Stato di ATLAS

- ✓ L'esperimento
- ✓ Prima raccolta dati (12/2009)
- ✓ Funzionamento del rivelatore (→ M. Donega')
- ✓ Prime misure a 900 GeV
- ✓ Collisioni a 7 TeV

Leonardo Rossi (INFN Genova) on behalf of the ATLAS Collaboration

IFAE, Roma, 7-9 Aprile 2010

Large Hadron Collider

- Proton-proton collider
- 27 km di circonferenza
- 4 regioni di interazione equipaggiate con esperimenti
 - Alice, ATLAS,

– CMS, LHCb

	Nominale	Iniziale
Energia (c.m.)	14 TeV	900 GeV (2.36 TeV)
Luminosita'	10 ³⁴ cm ⁻² s ⁻¹	~7 x 10 ²⁶ cm ⁻² s ⁻¹
Bunches/Fascio	2808	4 (2 collidono in ATLAS)

L'esperimento ATLAS

- A Toroidal LHC ApparatuS: rivelatore multi-purpose disegnato per coprire large range of physics measurements
- massa ~ 7000 tons
- alto 25m
- lungo 46m
- ~100 millioni di canali (90% nel tracciatore)

L'Inner Detector (o tracciatore interno)

e parametri di impatto (ad alti p) = $10 \mu m$

= 122.5 mi = 88.5 mm = 50.5 mm R = 0 mm Pixels

I calorimetri

- Misurano il deposito di energia (quindi anche l'eventuale sbilanciamento $= E_T$ mancante)
- Cal. elettromagnetico (LAr): $\sigma_E / E = 10\% / \sqrt{E} \oplus 0.7\%$
 - misura precisa del deposito di energia di fotoni ed elettroni (e adroni (HEC, FCal) oltre l'accettanza del Tile)
 - coperturta $|\eta| < 4.9$
- Cal. adronico (Tile):
 - misura del deposito di energia degli adroni
 LAr hadronic end-cap (HEC)
 - copertura $|\eta| < 1.7$

Lo spettrometro a μ

- Immerso in un campo magnetico toroidale di (3x8 toroidi superconduttori) in aria \rightarrow /Bdl ~ 8 Tm
- Camere di misura di precisione e camere di trigger
- barrel - MDT (Monitored Drift Tubes)
 - RPC (Resistive Plate Ch.)
 - CDC (Cathode Drift Chambers)
- end-cap - TGC (Thin-Gap Chambers)
- copertura $|\eta| < 2.7$

$$\sigma_{p_T}/p_T$$
=10% at p_T = 1 TeV

7/4/2010

Aspettando le collisioni: stato del rivelatore

	Sub-detector	# Channels	Op Fraction (%)	
Inner Detector	Pixels	80 M	97.9	
	SCT – Si strips	6.3 M	99.3	
	TRT – TR tracker	350 k	98.2	
Calorimetry	EM Liquid Argon Calo	170 k	98.8	
	Hadronic Tile Calo	9.8 k	99.2	
	Hadronic Lar end-cap Calo	5.6 k	99.9	
	LAr Forward Calo	3.5 k	100	
Muon Spectrometer	MDT – Central Muon det	350 k	99.7	
	CSC – Forward Muon det	31 k	98.4	
Trigger	RPC – Barrel Muon trig	370 k	98.5 	99.5%
	TGC – End-cap Muon trig	320 k	99.4 ->	100%
	Level-1 Calo trig	7.2 k	99.9	

Il rivelatore funziona tutto

/ Dopo lo shut-down di Gennaio 2010

Aspettando le collisioni: µ-cosmici per allineare

L. Rossi – IFAE2010 - Roma

Preparazione alle collisioni: beam splash e messa in tempo

Trigger per selezionare le collisioni p-p

Il trigger di ATLAS e' a 3 livelli di selettivita' crescente e in grado di gestire 40MHz di collisioni (registrandone solo 200Hz).

Per il run di Dicembre 09 molto piu' semplice: basato su "passaggio dei fasci" (= BPTX) e "particelle in una regione dell'angolo solido" (=MBTS).

