Recent results from the B factories and perspectives on SuperB

Nicola Neri Università di Pisa & INFN

IFAE2010, Incontri di Fisica delle Alte Energie "Sapienza" Università di Roma - Dip. di Fisica Roma, 7-9 Aprile 2010

natisse ou the Matisse detector

Outline

- Introduction to the B factories
- Recent results from the B factories
 - measurement of the CKM angle γ
- Perspectives on SuperB physics reach
- Conclusions

Asymmetric B factories running mostly at the Υ (4S) 10.58 GeV with c.m.s. boosted: $\beta\gamma$ =0.55 (PEPII) and $\beta\gamma$ =0.425 (KEK).

B factories - World Record Luminosities

Recorded luminosity ~530 fb⁻¹ Peak luminosity ~12x10³³cm⁻²s⁻¹ Recorded luminosity = $\sim 1.02 \text{ ab}^{-1}$ Peak luminosity $\sim 21 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

Main goal of the B factories

 Verify the Cabibbo-Kobayashi-Maskawa (CKM) mechanism of quark mixing and CP violation with 3 generations of quarks.

The legacy of the B factories, in one slide

Before the B factories

The CKM mechanism is confirmed

Nicola Cabibbo

Kobayashi and Maskawa awarded half of 2008 N.P.

Constraints on the Unitarity Triangle see <u>http://www.utfit.org</u>/

... and after the B factories

Recent results from the B factories: well beyond the original goal

B factories recent results

- Measurement of the CKM angle γ
 - example of a measurement of unexpected success:
 - a new analysis method proposed in 2003 (Phys.Rev.D68:054018, 2003) allowed measuring γ with unexpected precision at B factories.

PRD68 (2003) 054018

$B^{\pm} \rightarrow DK^{\pm}$, $D \rightarrow K_{S}\pi\pi$ Dalitz plots

$B^{\pm} \rightarrow DK^{\pm}$ fit results

$B^{\pm} \rightarrow D^{(*)}K^{(*) \pm}$ results: interpretation

γ determination when combining all B[±] \rightarrow D^(*)K^{(*)±} results

Frequentist interpretation

http://ckmfitter.in2p3.fr

CKM fitter uses "supremum method": conservative approach but guarantees coverage.

See Karim Trabelsi's talk at CKM 2008 for details.

Bayesian interpretation

http://www.utfit.org

- Theoretically clean.
- Statistically limited.
- Model independent approach exists.
- Large improvements using higher statistics data samples at LHCb, SuperB.

A perspective on the future

...a different path to New Physics wrt LHC. SuperB a very high luminosity Flavor Factory.

The SuperB path to New Physics

- New Physics (NP) is expected beyond the Standard Model (SM) but the energy scale is basically unknown: 1, 10, 100, 1000...TeV?
- Possible scenarios:
 - I. LHC finds New Physics (very good!) then SuperB can study the flavor structure of NP measuring the flavor couplings;
 - 2. LHC doesn't find NP: SuperB has the possibility to explore NP scale beyond the LHC reach (up to 10 TeV or more) looking for indirect signals.
- Complementary to LHC:
 - sensitive to off diagonal terms of the squarks mixing matrix, to the flavor structure of NP.
 - many rare decays are only accessible to SuperB;
 - search for NP in tau decays: Lepton Flavor Violation (LFV), CP violation;

See F. Renga talk at this conference

- search for CP violation in D decays;

SuperB: at the luminosity frontier

- Detection of the effects of new heavy quanta contributing in loop (tree) diagrams requires very precise measurements:
 - Statistics greater than 50 ab⁻¹ is necessary to reduce the experimental error below the theoretical one for most sensitive analyses.
- SuperB baseline Luminosity: L=10³⁶ cm⁻² s⁻¹. Five years of running at L=10³⁶ cm⁻² s⁻¹ → 75ab⁻¹. A data set almost 2 orders of magnitude larger than present B factories.
- possibility of running at $\Psi(3770) \rightarrow DD$, $\Upsilon(5S) \rightarrow B_sB_s$
- use longitudinal polarized beam (>85%), effective especially for tau physics
- above dataset with:

-increased detector hermiticity, improved tracking and PID performance w.r.t. BaBar;

-limited machine backgrounds (beam currents similar to B-factories);

-reasonable electricity costs;

