Incontri di Fisica delle Alte Energie 2010 Roma – 8 Aprile 2010

Kaon physics

(Fisica dei K: rassegna sperimentale)

Barbara Sciascia, LNF - INFN

Outline of the talk:

- "Vus saga" or "precise tests of SM from leptonic and semileptonic K decays"
- Measurement of R_K=Γ(Ke2)/Γ(Kµ2)
- (Near) future plans

Leptonic and semileptonic K decays

• Within the SM leptonic and semileptonic K decays can used to obtain the most accurate determination of the element Vus of the CKM matrix

$$\Gamma(K_{\ell 3(\gamma)}) = \frac{G_F^2 m_K^5}{192\pi^3} C_K S_{\text{ew}} |V_{us}|^2 f_+(0)^2 I_K^\ell(\lambda_{+,0}) \left(1 + \delta_{SU(2)}^K + \delta_{\text{em}}^{K\ell}\right)^2 \frac{\Gamma(K_{\ell 2(\gamma)}^{\pm})}{\Gamma(\pi_{\ell 2(\gamma)}^{\pm})} = \left|\frac{V_{us}}{V_{ud}}\right|^2 \frac{f_K^2 m_K}{f_\pi^2 m_\pi} \left(\frac{1 - m_\ell^2 / m_K^2}{1 - m_\ell^2 / m_\pi^2}\right)^2 \times (1 + \delta_{\text{em}})$$

• Test unitarity of the quark mixing matrix (V_{CKM}):

$$V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + \epsilon_{\rm NP}$$
 $\epsilon_{\rm NP} \sim M_W^2 / \Lambda_{\rm NP}^2$

NP test from (semi)leptonic K decays

Study within a **model-independent effective theory approach** the implications of precise measurements of K12 and K13 decays for SM estension [Cirigliano, Gonzalez-Alonso, and Jenkins, arXiv:0908.1754 hep-ph]

Phenomenology in U(3)⁵ flavor symmetry limit

• Taking into account all the Precision Electroweak constraints, the maximal deviation of $|\Delta_{CKM}|$ allowed is:

 $-9.5 \times 10^{-3} \le \Delta_{\rm CKM} \le 0.1 \times 10^{-3};$

 \rightarrow deviation from CKM unitarity at -1% level not ruled out by PEW tests.

• Even a % level test of CKM unitarity would provide information not available through other precision tests at low- and high-energy.

• δ Vus=0.5% combined with δ Vud=0.02% (nuclear beta decays) allow to probe NP effective scales of the order of 10 TeV.

NP test from (semi)leptonic K decays

Study within a **model-independent effective theory approach** the implications of precise measurements of Kl2 and Kl3 decays for SM [Cirigliano, Gonzalez-Alonso, and Jenkins, arXiv:0908.1754 hep-ph]

Beyond U(3)⁵ limit.

Corrections to the $U(3)^5$ limit can be introduce within MFV and via generic flavor structures (pseudoscalar and tensor structures).

A high sensitive probe of $U(3)^5$ violating structures is provided by comparing the Vus value extracted by the helicity suppressed Kµ2 decays and the helicity allowed K13 modes, using the ratio

$$R_{\mu 23} = \left| \frac{|V_{us}|}{|V_{ud}|} \frac{f_K}{f_\pi} \right|_{K_{\mu 2}} \frac{|V_{ud}|_{0+\to 0+}}{(|V_{us}|f_+(0))_{K_{\ell 3}}} \qquad \text{(minimize impact of } f_K \text{ and e.m. corrections)}$$

Within SM, $R_{\mu 23}=1$; the inclusion of Higgs-mediated scalar currents leads to

$$R_{\ell 23} = \left| 1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta} \right|$$

Determination of V_{us} from Kl2 decays

Within SM, the ratio of photon inclusive K_{12} to π_{12} decay rates is:

$$\frac{\Gamma(K_{\mu 2(\gamma)})}{\Gamma(\pi_{\mu 2(\gamma)})} = \frac{|V_{us}|^2}{|V_{ud}|^2} \times \frac{f_{\rm K}}{f_{\pi}} \times \frac{M_{\rm K}(1-m_{\mu}^2/M_{\rm K}^2)^2}{m_{\pi}(1-m_{\mu}^2/m_{\pi}^2)^2} \times (1+\delta_{\rm em})$$

