

Commissioning di CMS

Paolo Meridiani (ETH Zurich)

IFAE 2010 Roma - 08/04/2010

Outline

CMS Detector status and commissioning

- Preparation for beam (Sept08/Nov9): cosmic runs
- Commissioning with beam: the 900 GeV run
 - \cdot First performance plots and comparison with MC

CMS in a nutshell

Last year of preparation (sept 08 – nov 09)

Cosmic Runs At Four Tesla

CMS operation

CMS is in good shape >99% is operational

Good data taking efficiency CRAFT09 ≈ 80% (reaching 90% during weekends) And during LHC first beams was 85%

Rewards

• Continuous preparation while waiting for the beam

- Improved stability and reliability of all online operational aspects (services/DAQ/Trigger)
- Improved reconstruction software robustness
- Test software & computing workflows
- Deeper understanding of detector performance
 - 23 articles resulted in a dedicated JINST volume (2010 J. Inst 5)
 - Invested the maximum effort to understand the basic detector performance before LHC startup (especially for tracker and muon system) "profiting" from the shutdown...

From the 23 papers submitted to JINST...

CRAFT: Measurement of B field

- Good understanding of the solenoid B field in the tracker region and in the return yoke
 - Map in the tracker volume
 - Measured by probes in 2006 at 0.005%
 - Verified in situ with cosmics at 0.1%
 - Field map in the yoke at first found over-estimated by 20% looking at muon residuals in bending plane
 - Too tight physical boundaries were imposed in the finiteelement model (radius,z)
 - New model implemented, now accuracy @ 3-8% level (ok for physics)

http://arxiv.org/abs/0910.5530

CRAFT: Calorimeters

First measurement of muon critical energy in lead tungstate $160^{+5}_{-6} \pm 8$ GeV,

Using only bottom half of ECAL Angle between muon and crystal axis < 0.5 radians

Scale measured in TB confirmed at 2% accuracy

Improved understanding of noise and synchronization in ECAL and HCAL

http://arxiv.org/abs/0911.4044

For HCAL time spread measured to be ±2ns http://arxiv.org/abs/0911.4877

Commissioning with beam

Appetizer: the LHC sector test

Dump LHC beam on collimators upstream to CMS

2 series of "splash events" in Sept08 and Nov09 (in 2009 collected 1105 shots)

Allow to check/improve synchronization of individual channels in calorimeters (tracking off, muons at reduced HV)

Correlation between energy measured in ECAL and HCAL barrel

First tracks from collisions @ 900 GeV

Commissioning of track reconstruction algorithm:

Tracks are seeded either by pixel triplets or pairs with constraint on the beam spot Track selection applied here: $|d_z/\sigma| < 10$ $\sigma_{pT}/p_T < 10\%$ Number of Tracks / 0.1 CMS Preliminary 80 Data Monte Carlo √s=900GeV 70 60 50 40 30 20 10 0 -3 -2 0 -1 Track Azimuthal Angle

Dips in azimuthal distribution ($\phi = -1.2$) are due to inactive modules and are well reproduced in MC (affecting only low p_T tracks)

More advanced tools: dE/dx

dE/dx Estimator (MeV/cm)

CMS Silicon tracker has analog readout

 $dE/dX = \left(\frac{1}{N}\sum_{i}c_{i}^{k}\right)^{1/k}k = -2$

dE/dX computed for tracks: • \geq 10 Strip Hits • compatible with primary vertex $|d_{xy}| < 2cm$, $|d_z| < 15cm$

Validated using higher and lower momentum track from selected $\Lambda^0 \rightarrow p\pi$ decays

dE/dX @ work: φ(1020)→K+K⁻

Φ→KK: Kaons with tracks ≥5hits, χ_{norm}^2 < 2, d_{xy} <3mm, p_T >0.5 GeV Particle ID: p>1GeV OR dE/dx inside kaon range

17

Secondary vertex @ work

Selection for Ξ : Lambda mass within 8 MeV Lambda-pion vertex fit probability > 1% Both pions have the same sign charge 3D impact parameter significance > 3

Nuclear interactions

Beam pipe slightly offcenter

Inner carbon fiber shielding of the pixel visible

About 5% of charged pions interact in the tracker volume

Resolution of the nuclear interaction vertex is about $50 \,\mu$ m (vertices associated to V₀ and conversions are removed)

Calorimetry @ work: jets @ CMS

Redundant way of reconstructing jets in CMS

CaloJets: using CaloTower constituents

Track Corrected Jets (Jet + Tracks): replacing for charged particles calorimetric response with corresponding tracks and adding out of cone tracks

Particle Flow Jets: exploiting at best redundancy and granularity of the CMS detector. PF aims to reconstruct individual particles, then cluster them in jets