	2(10)				
B Physics @	1(45)		Observable	B Factories (2 ab^{-1})	Super B (75 ab^{-1})
Observable	B Factories (2 ab^{-1})	Super B (75 ab^{-1})	$ V_{cb} $ (exclusive)	4% (*)	1.0%~(*)
$\sin(2eta)~(J/\psiK^0)$	0.018	0.005 (†)	$ V_{cb} $ (inclusive)	1% (*)	0.5%~(*)
$\cos(2eta)~(J/\psi~K^{st 0})$	0.30	0.05	$ V_{ub} $ (exclusive)	8% (*)	3.0%~(*)
$\sin(2eta)~(Dh^0)$	0.10	0.02	$ V_{ub} $ (inclusive)	8% (*)	2.0% (*)
$\cos(2eta)~(Dh^0)$	0.20	0.04		• •	• •
$S(J/\psi^{\cdot}\pi^{0})$	0.10	0.02	$\mathcal{B}(B \to \tau \nu)$	20%	4% (†)
$S(D^+D^-)$	0.20	0.03	$\mathcal{B}(B \to \mu \nu)$	visible	5%
$S(\phi K^0)$	0.13	0.02 (*)	$\mathcal{B}(B \to D_{TV})$	1.0%	2%
$S(\eta' K^0)$	0.05	$0.01 \; (*)$	0(0,0000)	1070	270
$S(K^0_s K^0_s K^0_s)$	0.15	0.02 (*)	$\mathcal{B}(\mathcal{D} \to \infty)$	1 = 07	207 (+)
$S(K_s^0\pi^0)$	0.15	$0.02 \; (*)$	$\mathcal{B}(B \to \rho \gamma)$ $\mathcal{B}(B \to t \infty)$	1070	570 (]) E07
$S(\omega K_s^0)$	0.17	0.03~(*)	$B(B \to \omega \gamma)$	50% 0.005 (1)	570 0.001 (L_)
$S(f_0K_s^0)$	0.12	$0.02 \; (*)$	$A_{CP}(B \to K^*\gamma)$	0.007 (†)	0.004 († *)
			$A_{CP}(B o ho \gamma)$	~ 0.20	0.05
$\gamma \ (B \to DK, D \to CP \text{ eigenstates})$) $\sim 15^{\circ}$	2.5°	$A_{CP}(b ightarrow s \gamma)$	$0.012(\dagger)$	0.004 (†)
$\gamma \ (B \to DK, D \to \text{suppressed stat})$	tes) $\sim 12^{\circ}$	2.0°	$A_{CP}(b ightarrow (s+d) \gamma)$	0.03	0.006 (†)
$\gamma \ (B \to DK, D \to \text{multibody stat})$	res) $\sim 9^{\circ}$	1.5°	$Sig(K^0_S\pi^0\gammaig)$	0.15	0.02 (*)
$\gamma \ (B \to DK, ext{ combined})$	$\sim 6^{\circ}$	1-2°	$S(ho^0\gamma)$	possible	0.10
$lpha \; (B ightarrow \pi \pi)$	$\sim 16^{\circ}$	3°	$A_{CP}(B o K^* \ell \ell)$	7%	1%
$lpha \; (B ightarrow ho ho)$	$\sim 7^{\circ}$	1-2° (*)	$A^{FB}(B \to K^*\ell\ell)s_0$	25%	9%
$lpha \ (B ightarrow ho \pi)$	$\sim 12^{\circ}$	2°	$A^{FB}(B \to X_{*}\ell\ell)s_{0}$	35%	5%
$\alpha \ (\text{combined})$	$\sim 6^{\circ}$	1-2° (*)	$\mathcal{B}(B \to K \nu \overline{\nu})$	visible	20%
$2\beta \perp \propto (D^{(*)\pm}\pi^{\mp} D^{\pm}K^{0}\pi^{\mp})$	200	50	${\cal B}(B o \pi u ar u)$	_	possible
(ימפגר שרי מיישרי בערי שע	20	0			

τ Physics		
Process	Sensitivity	
$\mathcal{B}(au o \mu \gamma)$	$2 imes 10^{-9}$	
${\cal B}(au o e \gamma)$	$2 imes 10^{-9}$	
${\cal B}(au o \mu \mu \mu)$	$2 imes 10^{-10}$	
$\mathcal{B}(au ightarrow eee)$	$2 imes 10^{-10}$	
$\mathcal{B}(au o \mu \eta)$	$4 imes 10^{-10}$	
${\cal B}(au o e\eta)$	$6 imes 10^{-10}$	
${\cal B}(au o \ell K^0_s)$	$2 imes 10^{-10}$	