Obtain $|V_{us}|$ from:

- measurements of the inclusive K_{12} and π_{12} decay widths;
- $|V_{ud}|$ =0.97425(22) from super-allowed 0⁺ \rightarrow 0⁺ nuclear beta decays [Hardy and Towner, Phys. Rev. C79(2009) 055502]

Use precise evaluation of long-distance e.m. corrections $\delta_{em} = -0.0070(18)$.

 $f_{\rm K}/f_{\pi}$ not protected by the Ademollo-Gatto theorem: only lattice.

(lattice calculation of $f_{\rm K}/f_{\pi}$ and radiative corrections benefit of cancellations).

Determination of V_{us} from Kl3 decays

$$\Gamma(K_{l3(\gamma)}) = \frac{C_{K}^{2} G_{F}^{2} M_{K}^{5}}{192\pi^{3}} S_{EW} |V_{us}|^{2} |f_{+}(0)|^{2} I_{K,l}(\lambda) (1 + \delta_{K}^{SU(2)} + \delta_{K,l}^{EM})^{2}$$

(with $K = K^+$, K^0 ; l = e, μ and $C_K^2 = 1/2$ for K^+ , 1 for K^0)

		Theory	Experiment				
Decay Rate				$\Gamma(\mathbf{K}_{13(\gamma)})$ BR and lifetimes			
Form Factor	∫ ₊ (0) Hadro zero m	onic matrix e omentum tra	lement at nsfer	$I_{K,l}(λ)$ Phase space: $λ$ param. form factor dependence on t			
Corrections	S _{EW} short distance EW	δ _K ^{SU(2)} strong SU(2) breaking	δ _{K,l} EM long distance EM				

V_{us} estimate

• Present world data for $K \rightarrow \pi l \nu$ BR's quite satisfactory, determined by experiments with very different techniques:

KLOE@DaΦne: pure K beams, lifetimes, absolute BR **NA48@CERN**: intense K⁰, K⁺ beams from SPS proton beam, ratio of BR's **KTeV@FermiLab**: intense K_L beam from Tevatron proton beam, ratio of BR's **ISTRA+@IHEP** (Protvino): ratio of K⁺13 BR's

- ...and the **theoreticians**!
- FlaviaNet Kaon Working Group: do the dirty job of putting all together...

-ph] 11 Jan 2008

 Precision tests of the Standard Model with leptonic

 and semileptonic kaon decays
 FlaviaNet Kaon WG note:

 arXiv:0801.1817.

 Final updated version available

 The FlaviaNet Kaon Working Group*^{†‡}

 On arXiv in few days!

All results presented are from the final updated version.

Waiting for FLAG FlaviaNet WG results, we use:

 $f_{\rm K}/f_{\pi}$: average of results with analysis of all systematics [BMW, MILC09, HPQCD/UKQCD]. Av. with stat. err. only + smalles syst. err: **1.193(6)**. $f_+(0)$: the only available N_f=2+1 result: 0.9644(49) [RBC/UKQCD]

Note on BR and lifetime data set

Careful reading of the original papers \rightarrow definition of different data set and/or parameters wrt to PDG

Parameterization of form factors

 $|V_{us}f_{+}(0)|$ extraction needs calculation of the phase space integrals:

$$I_K^{\ell} = \int_{m_{\ell}^2}^{t_0} dt \; \frac{1}{m_K^8} \; \lambda^{3/2} \; \left(1 + \frac{m_{\ell}^2}{2t}\right) \; \left(1 - \frac{m_{\ell}^2}{2t}\right)^2 \left(\bar{f}_+^2(t) + \frac{3m_{\ell}^2 \Delta_{K\pi}^2}{(2t + m_{\ell}^2)\lambda} \bar{f}_0^2(t)\right)$$

