Telescopi per neutrini di alta energia

Giorgio Riccobene INFN-LNS IFAE 2010 - Roma "Sapienza"

The Cosmic Ray (CR) Spectrum

The Cosmic Ray (CR) Spectrum

Giorgio Riccobene UNS

CR Origin: the standard scenario

Giorgio Riccobene UNS

CR Origin: the standard scenario

magnetic fields

CR Origin: the standard scenario

Astrophysical sources produce high energy hadrons

The astrophysical beam dump

Fermi acceleration of protons and electrons in astrophysical sources

First Hadronic Gamma Ray Sources detection ? (HESS)

The Galactic SNR RXJ1713.7-3946:

proton acceleration + beam dump on nearby molecular clouds

- Power law spectrum $E^{-\gamma}$ observed up to 30 TeV
- Spectral index $\gamma \approx 2$ implies acceleration of primaries up to 1000 TeV
- Spectrum hardly explainable with IC mechanisms

Neutrinos are the ultimate smoking gun for hadronic processes

Giorgio Riccobene LNS

Very large volume neutrino detectors

Neutrino astronomy can:

- disentangle between purely leptonic and hadronic source models
- identify CR sources
- probe the far and violent Universe

 \rightarrow Low neutrino cross section

 \rightarrow Faint astrophysical neutrino fluxes expected

Detector size \geq 1 km³

Use natural targets. Deep seawater and polar ice cap offers:

- huge (and inexpensive) target for neutrino interaction;
- shielding from cosmic background;
- good characteristics as optical and radio Cherenkov radiators;
- good characteristics as acoustic wave propagators

Underwater Cherenkov HE neutrino detectors

Look at upgoing muons: use the Earth as a filter Only atrmopheric and astrophysical neutrinos can cross the Earth

IceCube:The first km3-scale neutrino telescope

Location: Geographic South Pole Completion: January 2011 80 strings (60 PMT each) 4800 10"PMT (only downward looking) 125 m inter string distance 16 m spacing along a string Instrumented volume: 1 km³ (1 Gton)

Technology and science goals proven by the small scale detector AMANDA (1996-2007)

IceCube is taking data during construction

Giorgio Riccobene

This year: 73 IceCube Strings Deep Core (6 strings, High QE PMTs)

LNS

CATCHING

Cosmic Clues

IceCube: Search for point sources

IceCube 40 strings (IC-40) 175.5 days livetime Angular resolution about 1 Muon rate: 1 kHz Neutrino rate: 110/day

No v source found yet

Giorgio Riccobene LNS

IceCube: Search for point sources

IceCube 40 strings (IC-40) 175.5 days livetime Angular resolution about 1° Muon rate: 1 kHz Neutrino rate: 110/day Southern hemisphere Background: atmospheric muons Reduced by 10⁻⁵ using energy cut 10981 downgoing (high energy) muon events

No v source found yet

IceCube: limits to diffuse neutrino fluxes

IC-40: $dN/dE \cdot E^2 < 1.17 \cdot 10^8 \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ (3.7 TeV< $E_{\nu} < 3.7 \text{ PeV}$)

Giorgio Riccobene UNE LNS

Towards the Mediterranean km³

→ Need two telescopes (North and South Hemisphere) to cover the whole sky.
 → The Galactic Centre can be seen only from the Mediterranean telescope

Intense technological R&D and coordination of Institutes

2006-2009KM3NeT Design Study, Coordinated by Uni. Erlangen2009-2012Preparatory Phase, Coordinated by INFN

Goal: KM3NeT ~3 more sensitive than IceCube

- larger total photo-cathode area (larger detector)
- better direction resolution (sea water)

Giorgio Riccobene LNS

LNS

Giorgio Riccobene

Giorgio Riccobene

LNS

Capo Passero Site

- 3500 m depth, wide plateau, optimal water properties
- 100 km main electro-optical cable, laid and working
- 10 kVDC/400 VDC converter (MVC) installed and working
- Shore Lab completed
- Optical fibre link Capo Passero/LNS-INFN, in GARR-X
- Deep Sea ROV PEGASO (INFN-INGV)

Shore Laboratory in Capo Passero Harbour

Deployment of an ANTARES Mini-line (soon) Deployment of the KM3NeT bar prototype tower (2011)

Giorgio Riccobene LNS

The ANTARES Mini-Line ready for the deployment

KM3NeT: Slender String vs. Flexible Bar Structure

Slender String (NIKHEF / NIOZ / NESTOR) Evolution from the ANTARES string

1D displacement of OMs : 670 m, 20 storeys, 20 OM Reduce connections (1 connector per OM) Multi PMT optical module used

Unfurling from Sea bed

Unfurling method tested with few problems

New tests within 1 year

Multi PMT OM (32 x 4" PMTs)

