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2 Tree level soft terms

In this Section we discuss under which conditions heavy vector superfields can act as tree-level

messengers of supersymmetry breaking in the context of a generic, renormalizable, N = 1

globally supersymmetric gauge theory in four dimensions.

We start from a lagrangian described by a canonical Kähler K = Φ†
e
2gV Φ and gauge

kinetic function and by a generic superpotential W (Φ) function of the chiral superfields Φ ≡
(Φ1 . . .Φn), with no Fayet-Iliopoulos term. We follow the conventions in [1]. We will denote

by φi, ψi, Fi the scalar, spinor, and auxiliary components of Φi and by v
µ
a , λa, Da the vector,

spinor, and auxiliary components of Va. The gauge group G (assumed for simplicity to be

simple with gauge coupling g) is broken by the scalar component vev φ0 = �φ� to the subgroup

H at a scale MV ∼ g|φ0|, at which the theory is approximately supersymmetric. In the

phenomenological applications we have in mind, H contains the SM gauge group GSM, G is a

grand-unified group (for example SO(10) or E6), and the breaking scale is of the order of the

GUT scale. To be general, however, we will just assume that MV � MZ . Correspondingly, the
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Limiti inferiori:

Christophe Grojean Beyond the Standard Model: the LHC reach Frascati, May '09

Heavy Particles !"  new interactions for SM particles

broken symmetry operators scale Λ

B, L (QQQL)/Λ2 1013 TeV

flavor (1,2nd family), CP (d̄sd̄s)/Λ2 1000 TeV

flavor (2,3rd family) mb(s̄σµνFµνb)/Λ2 50 TeV

 At colliders, it will be difficult to find direct evidence 
of new physics in these sectors...

Se                , la nuova fisica ha un struttura di sapore non generica



W e quarks up

H e quarks up 

Chargino e squarks up

Neutralino e squarks down

Gluino e squarks down

Violazione del Sapore nel MSSM 



d
A
i → d

B
j

A, B = {L, R}

i, j = {1, 2, 3}

i != j

L’ampiezza di Feynman assume la seguente forma:

Figure 8: 95% probability region, from left to right we have x= 0.5, x= 1.0 and x = 2.0. The
green(red) region are obtained usign infered(direct) p.d.f.

• using the direct bound from !MBs and BR(B̄→ Xs")

• knowing the p.d.f from (#̂12)LL and (#̂13)LL

The results are presented in figure (8).

23infer

8 Prediction for BR(B̄→ Xs") and !MBs

We know fix the value of the SM prediction to the central value. And we see the allowed region
for the Susy prediction of BR(B̄→ Xs") and !MBs. The results are presented in figure (9) and
(10) .

VSLL

VSRR

9 Allowed region in the mq̃−mg̃

10 Formula per talk

WdAi k
f (xk)W

†

kdBj
, (72)
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xk =

m
2
q̃k

m
2
g̃

k = {1, ..., 6}

Abbiamo soppressione se:

Le particelle nei loops sono pesanti:

Gli squarks nei loops hanno massa degenere:

La matrice unitaria di mixing è circa l’indentità:

lim
x→∞

f(x) = lim
x→0

f(x) = 0

f (x)WdAi k
W

†

kdBj
= f (x)!AB!i j = 0 (73)

Appendix A. Functions of random variables

Let X, and Y be two random variables with pdf fX(x) and fY (y). We want to know the pdf
fZ(z) for Z = g(X ,Y ). The solution is:

fZ(z) =
∫

fX(x) fY (y)! (z−g(x,y))dxdy (74)
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Soppressione dei Contributi SUSY
Consideriamo per esempio, il contributo del gluino ad un processo ΔF=1: 



Espansione in elementi fuori diagonale della matrice di massa:
M

2
= M

2

0 + δM
2

δij ≡
(δM2)ij

m̃2
x =
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M2

A(∆F = 1) = xf (1)(x)δij

δij
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e−µ− B̃

µ̃L ẽR

Figure 5.6: Some of the diagrams that contribute to the process µ− → e−γ in models with lepton
flavor-violating soft supersymmetry breaking parameters (indicated by ×). Diagrams (a), (b), and (c)
contribute to constraints on the off-diagonal elements of m2

e , m2
L, and ae, respectively.

g̃ g̃
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s̃∗R d̃∗R

d s

s̄ d̄
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(b)

g̃ g̃

d̃L s̃R

s̃∗R d̃∗L

d s

s̄ d̄

(c)

Figure 5.7: Some of the diagrams that contribute to K0 ↔ K
0

mixing in models with strangeness-
violating soft supersymmetry breaking parameters (indicated by ×). These diagrams contribute to
constraints on the off-diagonal elements of (a) m2

d
, (b) the combination of m2

d
and m2

Q, and (c) ad.

the bino B̃ is nearly a mass eigenstate. This result is to be compared to the present experimental upper
limit Br(µ → eγ)exp < 1.2 × 10−11 from [106]. So, if the right-handed slepton squared-mass matrix
m2

e were “random”, with all entries of comparable size, then the prediction for Br(µ → eγ) would be
too large even if the sleptons and bino masses were at 1 TeV. For lighter superpartners, the constraint
on µ̃R, ẽR squared-mass mixing becomes correspondingly more severe. There are also contributions to
µ → eγ that depend on the off-diagonal elements of the left-handed slepton squared-mass matrix m2

L,
coming from the diagram shown in fig. 5.6b involving the charged wino and the sneutrinos, as well as
diagrams just like fig. 5.6a but with left-handed sleptons and either B̃ or W̃ 0 exchanged. Therefore,
the slepton squared-mass matrices must not have significant mixings for ẽL, µ̃L either.

Furthermore, after the Higgs scalars get VEVs, the ae matrix could imply squared-mass terms that
mix left-handed and right-handed sleptons with different lepton flavors. For example, LMSSM

soft contains
ẽaeL̃Hd + c.c. which implies terms −〈H0

d〉(ae)12ẽ∗Rµ̃L − 〈H0
d〉(ae)21µ̃∗

RẽL + c.c. These also contribute
to µ → eγ, as illustrated in fig. 5.6c. So the magnitudes of (ae)12 and (ae)21 are also constrained
by experiment to be small, but in a way that is more strongly dependent on other model parameters
[85]. Similarly, (ae)13, (ae)31 and (ae)23, (ae)32 are constrained, although more weakly [86], by the
experimental limits on Br(τ → eγ) and Br(τ → µγ).