- Class II: based on a systematic mathematical expansion (e.g. Taylor, "z-par.")
- freedom to determine high-order terms from data
- strong par. correlation \rightarrow no sensitivity to high order terms ($\lambda_0^{\prime\prime}$) [PoS 2008(KAON)002]
- accurate description in physical region needs at least 2nd Taylor exp. [PLB638(2009)480]
- test of low-energy dynamics involving Callan-Treiman th. needs orders>2nd.
- Class I: to reduce the number of parameters, impose additional physical constraints
- **pole**: dominance of single resonance $M_{V,S}$ (one free parameter) vector: K*(892) ok; scalar: no obvious dominance.
- **dispersive**: ff analytic (except real t> $(m_K+m_{\pi})^2$) functions in the complex t-plane. vector: numerically similar to pole (K*(892) dominance); scalar: necessary without dominant one-particle intermediate state.

<u>Kµ3 scalar ff: test of χPT</u>

Dispersive parameterization for $f_0(t)$ plus Callang $_0(t_{CT})$ Treiman relation

$$C\equiv \tilde{f}_0(\varDelta_{K\pi})=\frac{f_K}{f_\pi}\frac{1}{f_+(0)}+\varDelta_{CT}$$

Assuming a $f_{\rm K}/f_{\pi}$ value, obtain a value for $f_{+}(0)$. Consistency test between scalar ff measurement and lattice calculations.

WA for ln C gives: $f_{+}(0) = 0.974(12)$

NA48 value is inconsistent with theoretical expectations: $f_+(0) < 1 \rightarrow$ exclude NA48 Kµ3 ff from averages used for V_{us}.

WA exp. data on ln C alone gives $f_{\rm K}/f_{\pi}/f_{+}(0) = 1.225(14)$ completely independent of any information from lattice estimates

 $V_{\mu s} f_{+}(0)$ from K_{13} data

$ V_{us} f_{+}(0)$ 0.213 0.214 0.215 0.216 0.217			A % err	pprox. BR	contrib τ	. to % e Δ	err from Int
K _L e3	K _L e3	0.2163(6)	0.26	0.09	0.20	0.11	0.06
К _L µ3	<i>K_L</i> μ3	0.2166(6)	0.29	0.15	0.18	0.11	0.08
K _s e3	K _s e3	0.2155(13)	0.61	0.60	0.03	0.11	0.06
K [±] e3	K±e3	0.2160(11)	0.52	0.31	0.09	0.40	0.06
Κ [±] μ3	<i>К</i> ±µ3	0.2158(14)	0.63	0.47	0.08	0.39	0.08
0.213 0.214 0.215 0.216 0.217							

Average: $|V_{us}| f_+(0) = 0.2163(5)$ $\chi^2/ndf = 0.77/4 (94\%)$

Precise tests of SM

net Kaon WG Accuracy of SU(2)-breaking corrections

Fit 5 modes with separate values of $|V_{us}| f_{+}(0)$ for K^{\pm} and $K_{L,S}$ modes; K^{\pm} modes modes are corrected for the isospin-breaking using $\delta^{SU(2)}_{\text{theory}} = 2.9(4)\%$.

When fit performed without SU(2) corrections for K^{\pm} modes; from ratio of neutral- charged-modes, obtains an **experimental estimate of** $\delta^{SU(2)}$:

 $\delta^{SU(2)}_{exp} = 2.7(4)\%$

• Check of the $\delta^{SU(2)}$ estimate from χ PT; the uncertainty on $\delta^{SU(2)}_{\text{theory}}$ contributes significantly on the overall uncertainty of $|V_{us}|_{f_+}(0)$ from charged modes.

• Since $\delta^{SU(2)}$ can be expressed in terms of the quark mass ratio (at LO):

$$\delta_{SU(2)}^{K^{\pm}\pi^{0}} = \frac{3}{4} \frac{1}{R}$$
, with $R = \frac{m_{s} - \hat{m}}{m_{d} - m_{u}}$

its phenomenological determination can be **used to derive constraints on the ratio of quark masses**.

