Top, W and Z: rassegna sperimentale - risultati recenti da Tevatron-

> **Silvia Amerio INFN Padova**

IFAE 2010 – Roma – 7-9 Aprile

PATTER

Tevatron

- Circumference 6.2 km
- Run I (1987-1995)
- Run II (since 2001)
- Surpassed design luminosity

Tevatron

Top

- Heaviest quark
- Discovered at Tevatron in 1995
- At Tevatron mainly produced through qq annihilation
- \cdot t \rightarrow Wb, no hadronization: its properties can be measured directly

Top mass : summary of the results

Top mass at CDF L = 4.8 fb-1

Lepton+Jets with the *Matrix Element Method* & **Neural Network discriminant** to distinguish signal from background. **b-tagging** algorithm, **increased muon acceptance**

2D likelihood L=**Π**Pevt(M_{top}, J<mark>ES</mark>, f_{top}(M_{top}, JES)) **In situ calibration of the JES using the W mass**

This is the most precise measurement ever done.

Mtop = 172.8 ± 0.7 (stat) ± 0.6 (JES) ± 0.8 (syst) GeV/c² = 172.8 ± 1.3 (total) GeV/c²

IFAE 2010 - S. Amerio 6 **6 6 6 6 6 6 7 6 7 6 6**

Top – anti top mass difference

Particles and antiparticles have the same mass: test of CPT invariance. Measured with matrix element method in lepton + jets events

L = 1 fb-1

Top antitop spin correlations

Top short lifetime \rightarrow spin correlations at ttbar production can be observed New production mechanisms could modify SM characteristic spin correlations

We measure the spin correlation coefficient k

$$
K = \frac{N(\uparrow \uparrow) + N(\downarrow \downarrow) - N(\uparrow \downarrow) - N(\uparrow \downarrow)}{N(\uparrow \uparrow) + N(\downarrow \downarrow) + N(\uparrow \downarrow) + N(\uparrow \downarrow)}
$$

L = 4.3 fb-1

Helicity Axis $k(SM) = 0.40$ Lepton + jets channel

Opposite helicity fraction f_0 fitting $\cos(\theta_\text{\tiny d})\text{cos}(\theta_\text{\tiny b})$ and $\cos(\theta_\text{\tiny l})\text{cos}(\theta_\text{\tiny d})$ to Same and Opposite helicity and bgnd templates

K= 0.60 ± 0.50 (stat) ± 0.16 (syst)

Top antitop spin correlations

Top short lifetime \rightarrow spin correlations at ttbar production can be observed New production mechanisms could modify SM characteristic spin correlations

We measure the spin correlation coefficient k

 $K = \frac{N(\uparrow \uparrow) + N(\downarrow \downarrow) - N(\uparrow \downarrow) - N(\uparrow \downarrow)}{N(\uparrow \uparrow) + N(\downarrow \downarrow) + N(\uparrow \downarrow) + N(\uparrow \downarrow)}$

L = 4.2 fb-1

Dilepton channel

Beam Axis $K(SM) = 0.8$

k obtained fitting $\, \text{cos}(\theta_{\scriptscriptstyle{1}}) \text{cos}(\theta_{\scriptscriptstyle{2}}) \,$ to templates w/ different k input values

```
K= -0.17 - 0.65 + 0.53 (stat+syst)
```


Top Quark Charge

 $SM \rightarrow top$ quark has charge $+$ 2/3 and decays in W⁺b **4 th generation scenario** -> the observed top quark is a non-SM particle with charge 4/3

Lepton + jets channel

1) Identify 2 b-jets

- **Secondary vertex tagger**
- **Soft lepton tagger** 2) Associate the b-jet to the hadronic/leptonic W
- **Kinematic fitter** 3) Determine the flavor of the leptonic b
	- **Soft lepton tagger**

Excludes Q_{top} = 4/3 at 95% C.L.

IFAE 2010 - S. Amerio 10

L = 2.7 fb-1

Single top: Tevatron combination

Very challenging measurement: small cross section and large backgrounds.