There are also important experimental constraints on the squark squared-mass matrices. The

strongest of these come from the neutral kaon system. The effective Hamiltonian for K0 ↔ K
0

mixing
gets contributions from the diagrams in Figure 5.7, among others, if LMSSM

soft contains terms that mix
down squarks and strange squarks. The gluino-squark-quark vertices in Figure 5.7 are all fixed by
supersymmetry to be of QCD interaction strength. (There are similar diagrams in which the bino and
winos are exchanged, which can be important depending on the relative sizes of the gaugino masses.)
For example, suppose that there is a non-zero right-handed down-squark squared-mass mixing (m2

d
)21 in

the basis corresponding to the quark mass eigenstates. Assuming that the supersymmetric correction
to ∆mK ≡ mKL − mKS following from fig. 5.7a and others does not exceed, in absolute value, the
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(b)

γ

e−µ−

W̃−

ν̃µ ν̃e

(c)

γ

e−µ− B̃

µ̃L ẽR
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d〉(ae)12ẽ∗Rµ̃L − 〈H0
d〉(ae)21µ̃∗
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A(∆F = 2) =
x2

3!
g(3)(x)δ2

ij

δ
RR
µe

(

δ
RR
sd

)2

M
2

0 = m̃
2
I6×6Scenario degenere:

f,g: funzioni di loop
     : inserzioni di massa che violano il sapore

Un Approccio Bottom-Up



degenerate limit of the mass insertion approximation, the one widely used in the literature,
does not really represent the general case. The latter can be better represented by the range
between the two complementary extremes, the degenerate and the hierarchical ones.

Another interesting point is about the relation between the s↔ d, b↔ d, b↔ s !F = 2

processes. In the degenerate case, such processes are proportional (for given chiralities and
charge of the gaugino involved) to the three a priori independent quantities " 2sd, "

2
bd , "

2
bs.

A (partial) correlation among the three processes could in principle be generated by higher
order contributions to the s↔ d transitions, e.g. the ones proportional to " 2sb"

2
bd . However,

such contributions turn out to be always small. This is because of the limits on "bs and
"bd and because the four-insertions " 2sb"

2
bd contribution is proportional to (x4/5!)g(5), i.e. it

is suppressed by the factor 5! = 120. The analysis of the hierarchical case shows that the
latter conclusion crucially depends on the degeneracy assumption. In the hierarchical limit,
in fact, the correlation does arise already at the leading order in the expansion, since "̂sd =
"̂sb"̂bd |Wbb̃|2 ≈ "̂sb"̂bd . Moreover, the higher-order contribution proportional to "̂ 2sb"̂

2
bd is now

proportional to g(1)(x), with no factorials involved.

2 Mass insertions in the hierarchical case

Let us discuss in more detail the approximations leading to the mass insertion approximation
in the hierarchical case. We assume that the sfermion masses have the following structure
(analogously for the A-terms):

m̃2 =





h11 h12 a1
h21 h22 a2
ā1 ā2 l3



 , (10) eq:softmasses

where the “h” block is heavy, and the remaining entries are much lighter. In particular, the
eigenvalues are l ! TeV2, h1,h2 # l. The lightest eigenvalue gets a non-negligible contribution
due to mixing,

l ≈ l3−
a1ā1

h1
−
a2ā2

h2
, (11) eq:lightmass

from which we see that, barring accidental cancellations, l " bib̄i/hi.

Let us now consider the 6×6 sfermion mass matrices. The heavy 4×4 sector involving the
first and second family only has a simple structure: the LL and RR blocks are dominated by
the soft sfermion masses and the LR and RL blocks are suppressed by the electroweak scale.
The 4 heavy sfermion masses are therefore given at first order by the heavy eigenvalues of the
soft sfermion masses (h1,2 in the notation used above). We denote them by m̃2L1,L2,R1,R2. In the
light 2×2 sector involving the third family only we can have as usual a significant mixing in the
stop sector and in the sbottom and stau sector if tan# is large. We denote the corresponding
eigenvalues with m̃21,2. The exact diagonalisation of M 2 therefore gives

M 2 = W Diag(m̃2L1,m̃
2
L2,m̃

2
R1,m̃

2
R2,m̃

2
1,m̃

2
2)W

†. (12) eq:exact

3

Nello scenario gerarchico la matrice di massa degli sfermioni (blocco LL o RR), ha la 
seguente forma :

dove “h” è il blocco pesante, i rimanenti elementi 
sono leggeri

In particolare abbiamo che:  

degenerate limit of the mass insertion approximation, the one widely used in the literature,
does not really represent the general case. The latter can be better represented by the range
between the two complementary extremes, the degenerate and the hierarchical ones.

Another interesting point is about the relation between the s↔ d, b↔ d, b↔ s !F = 2

processes. In the degenerate case, such processes are proportional (for given chiralities and
charge of the gaugino involved) to the three a priori independent quantities " 2sd, "

2
bd , "

2
bs.

A (partial) correlation among the three processes could in principle be generated by higher
order contributions to the s↔ d transitions, e.g. the ones proportional to " 2sb"

2
bd . However,

such contributions turn out to be always small. This is because of the limits on "bs and
"bd and because the four-insertions " 2sb"

2
bd contribution is proportional to (x4/5!)g(5), i.e. it
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2
bd is now

proportional to g(1)(x), with no factorials involved.

2 Mass insertions in the hierarchical case

Let us discuss in more detail the approximations leading to the mass insertion approximation
in the hierarchical case. We assume that the sfermion masses have the following structure
(analogously for the A-terms):

m̃2 =
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where the “h” block is heavy, and the remaining entries are much lighter. In particular, the
eigenvalues are l ! TeV2, h1,h2 # l. The lightest eigenvalue gets a non-negligible contribution
due to mixing,
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a1ā1

h1
−
a2ā2

h2
, (11) eq:lightmass

from which we see that, barring accidental cancellations, l " aiāi/hi.