B _s Physics @		
Observable	Error with 1 ab^{-1}	Error with 30 ab^{-1}
$\Delta\Gamma$	$0.16 \mathrm{\ ps^{-1}}$	$0.03 \ {\rm ps^{-1}}$
Γ	$0.07 \ {\rm ps}^{-1}$	$0.01 \ {\rm ps^{-1}}$
β_s from angular analysis	20°	8°
$A^s_{ m SL}$	0.006	0.004
$A_{ m CH}$	0.004	0.004
${\cal B}(B_s o \mu^+ \mu^-)$	-	$< 8 imes 10^{-9}$
$\left V_{td}/V_{ts} ight $	0.08	0.017
$\mathcal{B}(B_s o \gamma \gamma)$	38%	7%
eta_s from $J/\psi\phi$	10°	3°
β_s from $B_s \to K^0 \bar{K}^0$	24°	11°

	Charm r	nixing	and (
-			22(1.2)	((2==2))
	Mode	Observable	T(4S)	$\psi(3770)$
	$D^0 \rightarrow K^+ \pi^-$	$x^{\prime 2}$	(15 ab) 3×10^{-5}	(300 ID)
	2 11 1	y'	7×10^{-4}	
	$D^0 \rightarrow K^+ K^-$	y_{CP}	5×10^{-4}	
	$D^0 \to K^0_S \pi^+ \pi^-$	x	$4.9 imes 10^{-4}$	
		y	3.5×10^{-4}	
		q/p	3×10^{-2}	
	$\psi(3770) \rightarrow D^0 \overline{D}^0$	$\phi = x^2$	2*	$(1-2) \times 10^{-5}$
	$\varphi(3110) \rightarrow D^{-}D^{-}D^{-}D^{-}D^{-}D^{-}D^{-}D^{-}$	u v		$(1-2) \times 10^{-3}$ $(1-2) \times 10^{-3}$
		$\cos \delta$		(0.01 - 0.02)
	Charm F	-CNC		
	Channel			Sensitivity
	$\frac{\text{Channel}}{D^0 \to e^+ e^-, L}$	$D^0 o \mu^+ \mu^-$	-	$\frac{\text{Sensitivity}}{1 \times 10^{-8}}$
	Channel $D^0 \rightarrow e^+e^-, D^-$ $D^0 \rightarrow \pi^0 e^+ e^-, e^-$	$D^0 \to \mu^+ \mu^-$, $D^0 \to \pi^0 \mu^0$		$\begin{array}{c} \text{Sensitivity}\\ 1\times 10^{-8}\\ 2\times 10^{-8} \end{array}$
	Channel $D^0 \rightarrow e^+e^-, D^-$ $D^0 \rightarrow \pi^0 e^+ e^-,$ $D^0 \rightarrow \eta e^+ e^-,$	$D^0 ightarrow \mu^+ \mu^-$, $D^0 ightarrow \pi^0 \mu^+$ $D^0 ightarrow \eta \mu^+$	$\mu^+\mu^ \mu^-$	$\begin{array}{c} \text{Sensitivity}\\ 1\times10^{-8}\\ 2\times10^{-8}\\ 3\times10^{-8} \end{array}$
	Channel $D^0 \rightarrow e^+e^-, D^-$ $D^0 \rightarrow \pi^0 e^+e^-, D^0 \rightarrow \eta e^+e^-, D^0 \rightarrow K^0_s e^+e^-$	$D^0 \to \mu^+ \mu^-$, $D^0 \to \pi^0 \mu^+$ $D^0 \to \eta \mu^+$ $T, D^0 \to K$	$\mu^{+}\mu^{-}$ μ^{-} $_{s}^{0}\mu^{+}\mu^{-}$	$Sensitivity$ 1×10^{-8} 2×10^{-8} 3×10^{-8} 3×10^{-8}