BPTX= beam pick-up elettrostatico situato a 175m da ATLAS

MBTS= Minimum Bias Trigger Scintillator, montato sull'EC Lar a 3.5m dall'IP, copre con 16+16 elementi la regione 2.1< $|\eta|$ < 3.8

Evento di collisione p-p a 900 GeV. Gli elementi MBTS sopra soglia sono in giallo brillante La separazione tra collisioni e fondo (di singlo fascio) e' fatta sul tempo di volo

Strategia di trigger (esempio su uno spill)

Trigger rate collisioni ~ 10 Hz all'inizio dello spill Level1 Trigger~ 5kHz con BEAM STABLE, dominato da L1 BPTX Output data rate (HLT) ~ 100 Hz costante nel run, dominato da stream di calibrazione/monitor/RANDOM trigger

Luminosita' integrata raccolta nel 2009

Massima Luminosita' istantanea vista da ATLAS: ~ 7 x 10^{26} cm⁻² s⁻¹

Il trigger MBTS al L1 ha ε ~85% x le collisioni e contiene qualche % di fondo non di collisioni.

La luminosita' e' misurata con MBTS, LUCID e LAr

No di eventi	Luminosita' integrata (µb⁻¹) Incertezza sist. <30%
917k (538k)	~20 (~12)
34k	0.7
	No di eventi 917k (538k) 34k

7/4/2010

La prima misura : Charged-particle multiplicities in pp interactions at Vs = 900 GeV

Questa misura vincola i modelli fenomenologici di soft-QCD ed e' quindi importante per la comprensione dei fenomeni ad alto p_T al LHC.

$$\sigma_{Tot} = \sigma_{el} + \sigma_{SD} + \sigma_{DD} + \sigma_{ND}$$

Single Diffractive Double Diffractive Non Diffractive

Per studiare le collisioni inelastiche si deve usare un trigger di minimum bias e misurare la distribuzione delle particelle cariche primarie (τ > 0.3 10⁻¹⁰ s).

$$\frac{1}{N_{ev}} \cdot \frac{dN_{ch}}{d\eta}, \quad \frac{1}{N_{ev}} \cdot \frac{1}{p_T} \cdot \frac{dN_{ch}}{dp_T}, \quad \frac{1}{N_{ev}} \cdot \frac{dN_{ev}}{dN_{ch}}, \quad \langle p_T \rangle vs. N_{ch}$$

queste distribuzioni sono misurate nell'intervallo $p_t > 500 \text{ MeV} e |\eta| < 2.5 mediante il tracciatore interno.$

Verifica del funzionamento del tracciatore interno

Importante misurarne l'efficienza (di hit/traccia/vertice) e la scala dei momenti

La misura della massa del K_s^0 e' in accordo con la simulazione (e PDG) \rightarrow la scala dei momenti e' capita bene (a questi p_T)

La massa misurata del K⁰_s e' sensibile alla quantita' di materiale attraversato (correzione per il dE/dx cambia il momento)

Si confrontano dati/simulazione e al variare del materiale (+10% e +20%).

Metodo per ora sensibile al volume dei Pixel (soprattutto barrel), si estendera' a SCT e alti η con piu' statistica

Strategia di analisi

- Si usano tutti i dati a 900 GeV raccolti in condizioni di fascio stabile e con trigger, tracciatore e solenoide in condizioni operative.
- Si misurano le distribuzioni inelastiche "fully inclusive" per evitare ogni dipendenza dal modello e facilitare il confronto esperimento/modello.
- Si studiano eventi con
 - Un vertice primario ricostruito ed almeno 1 traccia ricostruita con:
 - $p_T > 500$ MeV, $|\eta| < 2.5$
 - \geq 1 hit nei pixel, \geq 6 hits nel SCT
 - $|d_0^{PV}| < 1.5 \text{ mm}, |z_0^{PV}|\sin(\theta) < 1.5 \text{ mm}$
- Si corregge per gli effetti del trigger e dell'(in)efficienza di vertice & traccia al livello di ciascuna particella
 - ma non si estrapola al di fuori del nostro spazio-fasi.
- Cio' lascia ~326k eventi per questa analisi
 - Il fondo dovuto al fascio e' stimato (usando bunch che non collidevano) a < 10⁻⁴