Let us now consider the 6×6 sfermion mass matrices. The heavy 4×4 sector involving the
first and second family only has a simple structure: the LL and RR blocks are dominated by
the soft sfermion masses and the LR and RL blocks are suppressed by the electroweak scale.
The 4 heavy sfermion masses are therefore given at first order by the heavy eigenvalues of the
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light 2×2 sector involving the third family only we can have as usual a significant mixing in the
stop sector and in the sbottom and stau sector if tan# is large. We denote the corresponding
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La diagonalizzazione di massa avviene mediante una matrice unitaria:
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Decomponendo ora l’ampiezza, possiamo eliminare il contributo delle particelle pesanti:

f (x)WdAi k
W

†

kdBj
= f (xk)!Aik!kB j = f (xk)!AB!i j = 0 (73)

f (xk)!AB!i j = 0 (74)

WdAi k
f (xk)W

†

kdBj
≈
m̃2

m2g̃
f
(

xdAi
,xdBj

)

!dAi dBj
(75)

!dAi dBj
≡

(

M
2
D

)

dAi d
B
j
/m̃2 (76)

f (x,y) =
f (x)− f (y)

x− y
. (77) eq:rec

WdAi k
f (xk)W

†

kdBj
≈ x f (1)(x)!dAi dBj (78)

x=
m̃2

m2g̃
(79)

WdAi k
WdBi l

g(xk,xl)W
†

ldCj
W

†

kdDj
≈
x2

3!
g(3)(x)!dAi dDj !dBi dCj (80) eq:MI2

!M2
H ="

f

3√
2#2

GFm
2
f$
2
f ≈"

f

(

0.2
mf

mt
$ f

)2

(81)

mf

mt
$ f ≤ 1 TeV (82)

$t ≤ 1 TeV (83)

$ f ≤
mt

mf

(1 TeV) (84)

f

(

M 2

M2

)

Ai,B j

= WAi,Lk f

(

m̃2Lk

m2g̃

)

W
†

Lk,B j +WAi,Rk f

(

m̃2Rk

m2g̃

)

W
†

Rk,B j +WAi,p f

(

m̃2p

m2g̃

)

W
†
p,B j (85)

Appendix A. Functions of random variables

Let X, and Y be two random variables with pdf fX(x) and fY (y). We want to know the pdf
fZ(z) for Z = g(X ,Y ). The solution is:

fZ(z) =
∫

fX(x) fY (y)! (z−g(x,y))dxdy (86)
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Blocco pesante LL Contributo dominante della terza 
famiglia leggera

Lo Scenario Gerarchico

Blocco pesante RR



A(∆F = 1) = f(x)δ̂ij

Motivazioni:

x =
m̃2

3

M2A(∆F = 2) = g(1)(x)δ̂2
ij

δ̂LL
bd , δ̂LL

bd , δ̂RR
bd , δ̂RR

bd

Ci sono solo 4 inserzioni che 
violano il sapore:

• Complementare all’assunzione con spettro degenere
• Allevia il problema del sapore, senza compromettere la naturalezza   [Dimopoulos-Giudice ‘95]  

• Anche se assumiamo uno spettro degenere ad una data scala di energia, gli effetti delle 
correzioni radiative (Yukawa) tendono a rendere la terza famiglia leggera

[Effective SUSY, Choen Kaplan Lepeintre Nelson ‘97]

δ̂a3 =
M2

a3

m̃2
h

the four complex chirality-conserving “insertions” δ̂LL
i3 , δ̂RR

i3 , i = 1, 2 defined as follows:

δ̂LL
i3 ≡

�

α=1,2

WLi,αW∗
L3,α δ̂LL

3i = δ̂LL∗
i3 (18a)

δ̂RR
i3 ≡

�

α=1,2

WRi,αW∗
R3,α δ̂RR

3i = δ̂RR∗
i3 . (18b)

Using the expression of the matrix W derived in the Appendix, at first order in the insertion δ̂,
eq. (17) becomes

f

�
M2

M2

�

Li,Lj

=

�
cos

2 θ f

�
m̃2

�1

M2

�
+ sin

2 θ f

�
m̃2

�2

M2

��
δ̂LL
i3 δ̂LL∗

j3 (19a)

f

�
M2

M2

�

Li,Rj

= sin θ cos θeiφ

�
f

�
m̃2

�1

M2

�
− f

�
m̃2

�2

M2

��
δ̂LL
i3 δ̂RR∗

j3 (19b)

f

�
M2

M2

�

Li,L3

=

�
cos

2 θ f

�
m̃2

�1

M2

�
+ sin

2 θ f

�
m̃2

�2

M2

��
δ̂LL
i3 (19c)

f

�
M2

M2

�

Li,R3

= sin θ cos θeiφ

�
f

�
m̃2

�1

M2

�
− f

�
m̃2

�2

M2

��
δ̂LL
i3 . (19d)

Equations (19) further simplify if the mixing angle θ is small, as in the case of the down

squark sector in the moderate tanβ regime. By taking, for simplicity, equal masses for the third

generation squarks, m̃�1 ≈ m̃�2 ≡ m̃, we obtain

f

�
M2

M2

�

Li,Lj

= f (x) δ̂LL
ij (20a)

f

�
M2

M2

�

Li,Rj

= x f (1)
(x) δ̂LR

ij (20b)

f

�
M2

M2

�

Li,L3

= f (x) δ̂LL
i3 (20c)

f

�
M2

M2

�

Li,R3

= xf (1)
(x) δ̂LR

i3 , (20d)

where x = m̃2/M2
and we have defined

δ̂LL
ij ≡ δ̂LL

i3 δ̂LL∗
j3 (21a)

δ̂LR
ij ≡

M2
L3,R3

m̃2
δ̂LL
i3 δ̂RR∗

j3 i, j = 1, 2 (21b)

δ̂LR
i3 ≡

M2
L3,R3

m̃2
δ̂LL
i3 . (21c)

Here we have written eiφ
sin θ as M2

L3,R3/(m̃2
�1
− m̃2

�2
). Equations (21) express two important

results of the flavor structure of hierarchical soft terms. The flavor transition between the first two

9

In the “hierarchical” limit, the contribution to the loop function in eq. (5) from the heavy

squarks is negligible. Therefore eq. (5) becomes

f

�
M2

D

M2
3

�

dL
i dL

j

= f(x) δ̂LL
ij . (hierarchical case) (10)

Here x = m̃2/M2
3 as before, where now m̃2

is interpreted as the third-generation squark mass.

