I NUOVI ADRONI: MOLECOLE O TETRAQUARKS?

IFAE – Roma, 8 Aprile 2010

Chiara Sabelli

Univ. Roma Sapienza & INFN Roma

X(3872)

Phys. Rev. Lett. 103 (2009) 162001 arXiv:0906.0882 [hep-ph]

La scoperta Settembre 2003: $p\bar{p} \rightarrow J/\psi \pi^+\pi^-$ Agosto 2003: CDF Run II Preliminary L= 780pb $B^{\pm} \rightarrow K^{\pm} J/\psi \pi^{+}\pi^{-}$ total signal yield: 2292 ± 98 $X(3872) \rightarrow J/\psi \pi^+\pi^-$ An antital property of press of the 800 30 600 250 fb-1 400 Events/5 MeV 20 200 3.7 3.95 m(J/γπ*π) [GeV/c²] 3.75 3.8 3,85 3.9 10 Candidates / 10 MeV/c² 800-DØ X(3872) 0 3800 3820 3840 3860 3880 M(π*π* J/ψ) (MeV) 3900 3920 3940 $X(3872) \rightarrow J/\psi \gamma$ ψ(2S) 600 Signal Events / (10 MeV/c²) 15 260 fb⁻¹ Candidates / 10 MeV 10 400

4.1

5 3.7 3.75 3.8 3.85 3.9 3.95 4 4.05 4.

200

0

0.6

1/10

2.9 3 3.1 3.2 3.3 $M_{\mu^*\mu^-}$ (GeV/c²)

6 0.7 0.8 0.9 Μ_{μ⁺μ⁻π⁺π⁻} - Μ_{μ⁺μ⁻} (GeV/c²)

3.65

- -

X come molecola

Se la X ha J^{PC} = 1⁺⁺ : molecola in onda s con fdo:

$$|X>= \frac{|D^0\bar{D}^{0*}> + |\bar{D}^0D^{0*}>}{\sqrt{2}}$$

🖛 Energia di legame:

$$E_B = M_X - M_D - M_D^* = (-0.49 \pm 1.6) MeV$$

↓

Può uno stato così debolmente legato essere prodotto prompt in $p\overline{p}$?

pp̄→ X(3872)

- I mesoni D interagiscono scambiando π⁰

(1) $r_0 \simeq 6 fm \implies \Delta k \sim 1/2r_0 \simeq 15 \text{ MeV}$ (2) $k_0 = \frac{\sqrt{\lambda(m_X^2, m_D^2, m_{D^*}^2)}}{2m_X} \simeq 30 \text{ MeV}$

$\mathcal{R}: \ 0 \le k \le k_0 + \Delta k$

 $\sigma(p\bar{p} \to X(3872)) \le \int_{\mathcal{R}} d^3 \mathbf{k} |\langle D\bar{D}^*(\mathbf{k}) | p\bar{p} \rangle|^2$ MC: Disuguaglianza Herwig Pythia di Schwartz

$p\bar{p} \rightarrow X(3872)$ con Pythia e Herwig

Y: stati esotici 1⁻⁻

arXiv:0911.2178 [hep-ph] In stampa su Phys. Rev. Lett.

Stati 1⁻⁻ : Y(4260), Y(4350), Y(4660) <u>and</u> Y(4630)

╷╷╷╷╷╷╷╷╷╷╷╷╷

$Y(4630) \equiv Y(4660) \equiv Y_{B}$

Nuova analisi dei dati di Belle nei canali $\Psi(2S) \pi^+\pi^- e \Lambda^+_c \Lambda^-_c$

8/10

40

20

0

Barionio

-Una struttura [cq][c̄q̄] è in grado di spiegare la forte dominanza del canale barionico

Barionio

-Una struttura [cq][c̄q̄] è in grado di spiegare la forte dominanza del canale barionico

Barionio

—Una struttura [cq][cq] è in grado di spiegare la forte dominanza del canale barionico

Lo spettro: stringa rotante relativistica

$$dE^* = Tdr \rightarrow dE = \frac{T}{\omega} \frac{dv}{\sqrt{1 - v^2}}$$
$$dL = \omega dI = \frac{v^2}{\omega} dE = \frac{T}{\omega^2} \frac{v^2 dv}{\sqrt{1 - v^2}}$$