Need for sophisticated multivariate techniques (NN, BDT, ME, LL) CDF and D0 observe single top at 5σ level (compatible at 1.6 σ with each other)

Combined cross section uncertainty from 22% to 19%

Combined V_{th} uncertainty from 14% (CDF) and 11% (D0) to 8%

Top quark width

Top short lifetime → large width For $M_{\text{top}} = 175 \text{ GeV}, T = 1.5 \text{ GeV}$

Deviations from prediction can signal contributions from decays to non SM particles (t->H+b)

First indirect and most precise determination of the top quark width.

IFAE 2010 - S. Amerio 13

500

W

 \bullet Precise M_w measurement helps to tighten the constraints on the SM Higgs boson mass

• W width tests the SM

L = 1 fb-1

W mass extracted from transverse variables by means of fit to templates with varying input M_{w}

It requires *precise measure of lepton momentum and hadronic recoil*

It uses *Z→ee events for calibration*

 $W_{T} = \sqrt{2p_{T}^{e}} p_{T}^{v} (1 - \cos \phi_{ev})$

$$
p_T^e \quad p_T^v \left(\mathbf{\not{E}}_T = \left| \vec{\boldsymbol{p}}_T^e + \vec{\boldsymbol{p}}_T^{recoil} \right| \right)
$$

Main systematics:

- Electron energy scale
- Parton Density Functions

W mass

World's average = 80.399 ± 0.023 GeV/c² Tevatron's average = 80.376 ± 0.031 GeV/c²

Prospects: more data are being analyzed by CDF (2.4 fb $^{-1}$) and D0 (4.4 fb $^{-1}$)

Effort to reduce systematic errors:

• Higher Z → II statistics will reduce electron energy scale uncertainty

● Measurements (*W charge asymmetry, Z rapidity*) to reduce PDF uncertainty.

Tevatron expects total uncertainty < 25 MeV

Tevatron combination more precise than LEP direct measurement

W width Powerful test of Standard Model
Masured by a fit to the high-end tail of the transverse mass peak

wSM = 2.091 ± 0.002 GeV/c2

Tevatron average doesn't include the new D0 result \rightarrow 10 MeV expected improvement.

Tevatron (and CDF/D0 separately) measurement more precise than LEP!

Diboson

Tests of the self-interactions of the gauge bosons Deviations from SM production cross section could indicate new physics **Background to many Higgs searches**

Z

Sensitive to aTGC $ZZ\gamma$ and $Z\gamma\gamma$ Background to NP and Higgs searches

D0: Z → VV **L = 3.6 fb**⁻¹

First observation at Tevatron (5.1 σ)

$$
\sigma = 32 \pm 9 \text{ (stat+syst)} \pm 2 \text{ (lumi) fb}
$$

(Et_γ > 90 GeV)

 $SM: \sigma = 39 \pm 4$ fb

95% CL limits |h³⁰ | < 0.033, |h⁴⁰ | < 0.0017, |h³⁰ | < 0.033, |h⁴⁰ | < 0.0017

Primary background for $H \rightarrow WW$ Look for anomalous TGC (WW γ and WWZ)

At Tevatron, first measured in **WW** \rightarrow **lv lv**: clean signature and high statistic in the final state **SM:** σ^{NLO} (pp \rightarrow WW) = 11.7 \pm 0.7 pb

PRL 103:191801, 2009 **L = 1 fb-1**

WW

L = 3.6 fb-1 Submitted to PRL, arXiv:0912.4500v1

 σ (pp \rightarrow WW) = 11.5 ± 2.1 **(stat+syst) ± 0.7 (lumi) pb**

 σ (pp \rightarrow **WW)** = 12.1 ± 0.9 (stat)^{+1.6} **-1.4 (syst) pb**

Combined limits on anomalous ZWW & WW TGC

First high statistic combination of limits across different diboson productions at Tevatron

Most stringent results on aTGC couplings and W magnetic dipole and electric quadrupole moment from hadronic collisions.