We have defined δ̂LL
ij ≡ WdL

i b̃L
W∗

dL
j b̃L

. Note that δ̂LL
a3 ≈ −(M2

D)dL
a dL

3
/m̃2

a, so that δ̂LL
a3 is again

a normalized mass insertion. Also, δ̂LL
12 = δ̂LL

13 (δ̂LL
23 )

∗
. Eq. (10) can also be obtained from an

extension of eq. (6) to the second order in δ.
Equations (9) and (10) show that for δ = δ̂ the difference between the two schemes, the

degenerate and the hierarchical one, is given by the order one difference between a function and

its derivative. However, this O (1) difference becomes larger when we consider ∆F = 2 processes

and turns out to affect the predicted correlation between ∆F = 1 and ∆F = 2. In fact, let us now

consider the gluino contribution to a ∆F = 2 dL
i ↔ dL

j process. The amplitude is proportional to

A(∆F = 2) ≡WdL
i D̃I
WdL

i D̃J
g

�
m2

D̃I

M2
3

,
m2

D̃J

M2
3

�
W

∗
dL

j D̃I
W

∗
dL

j D̃J
, (11)

where the loop function g(x, y) is of the form
2

g(x, y) =
g(x)− g(y)

x− y
. (12)

Expanding in the small off-diagonal elements of the squark mass matrix and assuming, as in the

case of ∆F = 1, the dominance of 2× 2 transitions, we obtain that eq. (11) can be written as

A(∆F = 2) =
m̃4

M4
3

ĝ
�
xd̃L

i
, xd̃L

j

�
(δLL

ij )
2, (13)

ĝ(x, y) =
g(x, x)− 2g(x, y) + g(y, y)

(x− y)2
. (14)

Thus, eq. (11) becomes

A(∆F = 2) =






x2

3!
g(3)

(x)(δLL
ij )

2
(degenerate case)

g(1)
(x)(δ̂LL

ij )
2

(hierarchical case).

(15)

Therefore, if m̃2
is the same in the two cases we find that the amplitudes for ∆F = 1 and ∆F = 2

processes satisfy the relation

A(∆F = 2)

[A(∆F = 1)]2

����
degenerate

=
g(3)

6g(1)

�
f

f (1)

�2 A(∆F = 2)

[A(∆F = 1)]2

����
hierarchical

. (16)

2This decomposition follows from the form of the loop integral

g(x, y) =

Z
dk

G(k)
(k2 − x)(k2 − y)

=
1

x− y

Z
dk G(k)

„
1

k2 − x
− 1

k2 − y

«
≡ g(x)− g(y)

x− y
.

6

Correlazioni tra le osservabili nello scenario degenere e gerarchico 
possono essere molto diverse:

Lo Scenario Gerarchico
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Figure 4: 95% CL bounds on the real and imaginary parts of δLL
sb (left, blue) and δ̂LL

sb (right,

red) from the measurements of ∆mBs (lighter shading) and BR(B → Xsγ) (darker shading) for

m̃ = M3 = µ = 350GeV and tanβ = 10. Switching the sign of µ approximately corresponds to

switching the sign of Re(δLL
sb ) and Re(δ̂LL

sb ) in the two figures. In the background, the contour

lines of the phase φBs are shown. The darker regions correspond to the 90% CL range presently

favoured by the experiment [13]. The axis of the two figures are chosen in such a way that the

contour lines are the same for the degenerate and hierarchical cases.

cancellation: ∆mBs = 2|ASM
s +ANP

s e2iφNP
s |, where ANP

s e2iφNP
s ∼ −2ASM

s . Our recipe “empirically”

discards such possibilities, and it seems appropriate for the purpose of calculating the bounds in

Table 1.

Finally, we show in Fig. 5 the bound on the c ↔ u transitions obtained from D0–D̄0 mix-

ing. The theoretical prediction for the SM contribution to the mixing amplitude is affected by

a large uncertainty due to long-distance contributions and it is assumed to lie in the interval

(−0.02, 0.02) ps−1 [28], with flat probability distribution. We translate in this case the likelihood

in a bound on |δ| by considering the one-dimensional section of the two-dimensional likelihood

along the | Re(δ)| = | Im(δ)| line.

In the hierarchical case, the bound from the s↔ d transitions apply to the product δ̂LL
db δ̂LL∗

sb ≡
δ̂LL
ds . It is therefore possible to compare that bound with the indirect one obtained from the

constraints on δ̂LL
sb and δ̂LL

db . It turns out that the combined bound is stronger than the direct

one in the case of ∆mK but not in the case of �K .

If the parameters δ̂ are related to the hierarchy according to the relation δ̂ ∼ m̃2
�/m̃2

h, from

13

∆MBs

φBsB → Xsγ, ,

Scenario Degenere Scenario Gerarchico

m̃ = Mg̃ = µ = 350 GeV, tanβ = 10, A = 0



E’ possibile avere le prime due famiglie di sfermioni pesanti senza 
compromettere la naturalezza della massa dell’Higgs

Si allevia il problema del sapore nel MSSM

Utile scenario di confronto per modelli in cui l’assunzione di uno 
spettro degenere non è valida

Offre predizioni peculiari e correlazioni tra diverse osservabili

Scenario Gerarchico: Conclusioni



Consider the chirality conserving case

FCNC processes
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 (5)

�
di → dj

i �= j
(6)

2 Tree level soft terms

In this Section we discuss under which conditions heavy vector superfields can act as tree-level

messengers of supersymmetry breaking in the context of a generic, renormalizable, N = 1

globally supersymmetric gauge theory in four dimensions.

