Missing Tranverse Energy in first ATLAS data

Donatella Cavalli, <u>Caterina Pizio</u>, Silvia Resconi, Rosa Simoniello

On behalf of ATLAS Collaboration

07.04.2010

E^{_miss} reconstruction in ATLAS

Transverse Missing Energy:

$$E_T^{miss} = \sqrt{E_x miss^2 + E_y miss^2}$$

$$E_x miss = -\Sigma Ex$$

 $\mathsf{SumE}_{\scriptscriptstyle \mathsf{T}} = \Sigma \ \mathsf{E}_{\scriptscriptstyle \mathsf{T}}$

Sum of energy of all E_y miss = - Σ Ey $\{$ particles seen in the detector

E_{τ}^{miss} is a complex event quantity:

- It is calculated adding all significant signals from all detectors:
 - Calorimeter signals (input: Cells, TopoClusters)
 - used for physics objects
 - not used for physics objects
 - Muon signals
 - Tracks in regions where Calorimeter/Muon Spectrometer are inefficient
 - Correction for energy lost in dead material

E_T^{miss} importance in ATLAS physics

 $E_{\rm T}^{\rm miss}$ is due to non interacting particles in detector (v $\,$, lsp)

A very good E_{T}^{miss} measurement is a crucial requirement for the study of many physics channels in ATLAS:

- $W \to I \nu \ , \ Z \to \tau \ \tau \ , \ Top \ decays...$
- SM Higgs (VBFh $\rightarrow \tau \ \tau$, tth $\rightarrow \tau \ \tau$)
- MSSM Higgs (A/H $\rightarrow \tau \ \tau$, H $^{\pm} \rightarrow \tau \ \nu$)
- reconstruct the invariant $\tau \ \tau$ mass from the two ${\sf E}_{{\sf T}}^{{\sf miss}}$ components
- SUSY \rightarrow Large E_T^{miss} signature (lsp)

- Particles outside the detector acceptance
- Other particles arriving at the detector
- Energy lost in dead materials
- Problems in detector, pileup, electronic noise
- Many other effects... A bad measurement of E_T^{miss} could fake a nonzero reconstructed E_T^{miss} in events with no physical $E_T^{miss} \rightarrow QCD$ with fake E_T^{miss} background for inclusive no-lepton SUSY evts

E^{miss} reconstruction in ATLAS: from Basic to Calibrated E^{miss}

- **Basic** E_T^{miss} from all Calorimeter cells with two possible noise suppression approaches (see below)
- Final E_T^{miss} :
 - Calibration (different calibration approaches)
 - Correction for energy lost in cryostat between EM and Had calorimeters
 - Contribution from muons

E^{miss} reconstruction in ATLAS: Basic E^{miss}

- First data $\rightarrow E_T^{\text{miss}}$ is calculated only from the calorimeters (few muons)
- All cells in Topo-Clusters are used (MET_Topo) Topo-Clusters are groups of calorimeter cells topologically connected

Noise suppression via noise-driven clustering thresholds: Seed, Neighbour, Perimeter cells (S,N,P) = (4,2,0)

- seed cells with $|E_{cell}| > S\sigma_{noise}$ (S = 4)
- expand in 3D; add neighbours with $|E_{cell}| > N\sigma_{noise}$ (N = 2)
 - merge clusters with common neighbours
- add perimeter cells with $|E_{cell}| > P\sigma_{noise}$ (P = 0)

$$\begin{split} E_{\rm x}^{\rm miss} &= -\sum_{i=1}^{N_{\rm cell}} E_i \sin \theta_i \cos \phi_i, \\ E_{\rm y}^{\rm miss} &= -\sum_{i=1}^{N_{\rm cell}} E_i \sin \theta_i \sin \phi_i, \\ E_{\rm T}^{\rm miss} &= \sqrt{(E_{\rm x}^{\rm miss})^2 + (E_{\rm y}^{\rm miss})^2}, \end{split}$$

The sum is done on all cells in TopoClusters

IFAE 2010

EM scale calculation, no calibration applied

First ATLAS data: samples and event selection

• Data at 900 GeV and 2.3 TeV taken at the end of 2009 (stable beam, nominal magnetic field, good calorimeters)

• MonteCarlo:

- PYTHIA/Geant4 Minbias events: 1 Mevts at 900 GeV (200 Kevts at 2TeV)
 - Non diffractive(ND) + Single/Double diffractive(SD/DD) DD/SD/ND = 6.4 / 11.7 / 34.4 mb
- Collision Candidates selection (on data and MC):
 - Evts triggered in Minimum Bias Trigger Scintillators
 - Signals observed in both sides of end-cap calorimeter or MBTS coincident in a time window (MBTS timing (Δt_{A-c} <10 ns) .OR. LAr timing (Δt_{A-c} <5 ns))
 - Event Cleaning vs fake jets (Antikt R=0.6 jets (EM scale) p_{τ} >7GeV):
 - Jet energy coming from known problematic cells (energy estimated from neighbours) must be <20%
 - Jet energy not concentrated in less than 3 cells (noisy cells)
 - Few per mill events rejected

Caterina Pizio

E^{miss} in random trigger events

- Events not containing physics signals
- Useful to understand the noise contribution
- Distribution centered on zero with RMS 0.43 GeV
- No tails in E_{T}^{miss} distribution as expected

Caterina Pizio

6

E_{T}^{miss} in pp collision events $\sqrt{s} = 900 \text{ GeV}$

- In minbias events \rightarrow no true E_{T}^{miss} $\rightarrow E_{x/y}^{miss}$ distributions peaked at 0
- RMS 1.4 GeV \rightarrow higher than in random trigger evts because of
 - real ΣE_{T}
 - finite calorimeter resolution
- Very few events in tails
- Good agreement DATA-MC

E_{τ}^{miss} in pp collision events $\sqrt{s} = 2.36 \text{ TeV}$

- In minbias events \rightarrow no true $E_T^{miss} \rightarrow E_{x/v}^{miss}$ distributions peaked at 0
- RMS 1.8 GeV
- No events in tails!
- Good agreement DATA-MC

E_{τ}^{miss} tails in pp collision events $\sqrt{s} = 900 \text{ GeV}$

- New physics may produce $E_{\rm T}^{\rm miss}$ Tails
 - Need to control fake Etmiss at a very high level
- Main sources of Fake E^{miss}
 - Hardware (noisy cells, problems linked to DAQ, ...)
 - Software (corrections for "bad" calorimeter regions)
 - Physics (Cosmic background, beam halo, beam gas...)
- Strategy up to now: remove ANY noisy jet events
- Work started on alternative solutions:
 - Detect fake Tile TopoCluster, use cluster timing

E^{miss} Resolution

- E_x^{miss} and E_v^{miss} as a function of ΣE_T
- Plot E_x^{miss} and E_v^{miss} in ΣE_T bins and gaussian fit
- Good agreement data-MC

Caterina Pizio

(10)

E_{τ}^{miss} reconstruction in ATLAS: Refined E_{τ}^{miss}

- Separate contributions of reconstructed physics objects (e/ γ , τ , b-jet, jet, μ , ...)
- Most complex schema to be used after validation of reconstructed objects:
 - After particle identification, decomposition of each object into constituent Calorimeter Cells

Contributions to E_{τ}^{miss} in pp collision events $\sqrt{s} = 900 \text{ GeV}$

In minimum bias events E_{T}^{miss} is due to :

- cells in topoclusters not associated to any reconstructed object (CellOut) —
- cells belonging to jets (**RefJet**) → Jet Energy measured at EM Scale, jet p_T >4GeV |

Data in very good agreement with MC $\rightarrow E_{T}^{miss}$ is well understood in ATLAS!

Conclusions and Outlook

- Minbias evts at 900 GeV and 2.36 TeV provided a first test of E_{T}^{miss}
- \rightarrow The algorithms in MET package work well and are robust.
 - > Work at EMscale with cells from TopoClusters : MET_Topo
 - > Missing transverse energy (E_x^{miss} , E_y^{miss} , E_T^{miss}):
 - Good agreement data-MC for distribution and performance
 - With good calorimeter + event cleaning, E_{T}^{miss} tails compatible with MC
- > A look at different terms entering final $E_{\tau}^{miss} \rightarrow$ Encouraging results
- Plans for 7 TeV
 - − ~10 pb⁻¹: QCD di-jets $\rightarrow E_T^{miss}$ calibration
 - 10-100pb⁻¹: W production $\rightarrow E_T^{miss}$ scale with W $\rightarrow e\nu /\mu \nu$
 - 100-200pb⁻¹: Z production
 - diagnostic plot in Z \rightarrow II (sensible to CellOut)
 - E_{τ}^{miss} scale with $Z \rightarrow \tau \tau$

No surprises in minbias at 7 TeV... still few tails... agreement data-MC

Backup

Time stability