 K_{P3} data and lepton universality

For each state of kaon charge, evaluate:

$$r_{\mu e} = \frac{(R_{\mu e})_{\text{obs}}}{(R_{\mu e})_{\text{SM}}} = \frac{\Gamma_{\mu 3}}{\Gamma_{e 3}} \cdot \frac{I_{e 3} (1 + \delta_{e 3})}{I_{\mu 3} (1 + \delta_{\mu 3})} = \frac{[|V_{us}| f_{+}(0)]_{\mu 3, \text{ obs}}^{2}}{[|V_{us}| f_{+}(0)]_{e 3, \text{ obs}}^{2}} = \frac{g_{\mu}^{2}}{g_{e}^{2}}$$

$$\boxed{\text{Modes} \quad 2004 \text{ BRs*} \quad \text{World data}}$$

$$K_{L,S} \quad 1.040(13) \quad 1.003(5)$$

$$K^{\pm} \quad 1.013(12) \quad 0.998(9) \quad \text{*Assuming current values} \text{for form-factor parameters} \text{and } \Delta^{\text{EM}}; K_{S} \text{ not included}}$$

As statement on lepton universality Compare to results from world data:

As statement on calculation of δ^{EM}

 $(r_{\mu e}) = 1.0042(33)$ $\pi \rightarrow l \nu$

Ramsey-Musolf, Su & Tulin '07

 $\tau \rightarrow l \nu \nu (r_{\mu e}) = 1.000(4)$ Davier, Hoecker & Zhang '06

Highly successful Results confirmed at per-mil level

Determine $|V_{us}|$ and $|V_{ud}|$ from a fit to the results: $|V_{us} f_{+}(0)|=0.2163(5), f_{+}(0)=0.964(5);$ $|V_{us}|/|V_{ud}|f_K/f_{\pi}=0.2758(5), f_K/f_{\pi}=1.193(6)$ 0.228 $\leftarrow \mathsf{V}_{\mathsf{ud}} (0^+ \to 0^+)$ $\mathsf{V}_{\mathsf{us}} [\mathsf{V}_{\mathsf{ud}} (\mathsf{K}_{\mu 2})]$ $|V_{us}| = 0.2243(12)$ [K_{\ell3} only], $|V_{us}|/|V_{ud}| = 0.2312(13) \qquad [K_{\ell 2} \text{ only}].$ 0.226 Adding $|V_{ud}| = 0.97425(22)$, obtains fit with fit \rightarrow unitarity $(\chi^2/ndf=0.29/1, P=59\%, negligible)$ 0.224 correlation between V_{us} and V_{ud}): V_{us} (K_{I3}) $|V_{ud}| = 0.97425(22),$ $|V_{us}| = 0.2247(9) \qquad [K_{\ell 3}, K_{\ell 2}, 0^+ \to 0^+],$ 0.222 0.972 0.974 0.976 Including in the fit the unitairty constraint, obtains (χ^2 /ndf=0.60/2, P=74%): $|V_{us}| = \sin \theta_C = \lambda = 0.2251(6)$ [with unitarity]

Using the current WA value $|V_{ub}|=0.00393(36)$, the first-row unitarity sum is $\Delta_{CKM}=-0.0003(6)$, in agreement within 0.5 σ with unitarity hypothesis.

Allow to set bounds on the effective scale of the operators that parametrize NP contributions to Δ_{CKM} : if Δ_{CKM} <0, Λ > 9.7 TeV (90% C.L.); if Δ_{CKM} >0, Λ >13.3 TeV (90% C.L.).

For three operators (ll, ϕ l, ϕ q), constraint at **0.222** the same level as Z-pole measurements; for the 4-fermion operator (lq), improves LEP2 bounds by one order of magnitude.