We start from a lagrangian described by a canonical Kähler K = Φ†
e
2gV Φ and gauge

kinetic function and by a generic superpotential W (Φ) function of the chiral superfields Φ ≡
(Φ1 . . .Φn), with no Fayet-Iliopoulos term. We follow the conventions in [?]. We will denote

by φi, ψi, Fi the scalar, spinor, and auxiliary components of Φi and by v
µ
a , λa, Da the vector,

spinor, and auxiliary components of Va. The gauge group G (assumed for simplicity to be

simple with gauge coupling g) is broken by the scalar component vev φ0 = �φ� to the subgroup

H at a scale MV ∼ g|φ0|, at which the theory is approximately supersymmetric. In the

phenomenological applications we have in mind, H contains the SM gauge group GSM, G is a

grand-unified group (for example SO(10) or E6), and the breaking scale is of the order of the

GUT scale. To be general, however, we will just assume that MV � MZ . Correspondingly, the

vector superfields split into light and heavy ones, associated to the orthonormalized generators

T
l
a and T

h
b respectively: V = V

l
aT

l
a + V

h
b T

h
b , a = 1 . . . Nl, b = 1 . . . Nh.

The heavy vector superfields acquire a squared mass matrix given by

(M
2
V 0)ab = g

2φ†
0{T

h
a , T

h
b }φ0. (7) eq:MMV0

It is possible to choose the basis of heavy generators T
h
a in such a way that the mass matrix

M
2
V 0 is diagonal,

(M
2
V 0)ab = M

2
Va
δab. (8) eq:MMV0diag

Let us assume that this is the case. The heavy vector superfields become massive by eating

up a corresponding number of Goldstone chiral superfields. It is then convenient to split the

chiral superfields as follows

Φ = φ0 + Φ�
+ ΦG

, ΦG
=

√
2 g

ΦG
a

MVa

T
h
a φ0, Φ�

= Φ�
ibi, (9) eq:goldstones

where ΦG
a , a = 1 . . . Nh are the Goldstone superfields associated to the generators T

h
a and

bi = (bia . . . b
i
N ), i = 1 . . . n −Nh is an orthonormal basis in the space of the “physical” chiral

fields Φ�, b†iTaφ0 = 0. In the supersymmetric limit, φ0 is orthogonal to ΦG and ΦG does not

mix with the physical superfields. The physical components of the massive vector superfield Va

are v
µ
a , λa, φG

a , Re(φ
G
a )/

√
2. After the spontaneous symmetry breaking, the imaginary part of

φG
a , the Goldstone boson, becomes as usual the longitudinal component of the massive gauge

boson v
µ
a , the spinors ψG

a and λa pair up and get their Dirac mass term, −MaψG
a λa, from the
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In this Section we discuss under which conditions heavy vector superfields can act as tree-level
messengers of supersymmetry breaking in the context of a generic, renormalizable, N = 1
globally supersymmetric gauge theory in four dimensions.
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(M2
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0{T
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a , T

h
b }φ0. (7) eq:MMV0

It is possible to choose the basis of heavy generators T h
a in such a way that the mass matrix

M2
V 0 is diagonal,

(M2
V 0)ab = M2

Va
δab. (8) eq:MMV0diag

Let us assume that this is the case. The heavy vector superfields become massive by eating
up a corresponding number of Goldstone chiral superfields. It is then convenient to split the
chiral superfields as follows

Φ = φ0 + Φ′ + ΦG, ΦG =
√
2 g

ΦG
a

MVa

T h
a φ0, Φ′ = Φ′

ibi, (9) eq:goldstones
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phenomenological applications we have in mind, H contains the SM gauge group GSM, G is a
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We expect a suppression in the contribution to Kaon 
Physics and a correlation between the parameters



Natural size of the insertions

In a general basis we have:

parameters δ.
For a degenerate spectrum, the mass insertions δ are the appropriate way to parametrize

new flavor-violating effects. The coefficients δ describe the small deviations from universality
but, lacking the knowledge of a complete theory of soft terms, they can only be treated as free
parameters and do not provide information on the required experimental sensitivity to discover
new-physics effects. The analogous quantities in the hierarchical scheme, δ̂, are related either to
the m̃�/m̃h hierarchy or to CKM angles, because of the special assumptions made on the pattern
of soft terms. Therefore the quantities δ̂ are associated to physical parameters and they provide
a defined target for the required experimental sensitivity. In particular, we expect that each δ̂i3

is larger than the maximum between m̃2
�/m̃2

h and the CKM elements V ∗
3i. The results obtained

in Table 1 show that present experiments have not yet probed u ↔ c transitions at the level
required by δ̂i3 = V ∗

3i, and have only marginally tested the case of d ↔ s and d ↔ b transitions.
On the other hand, experiments have begun to explore the crucial range of values for δ̂sb in s↔ b
transitions. In this respect, it is tantalizing that there are claims for a deviation from the SM
predictions in the phase of Bs mixing, φBs [11, 12, 13]. Hierarchical soft terms could account for
such new-physics effect, compatibly with the other constraints in the b-s system. Actually we have
proved that, because of the correlation between ∆F = 1 and ∆F = 2 transitions, hierarchical
soft terms can lead to larger values of φBs than degenerate ones, for an equal value of tan β.
Independently of the reliability of the alleged anomaly in φBs , the hypothesis of hierarchical soft
terms represents an interesting benchmark to confront experimental searches in flavor physics.

Acknowledgments

We thank Marco Ciuchini for useful discussions.

Appendix

In this Appendix we compute the fermion-sfermion mixing matrix W in the limit of hierarchical
soft terms. We also discuss the conditions under which the heavy-squark contribution can be
neglected in the amplitude of eq. (17) and the natural size of the flavor-violating parameters δ̂.