Detector Building Block 310 Detection Units @ 130 m

KM3NeT: Slender String vs. Flexible Bar Structure

Bar Structure (INFN / IN2P3 / CEA): Evolution from the NEMO tower

3D displacement of OMs : 6 m-long storey, 6 OM/storey, 20 storeys Improve angular resolution at low energy Improve overall detector sensitivity

Unfurling from Sea bed Structure compact before sea operation Easier and faster deployment

KM3NeT: Slender String vs. Flexible Bar Structure

Bar Structure (INFN / IN2P3 / CEA): Evolution from the NEMO tower

3D displacement of OMs : 6 m-long storey, 6 OM/storey, 20 storeys Improve angular resolution at low energy Improve overall detector sensitivity

Unfurling from Sea bed Structure compact before sea operation Easier and faster deployment

Feb 2010 - NEMO deployment 12 storeys, 10 m

KM3NeT : Electronics

Point to point connection from each storey to shore

KM3NeT: Expected physics performances

KM3NeT: Earth and Sea Science

KM3NeT: a large deep sea infrastructure incorporating a VLV neutrino telescope Deep sea covers the largest part of planet Earth and it is almost totally unexplored

Giorgio Riccobene LNS

Looking for GZK neutrinos...

The obserbvation of the "guaranteed" GZK neutrinos requires larger detectors.

The optical Cherenkov technique is limited due to ligth absorption lenght in water and ice (<100 m).

Use different techniques to build larger (more sparse) arrays:

radio Cherenkov in ice (ANITA, IceRay) and acoustics in water (KM3NeT)

Conclusions

Clear science goal

Neutrinos are optimal probes to study far and violent Universe and identify the CR sources

IceCube

- IceCube nearing completion (73 over 80 srings), Deep Core (6 srings) installed
- First results from AMANDA, IC-22 and IC-40 published:
 - Atmospheric Muon flux measured, Strong limits on HE neutrino fluxes and WIMPs
- IC40 and IC59 analyses under way
- Deep Core expected performances:
 - Reduce threshold to ~10 GeV
 - Increase reach for low mass dark matter
 - Extend searches to Southern Sky using veto techniques

ANTARES

- Detector Completed and taking data, Maintenance (recovery, substitution) proven
- 2007-2008 data analysis under completion

NEMO

- Phase 1 completed: Deep sea technology (mechanics, electronics, ...) fully tested
- Bar structure physics performances demonstrated by the results of Phase 1 and KM3NeT MC
- Capo Passero Site infrastructure available and almost completed.

KM3NeT

- Scientific objectives fully met with 2 Detector Building Blocks (either 610 string or 308 towers)
- TDR (April 2010): common technology platform
- Final Prototypes and tests (2010-2011). Site decision (end of 2011)

Beyond the optical Cherenkov detectors

Novel techniques under test for GZK neutrino search: Radio-Cherenkov (ice) and Acoustic (water)

Giorgio Riccobene LNS

Backup slides

The Fermi Acceleration Mechanism

Observed E^{-2.7} spectrum

Non-thermal spectrum. Statistical acceleration

Fermi's idea:

Particles gain energy hitting on clouds moving at V«c (inefficient)Bell's shock acceleration: $E^{-(2.0+2.1)} \times E^{-0.6}$ (factor from confinement in the Galaxy)Each time a particle hit on the shock front it gains energycharged particles are confined by the object magnetic fieldmaximum energy~ number of hits ~ (confinement) B x R

The Fermi Acceleration Mechanism

Observed E^{-2.7} spectrum

Non-thermal spectrum. Statistical acceleration

Fermi's idea:

Particles gain energy hitting on clouds moving at V«c (inefficient) Bell's shock acceleration: E^{-(2.0÷2.1)} x E^{-0.6} (factor from confinement in the Galaxy) Each time a particle hit on the shock front it gains energy charged particles are confined by the object magnetic field maximum energy∝ number of hits ∝ (confinement) B x R

Absorption lenght of protons and gammas in the Universe

Neutrino astronomy can:

- probe the far and violent Universe
- disentangle between
 pure leptonic and hadronic
 acceleration models

Neutrino flavour identification

Event rates

Adapted from A.Karle, 2009

- Low noise rates: 280Hz (SPE/sec)
- Noise is dominated by glass (housing and PMT)

Supernova explosion detection is possible (Cherenkov light form intense MeV neutrino flux)

- High duty cycle: >90%
- Event rates (40 strings)
 - Muons: ~1kHz

Giorgio Riccobene

- Neutrinos: ~100 / day

LNS

			-	
Strings	Year	Livetime	µ rate	v rate
IC9	2006	137 days	80 Hz	1.7 / day
IC22	2007	275 days	550 Hz	28 / day
IC40	2008	~365 days	1000 Hz	110 / day
IC80*	2011	~365 days	1650 Hz	220 / day

TRADUCT The DOM (Digital Optical Module)

IceCube: Angular Resolution

Icecube angular resolution evaluated with thesurface shower array IceTop.IC-22 : 1.5°IC-40 : <1.0°</td>IC-80 : <0.5°</td>

IceCube: WIMPs Detection

WIMPs gravitationally trapped via elastic collisions in the Sun.