Plavi A net Kaon WG Bounds on non helicity-suppressed amps

With a 3-parameter fit (V_{us} from K13, V_{us}/V_{ud} from Kµ2, V_{ud}) with 1 constraint: $[V_{us}(K_{l3})]^2 + [V_{ud}(0^+ \rightarrow 0^+)]^2 + [V_{ub}]^2 = 1$, obtains (χ^2 /ndf=0.57/1 P=45%, ρ = -0.54):

Kaon Physics – B. Sciascia – IFAE 2010

Straight calculation from $K\mu 2/\pi\mu 2$ relation and <u>assuming SM</u>:

• Use
$$Q_{\ell 2} = \frac{\Gamma_{K_{\ell 2(\gamma)}^{\pm}}}{\Gamma_{\pi_{\ell 2(\gamma)}^{\pm}}} \frac{1}{(1 + \delta_{\text{em}})} = 0.07604(26)$$

• Obtain $f_{\rm K}/f_{\pi}/f_{+}(0) = 1.242(4)$

depends on decay rate data, radiative corrections; unitarity not assumed, although V_{us} equality in Kµ2 and K13 decays is

- using $f_{+}(0) = 0.965(4)$ obtain $f_{\rm K}/f_{\pi} = 1.198(7)$
- using $f_{\rm K}/f_{\pi}$ = 1.193(6) obtain **f**+(0) = 0.960(6)

· Measurement of R_K

NP potential of $R_{K} = \Gamma(K_{e2}^{\pm})/\Gamma(K_{\mu2}^{\pm})$

• SM prediction with 0.04% precision, benefits of cancellation of hadronic uncertainties (no f_K): $R_K = 2.477(1) \times 10^{-5}$ [*Cirigliano Rosell arXiv:0707:4464*].

• Helicity suppression can boost NP [Masiero-Paradisi-Petronzio PRD74(2006)011701].

LFV can give O(1%) deviation from SM ($\Delta_R^{31} \sim 5 \times 10^{-4}$, tan $\beta \sim 40$, m_H ~ 500 GeV)

- Experimental accuracy on R_K (before KLOE and NA62 results) at 5% level.
- Measurements of R_K can be very interesting, if error at 1% level or better.

Ke2(): signal definition

- Define as "signal" events with $E_{\gamma} < 10$ MeV.
- Evaluating **IB** spectrum (O(α)+resummation of leading logs) obtain a 0.0625(5) correction for the IB tail.
- Under 10 MeV, the **DE** contribution is expected to be negligible.

$$N \not R_{K} = \Gamma(K^{+} \rightarrow e^{+}v) / \Gamma(K^{+} \rightarrow \mu^{+}v) @ PIC 2006$$

NA48/2: unseparated, simultaneous K[±] highly collimated beams, designed to precisely measure K[±] $\rightarrow \pi^{+,0}\pi^{-,0}\pi^{\pm}$ dalitz-plot density

2003 data set K[±]_{e2} signature: E/p=1 & m_v²=0 N_{TOT} = 5329 (73); Bkg = 659 (26) N_{SIG} = 4670 (77)(⁺²⁹₋₈)_{SYST}
Preliminary (EPS05) NA48/2

measurement.

	R _K ×10 ⁵
PDG average	2.45 (11)
SM prediction	2.472 (1)
NA48/2 (2003)	2.416 (43) _{STAT} (24) _{SYST}

Future:

- NA48/2 2004 statistics: about ×2 of 2003
- **KLOE** complete data set (2.5 fb⁻¹)
- Result: slight discrepancy between R_K measurement and the SM prediction

First useful data in 2003/4 NA48/2 runs, preliminary results for R_K (now obsolete...)

Analysis of R_K: 2007 data

...then design of NA62 run optimized for Ke2/Kµ2; major parameters tuned: MM² resolution improved

NA62

<u>Analysis of R_κ: μ background</u>

Electron PID by LKr: $0.95 < E_{cl}/P_{trk} < 1.10$ guaranteeing rejection by ~10⁶! But: check probability for μ 's to fake e's [O(10⁻⁶)] by directly measuring it: Subsample of data taken with Pb wall between HOD's

Use HOD pulse heights to select μ 's (pure @ <10⁻⁷) with MIP energy loss in Pb Evaluate 6.28(17)% K μ 2 bkg to Ke2, error dominated by sample statistics

Analysis of R_K

Data taking lasted 4 months: the world largest data set of Ke2, > 100 Kevts

Preliminary result presented in 2009 from 51089 candidates

Charged kaon at KLOE

 $p_{K} \sim 100 \text{ MeV}$ $\lambda \sim 90 \text{ cm} (56\% \text{ of } \text{K}^{\pm} \text{ decay in DC}).$

Kaon momentum measured (event by event) with 1 MeV resolution in DC.