In a general basis in which the quark mass matrix is not necessarily diagonal,W is a combina-
tion of the matrices that diagonalize the quark and squark mass matrices M andM2 respectively,

W =
�

UL 0
0 UR

�
W �, URMU †

L = diagonal, W �†M2W � = diagonal. (24)

Because the relevant amplitudes will turn out to be dominated by loops with only third-
generation squark exchange, we are justified to neglect chiral-violating entries in the squark mass
matrix involving first or second generation indices. Under this assumption and working at leading
order in an expansion in inverse powers of the heavy-squark mass scale, we obtain

W � =





ŨL δ̂LL cos θ 0 −δ̂LL sin θeiφ

−δ̂LL†ŨL cos θ 0 − sin θeiφ

0 δ̂RR sin θe−iφ ŨR δ̂RR cos θ

0 sin θe−iφ −δ̂RR†ŨR cos θ




, (25)
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        is the mixing between the fermion “Ai” and the k-th 
sfermion mass eigenstate

We now focus on LL insertion in the down sector. In the hierarchical scenario we have 
that:

WAik

Now we assume that the CKM matrix is dominated by the rotation in the down sector: 

V = U
u
LU

d†
L

In particular δ̂
LL
i3 = Wi3W

†
33

≈ Wi3 =
(

U
d
LW

′
L

)

i3

δ̂
LL
ij = Wi3W

†
3j

δ̂
LL
i3 ≈ (V †

W
′
L)i3 =

3∑

k=1

V
∗
ki(W

′
L)k3

Barring accidental cancellations:
∣

∣

∣

δ̂i3

∣

∣

∣

≥ |V ∗

3i(W
′

L)33| ≈ |V ∗

3i|
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Inputs

Parameter Value Gaussian (σ) Uniform (∆
2 ) Reference

|εK | 2.229× 10−3 0.012× 10−3 − [19]
∆mK (ps−1) 5.292× 10−3 0.009× 10−3 − [19]

BR(B → Xsγ) 3.55× 10−4 0.26× 10−4 − [20]
∆mBs (ps−1) 17.77 0.12 − [19]
∆mBd (ps−1) 0.507 0.005 − [19]��MD

12

�� (ps−1) 7.7× 10−3 2.5× 10−3 − [21]
ρ̄ 0.167 0.051 − [22]
η̄ 0.386 0.035 − [22]
λ 0.2255 0.010 − [19]

|Vcb| 41.2× 10−3 1.1× 10−3 − [19]
FK (GeV) 0.160 − − [19]
FBd (MeV) 189 27 − [23]

FBs

√
Bs (MeV) 262 35 − [23]

FD (MeV) 201 3 17 [24]
B̂K 0.79 0.04 0.08 [24]
BB

1 0.88 0.04 0.10 [24]
ηcc 0.47 0.04 − [25]
ηct 0.5765 0.0065 − [25]
ηtt 1.43 0.23 − [25]

mt (GeV) 161.2 1.7 − [24]
mb (GeV) 4.21 0.08 − [24]
mc (GeV) 1.224 0.057 − [26]



Soft Masses and RGE

In the allowed range tanβ > 1, it follows that mẽL > mν̃e and md̃L
> mũL , with the magnitude of the

splittings constrained by electroweak symmetry breaking.
Let us next consider the masses of the top squarks, for which there are several non-negligible

contributions. First, there are squared-mass terms for �t∗L�tL and �t∗R�tR that are just equal to m
2
Q3

+ ∆ũL

and m
2
u3

+ ∆ũR , respectively, just as for the first- and second-family squarks. Second, there are
contributions equal to m

2
t for each of �t∗L�tL and �t∗R�tR. These come from F -terms in the scalar potential

of the form y
2
t H

0∗
u H

0
u
�t∗L�tL and y

2
t H

0∗
u H

0
u
�t∗R�tR (see Figures 5.2b and 5.2c), with the Higgs fields replaced

by their VEVs. (Of course, similar contributions are present for all of the squarks and sleptons, but
they are too small to worry about except in the case of the top squarks.) Third, there are contributions
to the scalar potential from F -terms of the form −µ

∗
yt

�
t�tH0∗

d +c.c.; see eqs. (5.6) and Figure 5.4a. These
become −µ

∗
vyt cos β �t∗R�tL +c.c. when H

0
d is replaced by its VEV. Finally, there are contributions to the

scalar potential from the soft (scalar)3 couplings at
�
t �Q3H

0
u +c.c. [see the first term of the second line of

eq. (5.12), and eq. (5.50)], which become atv sin β �tL�t∗R + c.c. when H
0
u is replaced by its VEV. Putting

these all together, we have a squared-mass matrix for the top squarks, which in the gauge-eigenstate
basis (�tL, �tR) is given by

Lstop masses = − ( �t∗L �t∗R )m2
�t

� �tL
�tR

�
(7.69)

where

m2
�d =

�
m

2
Q + m

2
d + ∆d̃L

v(a∗d sinβ − µyd cos β)
v(ad sinβ − µ

∗
yd cos β) m

2
d

+ m
2
d + ∆d̃R

�
. (7.70)

This hermitian matrix can be diagonalized by a unitary matrix to give mass eigenstates:
� �t1

�t2

�
=

�
ct̃ −s

∗
t̃

st̃ ct̃

� � �tL
�tR

�
. (7.71)

Here m
2
t̃1

< m
2
t̃2

are the eigenvalues of eq. (7.70), and |ct̃|2 + |st̃|2 = 1. If the off-diagonal elements
of eq. (7.70) are real, then ct̃ and st̃ are the cosine and sine of a stop mixing angle θt̃, which can be
chosen in the range 0 ≤ θt̃ < π. Because of the large RG effects proportional to Xt in eq. (5.63) and
eq. (5.64), at the electroweak scale one finds that m

2
u3

< m
2
Q3

, and both of these quantities are usually
significantly smaller than the squark squared masses for the first two families. The diagonal terms m

2
t

in eq. (7.70) tend to mitigate this effect somewhat, but the off-diagonal entries will typically induce
a significant mixing, which always reduces the lighter top-squark squared-mass eigenvalue. Therefore,
models often predict that �t1 is the lightest squark of all, and that it is predominantly t̃R.

A very similar analysis can be performed for the bottom squarks and charged tau sleptons, which
in their respective gauge-eigenstate bases (�bL, �bR) and (�τL, �τR) have squared-mass matrices:

m2
�b =

�
m

2
Q3

+ ∆d̃L
v(a∗b cos β − µyb sinβ)

v(ab cos β − µ
∗
yb sinβ) m

2
d3

+ ∆d̃R

�

, (7.72)

m2
�τ =

�
m

2
L3

+ ∆ẽL v(a∗τ cos β − µyτ sinβ)
v(aτ cos β − µ

∗
yτ sinβ) m

2
e3

+ ∆ẽR

�
. (7.73)

These can be diagonalized to give mass eigenstates �b1,
�b2 and �τ1, �τ2 in exact analogy with eq. (7.71).