Expected # of events: few to O(1000) per year

Giorgio Riccobene

LNS

INFN

750 up-going neutrinos 2007+2008 data

Giorgio Riccobene UNS

Acoustic detection in ANTARES: AMADEUS

AMADEUS comprises a series of hydrophones on two ANTARES lines A test bench to study the feasibility of a large acoustic UHE neutrino detector Study of acoustic environment and backgrounds Study of methods to reconstruct event direction

KM3NeT prototype tower: "Acoustic" Electronics Chain

"All data to shore" philosophy

data payload: 2 Hydros = 1 OM, fully sustainable

- R&D on hydrophones in collaboration with NATO Undersea Research centre and SMID (hydrophone manufacturer)
- Front end and data transmission chain electronics tested
- Obtained timing resolution 1 µs → 1 mm in water
- Expected overall resolution for positioning few cm: factor 10 better than present commerical systems (at 5 times less cost !)

NEMO Phase 1 Optical fiber transmission

Each break out contains an "add and drop" filter to add or subtract the specific optical wavelength (from/to shore) dedicated to the floor

The Size of Neutrino Acoustic Detectors

 $E_v = 10^{20} \text{ eV}$

in water: p = 0.6 Pa @ 1 km \rightarrow 20 mPa (neglecting attenuation)

in Ice : p = 6 Pa @ 1 km \rightarrow 200 mPa (neglecting attenuation)

Underwater Cherenkov detectors Upgoing events – 100 TeV

$$\mathbf{P}_{\nu\mu} \left(\mathbf{E}_{\nu}, \mathbf{E}_{\mu}^{\min} \right) = \mathbf{R}_{\mu}^{\text{eff}} \boldsymbol{\sigma}_{\text{CC}} \mathbf{N}_{\text{A}} = 10^{-4}$$
$$\frac{\mathbf{N}}{\mathbf{A}_{\text{eff}} \cdot \mathbf{T}} = \mathbf{P}_{\nu\mu}^{\mathbf{P}} 2\pi \mathbf{e}^{-\mathbf{D}(\mathbf{N}_{\text{A}}\boldsymbol{\sigma}_{\text{Tot}}\boldsymbol{\rho}_{\text{Earth}})} \approx 100 \quad \frac{\text{events}}{\text{km}^{2}\text{y}}$$

Underwater Acoustic detectors Downgoing events – 10²⁰ eV $P_{det}(E_{v}, p_{min}) = H_{det}^{eff}\sigma_{Tot}N_{A} \approx 10^{-3}$ $\frac{N}{A_{eff}} \cdot T} \approx 10^{-3} \frac{events}{km^{2}y}$ Sound absorption length in ocean O(10 km), noise O(10 mPa)

Several groups developing and improving simulation codes for large acoustic detectors What we can do with 1 km³ filled with hydrophones ?

Giorgio Riccobene LNS

Acoustic and e.m. waves paropagation in water and ice

INFN

Light absorption in seawater

ANITA: Antarctic Impulsive Transient Antenna

3 Baloon flights: ANITA Lite Test (2004) ANITA 1 (2006) 6 events ANITA 2 (2008) under anlysis

- -Two rings of 16 antennas (H and V polarization)
- Pointing at 10° below the horizon (skimming events)
- Bandwidth: 0.2÷1.2 GHz
- Threshold 10^{18.5} eV

Acoustic detectors expected sensitivity

Standard approach

Largely spaced detectors for GZK neutrino detection

Calculation from ACORNE (Sheffield)

1100 hydros in 1 km³

1 year, threshold 35 mPa

Bioacustics: Sperm-whale click analysis with the OvDE data

1 m

Air

nose

Young male or female

Giorgio Riccobene [MEN LNS

IPI =

2L

Cs

Accelerator experiments: results and open questions

Brookhaven NL (Harvard, SLAC) 1979

200 MeV proton beam (LINAC) Spill time 3 to 20 μ s Beam diameter 4.5 cm Energy deposited in water $10^{19} \rightarrow 10^{21}$ eV Bipolar pulses observed Dependency on C_p, T and on beam diameter confirmed (10% uncertainty)

Recent measurements (2000's)

Uppsala: 177 MeV p E= 10¹⁶ – 10^{17.5} eV Bipolar pulse observed Unclear dependence on temperature Other contibution to observed pulses ?

ITEP Synchrotron: 100, 200 MeV p E= $10^{15} - 10^{20}$ eV Measured pressure increses linearly with E

Erlangen Laser Nd-YaG E= 10¹⁷ – 10¹⁹ eV 20 Dependence on C_p 15 confirmed ¹⁰

A well calibrated shower energy vs. acoustic amplitude relation is still missing