_	Channel $D^0 \rightarrow e^+e^-, D^-$ $D^0 \rightarrow \pi^0 e^+ e^-,$ $D^0 \rightarrow \eta e^+ e^-,$ $D^0 \rightarrow K^0_s e^+ e^-$ $D^+ \rightarrow \pi^+ e^+ e^-$	$D^0 \rightarrow \mu^+ \mu^-$, $D^0 \rightarrow \pi^0 \mu^+$ $D^0 \rightarrow \eta \mu^+$ $T, D^0 \rightarrow K$ $T, D^+ \rightarrow \pi^-$	$\mu^{+}\mu^{-}$ μ^{-} $_{s}^{0}\mu^{+}\mu^{-}$ $^{+}\mu^{+}\mu^{-}$	$Sensitivity$ 1×10^{-8} 2×10^{-8} 3×10^{-8} 3×10^{-8} 1×10^{-8}
_	Channel $D^0 \rightarrow e^+e^-, D^-$ $D^0 \rightarrow \pi^0 e^+ e^-, D^0 \rightarrow \eta e^+ e^-, D^0 \rightarrow K_s^0 e^+ e^-$ $D^+ \rightarrow \pi^+ e^+ e^-$	$D^0 \rightarrow \mu^+ \mu^-$ $p D^0 \rightarrow \pi^0 \mu^+$ $D^0 \rightarrow \eta \mu^+$ $T, D^0 \rightarrow K$ $T, D^+ \rightarrow \pi^0$	$\mu^{+}\mu^{-}$ μ^{-} $_{s}^{0}\mu^{+}\mu^{-}$ $^{+}\mu^{+}\mu^{-}$	$Sensitivity$ 1×10^{-8} 2×10^{-8} 3×10^{-8} 3×10^{-8} 1×10^{-8}
_	Channel $D^0 \rightarrow e^+e^-, D^-$ $D^0 \rightarrow \pi^0 e^+ e^-,$ $D^0 \rightarrow \eta e^+ e^-,$ $D^0 \rightarrow K^0_s e^+ e^-$ $D^+ \rightarrow \pi^+ e^+ e^-$ $D^0 \rightarrow e^\pm \mu^\mp$	$D^0 \rightarrow \mu^+ \mu^-$, $D^0 \rightarrow \pi^0 \mu^+$ $D^0 \rightarrow \eta \mu^+$ $T, D^0 \rightarrow K$ $T, D^+ \rightarrow \pi^0$	$\mu^{+}\mu^{-}$ μ^{-} ${}_{S}^{0}\mu^{+}\mu^{-}$ ${}^{+}\mu^{+}\mu^{-}$	$\begin{array}{c} {\rm Sensitivity} \\ 1\times 10^{-8} \\ 2\times 10^{-8} \\ 3\times 10^{-8} \\ 3\times 10^{-8} \\ 1\times 10^{-8} \\ 1\times 10^{-8} \end{array}$
_	Channel $D^0 \rightarrow e^+e^-, L$ $D^0 \rightarrow \pi^0 e^+e^-, D^0 \rightarrow \eta e^+e^-, D^0 \rightarrow K_s^0 e^+e^-, D^+ \rightarrow \pi^+e^+e^-$ $D^+ \rightarrow \pi^+e^+e^-$ $D^0 \rightarrow e^{\pm}\mu^{\mp}$ $D^+ \rightarrow \pi^+e^{\pm}\mu^{\mp}$	$D^0 \rightarrow \mu^+ \mu^-$ $p D^0 \rightarrow \pi^0 \mu^+$ $D^0 \rightarrow \eta \mu^+$ $T, D^0 \rightarrow K$ $T, D^+ \rightarrow \pi^0$	$\mu^{+}\mu^{-}$ μ^{-} $_{s}^{0}\mu^{+}\mu^{-}$ $^{+}\mu^{+}\mu^{-}$	$\begin{array}{c} {\rm Sensitivity} \\ 1\times 10^{-8} \\ 2\times 10^{-8} \\ 3\times 10^{-8} \\ 1\times 10^{-8} \\ 1\times 10^{-8} \\ 1\times 10^{-8} \\ 1\times 10^{-8} \end{array}$