The magnitude and importance of mixing in the sbottom and stau sectors depends on how big
tanβ is. If tanβ is not too large (in practice, this usually means less than about 10 or so, depending
on the situation under study), the sbottoms and staus do not get a very large effect from the mixing
terms and the RG effects due to Xb and Xτ , because yb, yτ � yt from eq. (7.28). In that case the
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Roughly speaking, the sfermion mass matrix is dominated by the soft terms, because all the 
others are suppressed by the EW scale. For the soft terms the RGE are:

soft

soft

+yt

�
32

3
g2
3M3 + 6g2

2M2 +
26

15
g2
1M1

�
, (5.51)

16π2 d

dt
ab = ab

�
18y∗byb + y∗t yt + y∗τyτ −

16

3
g2
3 − 3g2

2 −
7

15
g2
1

�
+ 2aty

∗
t yb + 2aτy

∗
τyb

+yb

�
32

3
g2
3M3 + 6g2

2M2 +
14

15
g2
1M1

�
, (5.52)

16π2 d

dt
aτ = aτ

�
12y∗τyτ + 3y∗byb − 3g2

2 −
9

5
g2
1

�
+ 6aby

∗
byτ + yτ

�
6g2

2M2 +
18

5
g2
1M1

�
, (5.53)

16π2 d

dt
b = b

�
3y∗t yt + 3y∗byb + y∗τyτ − 3g2

2 −
3

5
g2
1

�

+µ
�
6aty

∗
t + 6aby

∗
b + 2aτy

∗
τ + 6g2

2M2 +
6

5
g2
1M1

�
. (5.54)

The β-function for each of these soft parameters is not proportional to the parameter itself, because

couplings that violate supersymmetry are not protected by the supersymmetric non-renormalization

theorem. So, even if at, ab, aτ and b vanish at the input scale, the RG corrections proportional to

gaugino masses appearing in eqs. (5.51)-(5.54) ensure that they will not vanish at the electroweak scale.

Next let us consider the RG equations for the scalar squared masses in the MSSM. In the approx-

imation of eqs. (5.2) and (5.50), the squarks and sleptons of the first two families have only gauge

interactions. This means that if the scalar squared masses satisfy a boundary condition like eq. (5.18)

at an input RG scale, then when renormalized to any other RG scale, they will still be almost diagonal,

with the approximate form

m2
Q ≈




m2

Q1
0 0

0 m2
Q1

0

0 0 m2
Q3



 , m2
u ≈




m2

u1
0 0

0 m2
u1

0

0 0 m2
u3



 , (5.55)

etc. The first and second family squarks and sleptons with given gauge quantum numbers remain

very nearly degenerate, but the third-family squarks and sleptons feel the effects of the larger Yukawa

couplings and so their squared masses get renormalized differently. The one-loop RG equations for the

first and second family squark and slepton squared masses are

16π2 d

dt
m2

φi
= −

�

a=1,2,3

8Ca(i)g
2
a|Ma|2 +

6

5
Yig

2
1S (5.56)

for each scalar φi, where the
�

a
is over the three gauge groups U(1)Y , SU(2)L and SU(3)C , with

Casimir invariants Ca(i) as in eqs. (5.28)-(5.30), and Ma are the corresponding running gaugino mass

parameters. Also,

S ≡ Tr[Yjm
2
φj

] = m2
Hu
−m2

Hd
+ Tr[m2

Q −m2
L − 2m2

u + m2
d

+ m2
e]. (5.57)

An important feature of eq. (5.56) is that the terms on the right-hand sides proportional to gaugino

squared masses are negative, so
�

the scalar squared-mass parameters grow as they are RG-evolved from

the input scale down to the electroweak scale. Even if the scalars have zero or very small masses at

the input scale, they can obtain large positive squared masses at the electroweak scale, thanks to the

effects of the gaugino masses.

The RG equations for the squared-mass parameters of the Higgs scalars and third-family squarks

and sleptons get the same gauge contributions as in eq. (5.56), but they also have contributions due

to the large Yukawa (yt,b,τ ) and soft (at,b,τ ) couplings. At one-loop order, these only appear in three

�The contributions proportional to S are relatively small in most known realistic models.
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First and second family:

combinations:

Xt = 2|yt|2(m2
Hu

+ m
2
Q3

+ m
2
u3

) + 2|at|2, (5.58)

Xb = 2|yb|2(m2
Hd

+ m
2
Q3

+ m
2
d3

) + 2|ab|2, (5.59)

Xτ = 2|yτ |2(m2
Hd

+ m
2
L3

+ m
2
e3

) + 2|aτ |2. (5.60)

In terms of these quantities, the RG equations for the soft Higgs squared-mass parameters m
2
Hu

and
m

2
Hd

are

16π2 d

dt
m

2
Hu

= 3Xt − 6g
2
2|M2|2 − 6

5
g
2
1|M1|2 +

3
5
g
2
1S, (5.61)

16π2 d

dt
m

2
Hd

= 3Xb + Xτ − 6g
2
2|M2|2 − 6

5
g
2
1|M1|2 − 3

5
g
2
1S. (5.62)

Note that Xt, Xb, and Xτ are generally positive, so their effect is to decrease the Higgs masses as one
evolves the RG equations down from the input scale to the electroweak scale. If yt is the largest of
the Yukawa couplings, as suggested by the experimental fact that the top quark is heavy, then Xt will
typically be much larger than Xb and Xτ . This can cause the RG-evolved m

2
Hu

to run negative near
the electroweak scale, helping to destabilize the point Hu = Hd = 0 and so provoking a Higgs VEV (for
a linear combination of Hu and Hd, as we will see in section 7.1), which is just what we want.† Thus
a large top Yukawa coupling favors the breakdown of the electroweak symmetry breaking because it
induces negative radiative corrections to the Higgs squared mass.