Constraints from ϕ 2-body decay.

Particle ID with kinematics and ToF.

Tagging provides unbiased control samples for efficiency measurement.

From K and secondary tacks and assuming $m_v=0$, get M^2_{lep} :

$$\mathbf{M^2}_{lep} = (\mathbf{E}_{\mathrm{K}} - \mathbf{p}_{\mathrm{miss}})^2 - \mathbf{p^2}_{lep}.$$

Around $M^2_{lep}=0$ we get $S/B \sim 10^{-3}$, mainly due to tails on the momentum resolution of Kµ2 events.

- after track quality cuts, accept
 ~35% of decays in the FV
- S/B ~ 1/20, not enough!

• require the lepton track to be extrapolable to the calorimeter surface and to be associated to an energy release (cluster).

Background rejection (PID)

NN_{out}: Particle ID exploiting EMC granularity + E/p + ToF

Select a region with good S/B ratio in the $M_{lep}^2 - NN_{out}$ plane

NO IN KLOE

K_{e2} event counting

Two-dimensional binned likelihood fit in the M_{lep}^2 -NN_{out} plane in the region -4000<M_{lep}²<6100 and 0.86<NN_{out}<1.02

We count **7060 (102) Ke2+ 6750 (101) Ke2- (\sigma_{\text{STAT}}=1%, 0.85% from Ke2)**

Kaon Physics – B. Sciascia – IFAE 2010

K_{e2} event counting: systematics

Repeat fit with different values of $max(M^2_{lep})$ and $min(NN_{out})$: vary significantly (×20) bkg contamination + lever arm.

Ke2 fit: radiative corrections

• Analysis **inclusive of photons in the final state**. In our fi region we expect:

 $\frac{\text{Ke2} (\text{E}_{\gamma} > 10 \text{MeV})}{\text{Ke2}(\text{E}_{\gamma} < 10 \text{MeV})} \sim 10\%$

• Repeat fit by varying Ke2 (E_{γ} >10 MeV) by 15% (DE uncertainty) get 0.5% error.

KLOE performed a **dedicated study of the Ke2γ differential decay rate**

This confirm the SD content of MC, evaluated with ChPT O(p⁴), within an accuracy of 4.6% and allows a 0.2% systematic error on Ke2_{IB} to be assessed

Experiment	KLOE	NA62
Ke2's on tape	30 k	100 k
Kin. Rejection	10 ³ @ ε ~ 60%	10 ³ —1, p _{lep} in 20—60 GeV
e/µ rejection	10 ³	3—1.5 10 ⁵ , p _{lep} in 20—60 GeV
Bkg to Ke2	16%	8%
Ke2g (SD)	Include as bkg Dedicated mmt.	Suppress in analysis
Ke2 counts	14 k	50 k
$R_K \times 10^5$	2.493(25)(19)	2.500(12)(11)
Total error	1.3%	0.64%
Status	Final result	Preliminary

NP search from 2009 R_k results

- PDG 2008: $R_K = (2.45 \pm 0.11) \times 10^{-5}$ (4.5% accuracy)
- 2009 WA: R_K=2.498(4)×10⁻⁵ (1% accuracy)
- Compare with SM prediction: $R_K^{SM} = 2.477(1) \times 10^{-5}$.