_	Channel $D^0 \rightarrow e^+e^-, L$ $D^0 \rightarrow \pi^0 e^+ e^-, D^0 \rightarrow \eta e^+ e^-, D^0 \rightarrow K_s^0 e^+ e^-, D^+ \rightarrow \pi^+ e^+ e^-$ $D^+ \rightarrow \pi^+ e^+ e^-$ $D^0 \rightarrow e^{\pm} \mu^{\mp}$ $D^+ \rightarrow \pi^+ e^{\pm} \mu^{\mp}$ $D^0 \rightarrow \pi^0 e^{\pm} \mu^{\mp}$	$D^{0} \rightarrow \mu^{+}\mu^{-}$ $, D^{0} \rightarrow \pi^{0}\mu^{+}$ $D^{0} \rightarrow \eta\mu^{+}$ $T, D^{0} \rightarrow K$ $T, D^{+} \rightarrow \pi^{-}$	$\mu^{+}\mu^{-}$ μ^{-} $\mu^{0}_{s}\mu^{+}\mu^{-}$ $^{+}\mu^{+}\mu^{-}$	$\begin{array}{c} \text{Sensitivity} \\ 1\times 10^{-8} \\ 2\times 10^{-8} \\ 3\times 10^{-8} \\ 1\times 10^{-8} \\ 1\times 10^{-8} \\ 1\times 10^{-8} \\ 2\times 10^{-8} \end{array}$
_	Channel $D^0 \rightarrow e^+e^-, L$ $D^0 \rightarrow \pi^0 e^+e^-, L$ $D^0 \rightarrow \eta e^+e^-, L$ $D^0 \rightarrow \pi^e^+e^-, L$ $D^0 \rightarrow \pi^e^+e^-, L$ $D^0 \rightarrow \pi^e^+e^-, L$ $D^0 \rightarrow \pi^e^+e^-, L$ $D^0 \rightarrow \pi^e^\pm\mu^\pm, L$ $D^0 \rightarrow \pi^0 e^\pm\mu^\pm, L$ $D^0 \rightarrow \eta e^\pm\mu, L$ $D^0 \rightarrow \eta $	$D^{0} \rightarrow \mu^{+}\mu^{-}$ $p^{0} \rightarrow \pi^{0}\mu^{+}$ $D^{0} \rightarrow \eta\mu^{+}$ $T, D^{0} \rightarrow K$ $T, D^{+} \rightarrow \pi^{-}$	$\mu^{+}\mu^{-}$ μ^{-} $_{s}^{0}\mu^{+}\mu^{-}$ $^{+}\mu^{+}\mu^{-}$	$\begin{array}{c} \text{Sensitivity} \\ 1\times 10^{-8} \\ 2\times 10^{-8} \\ 3\times 10^{-8} \\ 1\times 10^{-8} \\ 1\times 10^{-8} \\ 1\times 10^{-8} \\ 2\times 10^{-8} \\ 3\times 10^{-8} \end{array}$
	Channel $D^0 \rightarrow e^+e^-, D$ $D^0 \rightarrow \pi^0 e^+e^-, D^0 \rightarrow \eta e^+e^-, D^0 \rightarrow K_s^0 e^+e^-, D^+ \rightarrow \pi^+e^+e^-, D^+ \rightarrow \pi^+e^\pm\mu^-, D^0 \rightarrow e^\pm\mu^\mp, D^0 \rightarrow \pi^0 e^\pm\mu^\mp, D^0 \rightarrow \eta e^\pm\mu^\mp, D^0 \rightarrow \eta e^\pm\mu^\mp, D^0 \rightarrow K_s^0 \mu^\mp, D^0 \mp, D^0 \mp, D^0 \mp, D^0 \mp, D^0 \mp, D^0 \mp, D^0 \mp,$	$D^{0} \rightarrow \mu^{+}\mu^{-}$ $p^{0} \rightarrow \pi^{0}\mu^{+}$ $D^{0} \rightarrow \eta\mu^{+}$ $T, D^{0} \rightarrow K$ $T, D^{+} \rightarrow \pi$ F	$\mu^{+}\mu^{-}$ μ^{-} $\beta^{0}_{s}\mu^{+}\mu^{-}$ $^{+}\mu^{+}\mu^{-}$	$\begin{array}{c} \text{Sensitivity} \\ 1\times 10^{-8} \\ 2\times 10^{-8} \\ 3\times 10^{-8} \\ 1\times 10^{-8} \\ 1\times 10^{-8} \\ 1\times 10^{-8} \\ 2\times 10^{-8} \\ 3\times 10^{-8} \\ 3\times 10^{-8} \end{array}$