The third-family squark and slepton squared-mass parameters also get contributions that depend
on Xt, Xb and Xτ . Their RG equations are given by

16π2 d

dt
m

2
Q3

= Xt + Xb −
32
3

g
2
3|M3|2 − 6g

2
2|M2|2 − 2

15
g
2
1|M1|2 +

1
5
g
2
1S, (5.63)

16π2 d

dt
m

2
u3

= 2Xt −
32
3

g
2
3|M3|2 − 32

15
g
2
1|M1|2 − 4

5
g
2
1S, (5.64)

16π2 d

dt
m

2
d3

= 2Xb −
32
3

g
2
3|M3|2 − 8

15
g
2
1|M1|2 +

2
5
g
2
1S, (5.65)

16π2 d

dt
m

2
L3

= Xτ − 6g
2
2|M2|2 − 6

5
g
2
1|M1|2 − 3

5
g
2
1S, (5.66)

16π2 d

dt
m

2
e3

= 2Xτ −
24
5

g
2
1|M1|2 +

6
5
g
2
1S. (5.67)

In eqs. (5.61)-(5.67), the terms proportional to |M3|2, |M2|2, |M1|2, and S are just the same ones as in
eq. (5.56). Note that the terms proportional to Xt and Xb appear with smaller numerical coefficients
in the m

2
Q3

, m
2
u3

, m
2
d3

RG equations than they did for the Higgs scalars, and they do not appear at all
in the m

2
L3

and m
2
e3

RG equations. Furthermore, the third-family squark squared masses get a large
positive contribution proportional to |M3|2 from the RG evolution, which the Higgs scalars do not get.
These facts make it plausible that the Higgs scalars in the MSSM get VEVs, while the squarks and
sleptons, having large positive squared mass, do not.

An examination of the RG equations (5.51)-(5.54), (5.56), and (5.61)-(5.67) reveals that if the
gaugino mass parameters M1, M2, and M3 are non-zero at the input scale, then all of the other soft
terms will be generated too. This implies that models in which gaugino masses dominate over all other
effects in the soft supersymmetry breaking Lagrangian at the input scale can be viable. On the other
hand, if the gaugino masses were to vanish at tree-level, then they would not get any contributions

†One should think of “m2
Hu

” as a parameter unto itself, and not as the square of some mythical real number mHu
. So

there is nothing strange about having m2
Hu

< 0. However, strictly speaking m2
Hu

< 0 is neither necessary nor sufficient
for electroweak symmetry breaking; see section 7.1.
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Third family Left:

combinations:

Xt = 2|yt|2(m2
Hu

+ m
2
Q3

+ m
2
u3

) + 2|at|2, (5.58)

Xb = 2|yb|2(m2
Hd

+ m
2
Q3

+ m
2
d3

) + 2|ab|2, (5.59)

Xτ = 2|yτ |2(m2
Hd

+ m
2
L3

+ m
2
e3

) + 2|aτ |2. (5.60)

In terms of these quantities, the RG equations for the soft Higgs squared-mass parameters m
2
Hu

and
m

2
Hd

are

16π2 d

dt
m

2
Hu

= 3Xt − 6g
2
2|M2|2 − 6

5
g
2
1|M1|2 +

3
5
g
2
1S, (5.61)

16π2 d

dt
m

2
Hd

= 3Xb + Xτ − 6g
2
2|M2|2 − 6

5
g
2
1|M1|2 − 3

5
g
2
1S. (5.62)

Note that Xt, Xb, and Xτ are generally positive, so their effect is to decrease the Higgs masses as one
evolves the RG equations down from the input scale to the electroweak scale. If yt is the largest of
the Yukawa couplings, as suggested by the experimental fact that the top quark is heavy, then Xt will
typically be much larger than Xb and Xτ . This can cause the RG-evolved m

2
Hu

to run negative near
the electroweak scale, helping to destabilize the point Hu = Hd = 0 and so provoking a Higgs VEV (for
a linear combination of Hu and Hd, as we will see in section 7.1), which is just what we want.† Thus
a large top Yukawa coupling favors the breakdown of the electroweak symmetry breaking because it
induces negative radiative corrections to the Higgs squared mass.

The third-family squark and slepton squared-mass parameters also get contributions that depend
on Xt, Xb and Xτ . Their RG equations are given by

16π2 d

dt
m

2
Q3

= Xt + Xb −
32
3

g
2
3|M3|2 − 6g

2
2|M2|2 − 2

15
g
2
1|M1|2 +

1
5
g
2
1S, (5.63)

16π2 d

dt
m

2
u3

= 2Xt −
32
3

g
2
3|M3|2 − 32

15
g
2
1|M1|2 − 4

5
g
2
1S, (5.64)

16π2 d

dt
m

2
d3

= 2Xb −
32
3

g
2
3|M3|2 − 8

15
g
2
1|M1|2 +

2
5
g
2
1S, (5.65)

16π2 d

dt
m

2
L3

= Xτ − 6g
2
2|M2|2 − 6

5
g
2
1|M1|2 − 3

5
g
2
1S, (5.66)

16π2 d

dt
m

2
e3

= 2Xτ −
24
5

g
2
1|M1|2 +

6
5
g
2
1S. (5.67)

In eqs. (5.61)-(5.67), the terms proportional to |M3|2, |M2|2, |M1|2, and S are just the same ones as in
eq. (5.56). Note that the terms proportional to Xt and Xb appear with smaller numerical coefficients
in the m

2
Q3

, m
2
u3

, m
2
d3

RG equations than they did for the Higgs scalars, and they do not appear at all
in the m

2
L3

and m
2
e3

RG equations. Furthermore, the third-family squark squared masses get a large
positive contribution proportional to |M3|2 from the RG evolution, which the Higgs scalars do not get.
These facts make it plausible that the Higgs scalars in the MSSM get VEVs, while the squarks and
sleptons, having large positive squared mass, do not.

An examination of the RG equations (5.51)-(5.54), (5.56), and (5.61)-(5.67) reveals that if the
gaugino mass parameters M1, M2, and M3 are non-zero at the input scale, then all of the other soft
terms will be generated too. This implies that models in which gaugino masses dominate over all other
effects in the soft supersymmetry breaking Lagrangian at the input scale can be viable. On the other
hand, if the gaugino masses were to vanish at tree-level, then they would not get any contributions

†One should think of “m2
Hu

” as a parameter unto itself, and not as the square of some mythical real number mHu
. So

there is nothing strange about having m2
Hu

< 0. However, strictly speaking m2
Hu

< 0 is neither necessary nor sufficient
for electroweak symmetry breaking; see section 7.1.
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Third family Right:

Also if we start with degenerate condition at very high energy, we 
end up with a split situation because of the Yukawa!!