T= $\sigma/2\pi$, σ =1.1 GeV² dalle traiettorie di Regge

$$E = 2M + \frac{3L^{2/3}T^{2/3}}{(4M)^{1/3}}$$

$$\begin{bmatrix} n_r & L & M_{th} (MeV) \\ 0 & 1 & 4340 \leftarrow Y(4350) \\ 0 & 3 & 4850 \\ 1 & 1 & 4700 \leftarrow Y(4660) \end{bmatrix}$$

$$p\bar{p} \rightarrow X(3872) \textcircled{0} CDFII$$

$$[arXiv:hep-ex/0612053] [arXiv:0905.1982 [hep-ex]] Phys. Rev. Lett. 79, 572 (1997)$$

$$\frac{\sigma(p\bar{p} \rightarrow X(3872) + All)_{prompt} \times \mathcal{B}(X(3872) \rightarrow J/\psi\pi^{+}\pi^{-}))}{\sigma(p\bar{p} \rightarrow \psi(2S) + All)_{prompt}} \simeq (4.6 \pm 0.1)\%$$

$$con: p_{\perp} > 5 \text{ GeV}, |y| < 1$$

$$\sigma(p\bar{p} \rightarrow \psi(2S) + All)_{prompt} = (67 \pm 9) \text{ nb} \quad \text{with: } (p_{\perp} > 5 \text{ GeV}, |y| < 0.6)$$

$$Assumendo \text{ la stessa distribuzione in rapidità e } p_{\perp} \text{ per } X \text{ e } \psi(2S):$$

$$\sigma(p\bar{p} \rightarrow X(3872) + All)_{prompt} \mathcal{B}(X(3872) \rightarrow J/\psi\pi^{+}\pi^{-}) \simeq (3.1 \pm 0.7) \text{ nb}$$

$$Inoltre: 0.042 < \mathcal{B}(X(3872) \rightarrow J/\psi\pi^{+}\pi^{-}) < 0.093$$

$$\Rightarrow 33 \text{ nb} < \sigma(p\bar{p} \rightarrow X(3872) + All)_{prompt} < 72 \text{ nb}$$

Tuning del MC sui dati

$p\bar{p} \rightarrow X(3872)$ con Pythia e Herwig

 55×10^9 eventi :: $p_{\perp}^{part} > 2$ GeV :: $|y^{part}| < 6$ Tagli sui mesoni finali D tali che $p_{\perp}^{\times} > 5$ GeV and $|y^{part}| < 0.6$

 $\sigma(p\bar{p} \to X(3872) + \text{All})_{\text{th}}^{\text{max}} \simeq 0.085 \text{ nb}$

 $\sigma(p\bar{p} \to X(3872) + \text{All})_{\text{th}}^{\text{max}} \simeq 3 \text{ nb}$

k fino a ~200 MeV

Decadimenti della X

B Decay mo	de X decay mode	$PBF(\times 10^5)$	B_{fit}	R_{fit}
XK^{\pm}	$X \to J/\psi \pi \pi$	$0.82{\pm}0.09~[101,~102]$	[0.035, 0.075]	N/A
$(2^{3}P_{1} \rightarrow \psi \gamma)/\Gamma(2^{3}P_{1} \rightarrow \Gamma(X \rightarrow \psi \gamma)/\Gamma(X \rightarrow \psi_{1}))$	ψ Ψππ)~40 $\rightarrow J/\psi \pi \pi$ $\rightarrow D^{*0}D^0$ $\rightarrow D^{*0}D^0$	$\begin{array}{c} 0.53 \pm 0.13 \ [101, \ 102] \\ 13 \pm 3 \ [99, \ 103] \end{array}$	[0.54, 0.8]	N/A $[3.9, 18.9]$
XK	$\rightarrow D^{*0}D^{0}$ $X \rightarrow \chi_c(1P)\gamma$	$ \begin{array}{c} 13\pm 3 & [99, \ 103] \\ [95] \end{array} $	_	
XK XK	$\begin{array}{c} X \to J/\psi\gamma \\ X \to \psi(2S)\gamma \end{array}$	[104] [104]	[0.0075, 0.0195] [0.03, 0.09]	$[0.19, 0.32] \ [0.75, 1.55]$
XK XK	$\begin{array}{c} X \to \gamma \gamma \\ X \to J/\psi \eta \end{array}$	[105] [106]	< 0.00 B(X- < 0.050	+ψρ)/B(X→ψω). / ~ 1.9
XK XK^*	$\begin{array}{c} (X \to J/\psi \pi \pi \pi^0 \\ X \to J/\psi \pi \pi \end{array}$	[107]	[0.015, 0.08]	[0.45, 1.44]

Lo spettro: stringa rotante relativistica

Eccitazioni radiali

- La dominanza del decadimento in $\Psi(2S)\pi^+\pi^-$ suggerisce che il sistema sia eccitato radialmente

Il rapporto B(J/ψ)/B(ψ(2S)) puo' essere spiegato con un integrale di sovrapposizione delle fdo radiali ?
Jψ_{cc}*(r) ψ_{[cq][cq]}(r)