$D^+ \rightarrow \pi^- e^+ e^+, D^+ \rightarrow K^- e^+ e^+$	$1 imes 10^{-8}$
$D^+ \to \pi^- \mu^+ \mu^+, \ D^+ \to K^- \mu^+ \mu^+$	$1 imes 10^{-8}$
$D^+ \to \pi^- e^\pm \mu^\mp, \ D^+ \to K^- e^\pm \mu^\mp$	$1 imes 10^{-8}$

Spectroscopy

SuperB vs. Super LHCb

 $B_{\mbox{\scriptsize s}}$ time dependent analysis only accessible to LHCb

Common

Decays with neutrinos, neutrals, only accessible to SuperB

Constraints on NP from $B \rightarrow \tau \nu, B \rightarrow D \tau \nu$

Constraints on NP with mass insertions

MSSM with generic squark mass matrices

 $(\delta_{ij}^{q})_{AB}$ $q = \{u, d\}, (A, B) = \{L, R\}$ $(\tilde{q}_{i})_{A} = - - - - - - (\tilde{q}_{j})_{B}$ $(i, j) = \{1, 2, 3\}$

 $(\delta_{ij}^{q})_{AB}$ = SUSY mass insertions parameters

D. Becirevic, et. al., Nucl.Phys.B634:105-119,2002

constraints on $(\delta_{13})_{LL}$ from Δm_d , β and $\bar{\rho}, \bar{\eta}$

23

CP violation in Charm sector

- Recent evidence of D mixing from BaBar, Belle and CDF opens new windows to search for New Physics.
- CP violation in charm decays would represent a signal of New Physics. •
- The SuperB data sample would allow to improve the sensitivity on CPV • almost by a factor 10.

 $L = 10^{36} cm^{-2} s^{-1} \qquad L = 10^{35} cm^{-2} s^{-1}$ SuperB will be able to run both at $\Upsilon(4S)$ and $\Psi(3770)$

Mode	Observable	$\Upsilon(4S)$	$\psi(3770)$	LHCb
		(75 ab^{-1})	(300 fb^{-1})	(10 fb^{-1})
$D^0 \rightarrow K^+ \pi^-$	x'^2	$3 imes 10^{-5}$	bo	6×10^{-5}
	y'	$7 imes 10^{-4}$	ing	$9 imes 10^{-4}$
$D^0 \rightarrow K^+ K^-$	y_{CP}	$5 imes 10^{-4}$	ии	$5 imes 10^{-4}$
$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	x	4.9×10^{-4}	ru	
	y	3.5×10^{-4}	uth	
	q/p	$3 imes 10^{-2}$	101	
	ϕ	2°	n i	
$\psi(3770) \rightarrow D^0 \overline{D}^0$	x^2		$(1-2) \times 10^{-5}$	
	y		$(1\!-\!2)\times 10^{-3}$	
	$\cos \delta$		(0.01 - 0.02)	

At SuperB

CKM precision measurements

Parameters	UT Fit Today	UT fit at SuperB (50 ab ⁻¹)
ρ	0.154 ± 0.022	±0.0028
η	0.342 ± 0.014	±0.0024
α(°)	92.0 ± 3.4	±0.45
β(°)	22.0 ± 0.8	±0.17
γ(°)	65.6 ± 3.3	±0.38

At SuperB (with 50 ab⁻¹)

Expected an improvement in sensitivity of about an order of magnitude.

Test of CKM mechanism better than 1% level precision.

Conclusions

- B factories (BaBar and Belle) confirmed the success of the CKM mechanism:
 - results well beyond the original physics goal:
 - discovery of new states, evidence of D⁰ mixing, sizable constraints on New Physics models, many more...
 - analyses sensitive to New Physics effects are statistically limited.
- SuperB experiment represents an alternative path to New Physics wrt LHC program:
 - explore NP scale beyond the LHC reach looking for indirect signals.
 - study the flavor structure of NP

Next SuperB meeting: http://www.pi.infn.it/bfactory/elba2010.html
XIII SuperB General Meeting - Isola d'Elba from 30 May 2010 to 05 June 2010

Backup Slides

B factories physics program

• B physics:

- CKM matrix and Unitarity Triangle (UT):
- Rare decays: leptonic decays, radiative decays
- Searches for Standard Model forbidden processes
- Spectroscopy

• Charm physics:

- D⁰ mixing and search for CP violation:
- Rare decays: leptonic decays, radiative decays
- Searches for Standard Model forbidden processes
- Spectroscopy

Tau physics:

- Searches for lepton flavor violating (LFV) decays
- Lepton universality
- Upsilon(2S), (3S) physics:
 - Searches for Standard Model forbidden processes
- Initial State Radiation (ISR)physics:
 - Spectroscopy, form factors

BaBar published about 420 papers Belle published about 300 papers

• $D^0 - \overline{D}^0$ mixing and search for CP violation

- Select D^0 candidates from $e^+e^- \rightarrow c\overline{c}$ events:
 - "flavor tagged" at production according to the pion charge $D^{*+} \rightarrow D^0 \pi^+$.
 - ("flavor untagged" 4 times statistics wrt "flavor tagged" sample but with lower purity.

