Outer fiber tracker (r=0.5m)
- 2.0 T solenoid
- Hermetic calorimetry (|n| < 4)
- Muon chambers $(|\eta| < 2.0)$
- New trigger and more silicon in Summer 2006 (Run2b)

Top cross section: combinations

M_{top} = 172.5 GeV

All measurements compatible with each other and with SM. 6.4% of uncertainty

Search for new physics: NSSM Higgs

•If a charged higgs of around ~100GeV/c² exists, then the branching ratio of top to charged higgs may be LARGE (as high as 10 to 40%)

• This search assumes m_A < 2m_b, a region in parameter space not yet experimentally excluded

 Taus should leave low pT isolated tracks in top events

Z rapidity

 $d\sigma/dy$ distribution of $Z/\gamma^* \rightarrow e+e-$.

No PDF or luminosity uncertainty included in data.

NLO calculation with NLO CTEQ6.1M PDF theory prediction compared to data.

Theory prediction scaled to total cross section from data.

L = 2.1 fb⁻¹

$$Z \rightarrow ee$$

Good agreement between theory and experiment.

W charge asymmetry

W± charge asymmetry sensitive to the fractional momentum difference between u and d quarks \rightarrow it helps constraining the PDFs

W charge asymmetry

Recent: comparison between CDF and D0 asymmetries

- 2 lepton Pt bins
- Comparison w/ CTEQ6.6 only

Good agreement between the two experiments
Discrepancy with PDF at high pt → under investigation

Top mass projections

Joint effort of CDF and D0 to improve the knowledge of the systematics

Systematics uncertainties are comparable; main sources should be *reduced with larger statistics*

Systematic source	Systematic uncertainty (GeV/c ²)	
Calibration	0.11	
MC generator	0.25	
ISR and FSR	0.15	
Residual JES	0.49	
b-JES	0.26	
Lepton P _T	0.14	
Multiple hadron interactions	0.10	
PDFs	0.14	
Background modeling	0.33	
Gluon fraction	0.03	
Color reconnection	0.37	
Total	0.84	

Single experiment top quark mass precision reaching 1 GeV

Top quark width

Top short lifetime \rightarrow large width For M_{top} = 175 GeV, Γ = 1.5 GeV

Deviations from prediction can signal contributions from decays to non SM particles (t->H⁺b)

Lepton + jets channel Template method with W->jj in situ calibration

L = 4.3 fb⁻¹

Impact on Higgs

M_{top} vs M_w favor a low mass Higgs

 $M_{H} = 87^{+35}_{-26}$ GeV (68% CL) $M_{H} < 157$ GeV at 95% CL Including LEP limit $M_{H} < 186$ GeV at 95% CL