Misura dell'efficienza di vertice

- Il vertice primario ricostruito deve
 - contenere ≥ 3 tracce con
 - $p_T > 150 \text{ MeV}, |d_0^{BS}| < 4 \text{ mm}$
 - L'efficienza di ricostruzione di vertice e' derivata completamente dai dati
 - ~100% per eventi con almeno 4 tracce
 - Incertezza sistematica < 0.1%
- Il taglio su d₀ e z₀ rimuove le tracce secondarie
 - La frazione di tracce secondarie residue e' stimata estrapolando la distribuzione di parametri di impatto
 - 2.20% ± 0.05 (stat) ± 0.11 (syst) delle tracce selezionate

Misura dell'efficienza del trigger

- Il trigger e' molto "aperto" e semplice
 - un solo hit in un solo ramo MBTS
- L'efficienza di trigger e' misurata usando i dati
 - con trigger indipendenti che richiedono
 - bunch che collidono in ATLAS
 - almeno 6 hits in Pixel/SCT e una traccia "loose" con p_T > 200 MeV
- L'efficienza di trigger vs la selezione di analisi e' molto alta
 - il taglio su d₀ e' fatto vs la beam spot (non il PV), non c'e' taglio z₀
- Non ci sono bias osservati vs η, p_T
- L'incertezza sistematica e' molto piccola <0.03%

Risultati: densita' di particelle cariche vs $\eta e p_T$

Errore sistematico domina ed e', a sua volta, dominato dalla limitata conoscenza del materiale

Risultati: molteplicita' di particelle cariche e $< p_T > v_S N_{ch}$

Confronto con altri esperimenti

Confronto con CMS:

N_{ch} minore di quanto misurato da ATLAS (ma CMS corregge per l'efficienza di selezione delle componente DD).

ATLAS Preliminary <N_{ch}>

η < 2.5	1.333 ± 0.003(stat.) ± 0.040(syst.)
NSD ŋ < 2.4	1.241 ± 0.040

→ NSD ottenuta usando Pythia DW tune (Tevatron)

CMS NSD ($p_t > 0.5 \text{ GeV}$) 1.202 ± 0.043

Confronto con UA1:

 $N_{ch} \approx 20\%$ maggiore che in ATLAS UA1 ha usato un tigger "double arm" che sopprime le basse molteplicita'.

E ora?

- Dal 30/3/2010 @12.58 abbiamo iniziato a misurare collisioni a 7 TeV
- Gia' il primo pomeriggio la statistica raccolta in condizione di fascio stabile ha ~eguagliato quella di Dicembre.

nominalSeparation

$\Delta \phi \sim 176 \text{ degrees}$ $\Sigma(E_T\text{-jets}) \sim 300 \text{ GeV}$

Collision Event at 7 TeV with 2 Pile Up Vertices

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Conclusioni

- Il run a 0.9 TeV ha:
 - provato che ATLAS funziona bene (\rightarrow Donega' + PhD posters)
 - portato alla prima pubblicazione di fisica (arXiv:1003.3124v1)
- Il run a 7 TeV e' iniziato bene e, nel lungo week-end di Pasqua, si e' gia' accumulata una luminosita' integrata di ~0.2 nb⁻¹ \rightarrow inizia la fisica ad alto p_{T} .
- La prima misura sara' la ripetizione a 7 TeV della misura di molteplicita' di particelle cariche (poche settimane) e poi un vasto programma di misure per "riscoprire" il modello 1000 ATLAS) e poi....

L. Rossi – IFAF2010 - Roma

Il run e' previsto durare ~18 mesi e fornire 1 fb⁻¹ di luminosita' integrata \rightarrow gli esperimenti a LHC diventeranno competitivi con FNAL soprattutto per i fenomenti ad alto p_{T} (o la produzione di alte masse)

J.Stirling

Run Number: 152221, Event Number: 383185

Date: 2010-03-31 23:31:22 BST

m_T=52.5 GeV

E_Tmiss=23.9 GeV

p_T(μ⁺)=29.1 GeV

W-μν candidate in 7 TeV collisions

backup

7/4/2010