Future: Combination of CDF and D0 data with 5fb-1 each will improve sensitivity to be competitive with LEP

IFAE 2010 - S. Amerio 22

WW/WZ/ZZ with *jets* **in the final state**

Look for **neutrinos (missing energy) and jets** in the final state

 \rightarrow sensitive to lygg and yygg \rightarrow acceptance on WW/WZ/ZZ

1516 ± 239 (stat) ± 144 (syst) 5.3 significance

First observation at a hadron collider

 σ (pp→ vv) = 18.0 ± 2.8 (stat) ± 2.4 **(syst) ± 1.1 (lumi) pb**

SM: σ (pp \rightarrow VV) = 16.8 \pm 0.5 pb

WW-WZ→ ljj

First observation

Fit to the dijet invariant mass

Matrix element technique

ZZ → 4l

First observation at CDF

5 events observed 5.70 significance

First observation

See Viviana Cavaliere's talk tomorrow afternoon

See Matteo Bauce's poster this evening

Summary

Tevatron is producing high quality physics more than ever!

• Both detectors are well understood, Sophisticated analysis techniques, Join effort of CDF and D0

High precision measurements to constrain the Standard Model:

- **Top mass know with a precision less than 1 %**
	- Tevatron should reach 1GeV error
- **W mass combination more precise than LEP average**
	- \cdot < 25 MeV error achievable by Tevatron

New diboson signatures explored → experimental reach expanded

Top and EW physics will play an important role at early LHC:

- LHC top factory, top fundamental tool for b-tagging, JES calibrations and bgnd to many analysis
- In 10fb⁻¹ of data, ~ 4 10⁷ W events in each channel → can reach 1 MeV of statistical sensitivity
- **Increased sensitivity on aTGC** (increased luminosity and diboson cross section)

CDF & D0 detectors

- Silicon tracking
- Large radius drift chamber (r=1.4m)
- 1.4 T solenoid
- Projective calorimetry $(|n| < 3.5)$
- Muon chambers (|η| < 1.0)
- Particle identification
- Silicon Vertex Trigger
- Silicon tracking Outer fiber tracker (r=0.5m)
- 2.0 T solenoid
- Hermetic calorimetry $(|n| < 4)$
- Muon chambers (|η| < 2.0)
- New trigger and more silicon in Summer 2006 (Run2b)

Top cross section: combinations

$M_{\text{top}} = 172.5 \text{ GeV}$

All measurements compatible with each other and with SM. 6.4% of uncertainty

Search for new physics: NSSM Higgs

•If a charged higgs of around \sim 100GeV/ c^2 exists, then the branching ratio of top to charged higgs may be LARGE (as high as 10 to 40%)

• This search assumes m_{A} < 2m_b, a region in parameter space not yet experimentally excluded

• Taus should leave low pT isolated tracks in top events

Z rapidity

dσ/dy distribution of Z/γ* -> e+e-.

No PDF or luminosity uncertainty included in data.

NLO calculation with NLO CTEQ6.1M PDF theory prediction compared to data.

Theory prediction scaled to total cross section from data.

L = 2.1 fb⁻¹

$$
\mathsf{Z}\mathbin{\to}\mathsf{ee}
$$

Good agreement between theory and experiment.

W charge asymmetry

W± charge asymmetry sensitive to the fractional momentum difference between u and d quarks \rightarrow it helps constraining the PDFs

W charge asymmetry

Recent: comparison between CDF and D0 asymmetries

- 2 lepton Pt bins
- Comparison w/ CTEQ6.6 only

• Good agreement between the two experiments • Discrepancy with PDF at high pt \rightarrow under investigation

Top mass projections CDF Run II Preliminary. 4.8 fb⁻¹

Joint effort of CDF and D0 to improve the knowledge of the systematics

Systematics uncertainties are comparable; main sources should be *reduced with larger statistics*

Single experiment top quark mass precision reaching 1 GeV

Top quark width

Top short lifetime → large width For M_{top} = 175 GeV, Γ = 1.5 GeV

> Deviations from prediction can signal contributions from decays to non SM particles (t->H+b)

Lepton + jets channel Template method with W->jj in situ calibration

L = 4.3 fb-1

Impact on Higgs

 $\mathsf{M}_{\mathsf{top}}$ vs M_{W} favor a low mass Higgs

M_H = 87 ⁺³⁵ ₋₂₆ GeV (68% CL) M_H < 157 GeV at 95% CL Including LEP limit $M_H < 186$ GeV at 95% CL