For these first studies focused only on the antiKT=0.5 algorithm JHEP04(2008)063

Montecarlo based energy corrections are applied in what follows

Inclusive & Di-jets selections @ 900 Gev

Di-Jet selection

Loose JetId is applied, high purity achieved with topological requirement

Inclusive Jet selection

No topological cut: more sensitive to instrumental

Tighter Jetld is applied

		CaloJets	JPTJets	PFJets
	$p_{\rm T}^{\rm min}$	10 GeV	8 GeV	8 GeV
	η^{\max}	3.0	2.0	3.0
Salaction		$\sqrt{s} = 900 \text{GeV}$		
Selection		CaloJe	ets JPTJets	PFJets
$p_{\mathrm{T}} > p_{\mathrm{T}}^{\mathrm{min}}$,	$ \eta < \eta^n$	^{nax} 574	418	719
$ \Delta \varphi(\mathbf{j}_1,\mathbf{j}_2) $	$-\pi <1$	1.0 339	268	556
loose JetID		246	218	531
#Events passing selection				
_				
		CaloJets	JPTJets	PFJets
_	p _T min	CaloJets 15 GeV	JPTJets 13 GeV	PFJets 10 GeV
_	$p_{\mathrm{T}}^{\mathrm{min}}$ η^{max}	CaloJets 15 GeV 2.6	JPTJets 13 GeV 2.0	PFJets 10 GeV 3.0
Galaction	$p_{\mathrm{T}}^{\mathrm{min}}$ η^{max}	CaloJets 15 GeV 2.6 √	JPTJets 13 GeV 2.0 $\sqrt{s} = 900$ G	PFJets 10 GeV 3.0 eV
Selection	$p_{\mathrm{T}}^{\mathrm{min}}$ η^{max}	CaloJets 15 GeV 2.6 √ CaloJets	JPTJets 13 GeV 2.0 $\sqrt{s} = 900$ G 5 JPTJets	PFJets 10 GeV 3.0 eV PFJets
Selection $p_{\rm T} > p_{\rm T}^{\rm min}, \eta <$	$p_{\rm T}^{\rm min}$ $\eta^{\rm max}$	CaloJets 15 GeV 2.6 √ CaloJets 1462	JPTJets 13 GeV 2.0 $\sqrt{s} = 900$ G 5 JPTJets 588	PFJets 10 GeV 3.0 eV PFJets 2499
Selection $p_{\rm T} > p_{\rm T}^{\rm min}, \eta < tight JetID$	$p_{\rm T}^{\rm min}$ $\eta^{\rm max}$	CaloJets 15 GeV 2.6 √ CaloJets 1462 459	JPTJets 13 GeV 2.0 $\sqrt{s} = 900$ G 5 JPTJets 588 302	PFJets 10 GeV 3.0 eV PFJets 2499 2088

bkg

Observed spectra @ 900 GeV: Di-Jets and Inclusive Jets

Some Jet properties

Distributions are for jets selected in di-jet events

Confident to look at jets at higher Et in 7 TeV data

PF commissioning

Single particle response in the calorimeter seems to be well reproduced by MC. Fundamental ingredient for the ParticleFlow and Jet+Tracks algorithm

 $|\eta|$ <2.4, 1<p_T<30 GeV, calorimeter calibration obtained for the moment from MC

Inclusive PF jets uncorrected $p_T > 5$ GeV (no further cut is applied!)

Different jet components as a function of η

Neutral hadrons Photons Charged hadrons

Commissioning of Missing Transverse Energy

- Most sensitive variable to instrumental background
- 3 MET calculation methods
 - CaloMET
 - Tracker corrected MET
 - MET from Particle Flow
- 900 GeV data have been used to start commissioning the calorimeter noise removal algorithms. Tools are in place for:
 - Particle Hits in HF PMT windows and fibers (known since test beam)
 - Coherent noise in HB/HE due HPD discarges and pedestal shifts (known since Cosmic runs, random occurrence)
 - Isolated anomalous signals in EB
 - Beam halo signals in calorimeters

26

Towards lepton commissioning: Di-muon event @ 2.36 TeV

Summary

• CMS commissioning is well underway

- Cosmic runs allowed us to have a good understanding of our detector before beam
- Good agreement between first data @ 900 GeV and MC in several areas: tracking, calorimeters, jets, MET...
- Understanding of noise, calibration and alignment already at a level that allows first physics studies to be done

• But still lot of work ahead of us:

- Not many signal electrons and muons have been observed @ 900 GeV (mostly fakes). First observations of J/ ψ , Y, W, Z signals are not far... We need these signals to fully commission lepton reconstruction (study efficiencies, identification and fake rate)
- And also: improve calibration of calorimeters, electromagnetic energy scale, jet energy scale, tracker material...