Flavor mixing occurs when flavor eigenstates differ from mass eigenstates: well established phenomena in neutral K, B_d, B_s systems.

$$|D_{1,2}^{\downarrow}\rangle = p|D^{0}\rangle \pm q|\overline{D}^{0}\rangle \qquad |q|^{2} + |p|^{2} = 1$$

Mixing parameters are expressed in terms of x, y parameters, proportional to the mass and decay width differences of the mass eigenstates:

$$x=rac{m_1-m_2}{\Gamma};\;\;y=rac{\Gamma_1-\Gamma_2}{2\Gamma}$$
 ,where $\Gamma=rac{\Gamma_1+\Gamma_2}{2}$

Large theoretical uncertainties on x, y values. In SM expected $|x| < 10^{-2}$, $|y| < 10^{-2}$. *Observation of large CP violation in* $D^0 - \overline{D}^0$ *system would be evidence of new physics.*

Mixing in lifetime ratio of the CP-even eigenstates $D^0 \rightarrow K^+K^-, \pi^+\pi^- vs K^-\pi^+$

• Mixing and CPV will alter the decay time distribution of CP eigenstates to exponential with effective lifetimes τ_{hh}^{\pm} :

$$\tau_{hh}^{+} = \tau(D^{0} \to h^{+}h^{-})$$

$$\tau_{hh}^{-} = \tau(\overline{D}^{0} \to h^{+}h^{-})$$

$$\tau_{K\pi} = \tau(D^{0} \to K^{-}\pi^{+})$$

measured quantities

Mixing and CP violation (CPV) observables

Mixing:
$$y_{CP} = \frac{\tau_{K\pi}}{\langle \tau_{hh} \rangle} - 1$$

CPV: $\Delta Y = \frac{\tau_{K\pi}}{\langle \tau_{hh} \rangle} A_{\tau}; \left(\Delta Y = -\frac{\tau_{K\pi}}{\langle \tau_{hh} \rangle} A_{\Gamma} \right)$

$$\langle \tau_{hh} \rangle \stackrel{def.}{=} \frac{\tau_{hh}^+ + \tau_{hh}^-}{2} A_\tau = \frac{\tau_{hh}^+ - \tau_{hh}^-}{\tau_{hh}^+ + \tau_{hh}^-} = -A_\Gamma$$

If CP is conserved $y_{CP} \equiv y$ and $\Delta Y = A_{\Gamma} = 0$

Belle results for CP-even decays: y_{CP} , A_{Γ}

Using 540 fb⁻¹ of data

PRL 98:211803,2007

Use only D^{*} tagged events

	уср (%)	$A_{\Gamma}(\%)$
KK	1.25±0.39±0.28	0.15±0.34±0.16
ππ	1.44±0.57±0.42	$-0.28\pm0.52\pm0.30$
ΚΚ+ππ	1.31±0.32±0.25	0.01±0.30±0.15

 $A_{\Gamma} \simeq -\Delta Y$

Evidence of mixing at 3.20 level. No evidence for CP violation

BaBar results for "untagged" sample

 t_{KK} (fs) = 405.85 ± 1.00 (stat.)

BaBar results based on 384 fb⁻¹ of data

- "Flavor Tagged" analysis: PRD 78 011105(R) (2008)

Evidence of mixing at 3σ *level No evidence of CP violation*

- Combined y_{CP} result: "Tagged" + "Untagged" analysis:

statistically uncorrelated samples, conservatively assuming 100% correlation in systematic errors

 $y_{CP} = [1.16 \pm 0.22 \text{ (stat)} \pm 0.18 \text{ (syst)}]\%$ Evidence of mixing at 4.1 σ level

PRD 80, 071103(R) (2009)

HFAG average for mixing and CPV parameters

Updated averages (CPV allowed) with all available measurements: mostly from B Factories (also CDF).

Evidence of D^0 mixing exceeds 10σ combining all experimental results:

though no single measurement exceeds 5σ .