Test NP from LFV transitions in R-parity SUSY: sensitivity shown as 95% CL excluded regions in the tan β -M_H plane, for different values of the LFV effective coupling, $\Delta_{13} = 10^{-3}$, 5 × 10⁻⁴, 10⁻⁴

KLOE and Da Pne

e⁺e⁻ collider, cm energy: $\sqrt{s} \sim m_{\phi} = 1019.4$ MeV Angle between the beams at IP: $\alpha \sim 12.5$ mrad Residual laboratory momentum of ϕ : $p_{\phi} \sim 13$ MeV Cross section for ϕ production at peak: $\sigma_{\phi} \sim 3.1$ µb KLOE data taking completed (2001/5): 2.5 fb⁻¹ integrated at $\sqrt{s}=M(\phi)$;

e⁺e⁻ collider, cm energy: $\sqrt{s} \sim m_{\phi} = 1019.4$ MeV KLOE data taking completed (2001/5)

KLOE and Da Pne

A novel collision scheme "large **Piwinsky angle and crabbed waist**" implemented: (at least) $L \sim 3 \times$ \Rightarrow Ldt~1pb⁻¹/hour.

KLOE(2 step0) luminosity goal: 5 fb⁻¹ at $\sqrt{s}=M(\phi)$

KLOE-2 Step 0

Roll-in (Dec 2009) and alignment (Jan 2010): done Ready for resume data taking, foreseen for the 4th of May

Minimal **detector** upgrade: tagger for $\gamma\gamma$ physics: detect off-momentum e[±] from e⁺e⁻ \rightarrow e⁺e⁻ $\gamma^*\gamma^* \rightarrow$ e⁺e⁻X (where X= $\pi\pi$, π^0 , or η) Low Energy Tagger (E_e=130-230 MeV) High Energy Tagger (E_e>400 MeV).

KLOE-2 Step 1

Luminosity goal > 20fb⁻¹.

Major detector upgrade; Inner tracker (IT) between the beam pipe and the DC (see the talk of G. Morello).

QCALT: W plus scintillating tiles, readout by SiPM via WLS fibers CCAL: LYSO crystals + APD, close to IP to increase the acceptance for photons coming from the IP (θ_{MIN} from 21° to 9°)

Installation: late in 2011

Golden K modes: $K \rightarrow \pi \nu \nu$ decays

• "Golden-plated decays": BR($K \rightarrow \pi \nu \nu$) can be predicted in the SM framework with very high theoretical accuracy and may provide grounds for precision tests of the flavor structure of the SM

• $K_L^0 \rightarrow \pi^0 v v$ and $K^+ \rightarrow \pi^+ v v$ completely determine the Unitarity Triangle.

• Comparison with Unitarity Triangle from B sector could provides decisive tests in the flavor physics: new physics may differentiate between K and B measurement

• The *a priori* unknown hadronic matrix element obtained from $K \rightarrow \pi e \nu$ decays.

3%

15%

30%

88%

38%

28%

Kaon Physics – B. Sciascia – IFAE 2010	

 $K^+ \rightarrow \pi^+ \nu \nu$

 $K_L \rightarrow \pi^0 e^+ e^-$

 $K_L \rightarrow \pi^0 \mu^+ \mu^-$

8 × 10⁻¹¹

 3.5×10^{-11}

 1.5×10^{-11}

NA62 @ CERN

750 MHz beam \rightarrow **50 MHz K**+ \rightarrow **6 MHz decay in 60-m fiducial volume**

NA62 expected sensitivity

Decay Mode	Events				
Signal: $K^+ \rightarrow \pi^+ \nu \nu$ [flux = 4.8×10 ¹² decay/year]	55 evt/year				
$K^+ \rightarrow \pi^+ \pi^0 \ [\eta_{\pi 0} = 2 \times 10^{-8} (3.5 \times 10^{-8})]$	4.3% (7.5%)				
$K^+ \rightarrow \mu^+ \nu$	2.2%				
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	≤3%				
Other 3 – track decays	≤1.5%				
${ m K}^+ \! ightarrow \pi^+ \pi^0 \gamma$	~2%				
$K^+ \rightarrow \mu^+ \nu \gamma$	~0.7%				
$K^+ \rightarrow e^+(\mu^+) \pi^0 \nu$, others	negligible				
Expected background	≤ 13.5% (≤17%)				

year & running efficiency defined from NA48 story: ~100 days/year, 60% overall efficiency

NA62 timescale

	2009			2010			2011			2012					
K12 alloc.															
CEDAR															
GigaTrk		Prototype Test					Eng 1 Eng			ng 2/F	rod				
LAV			Pro	anics	anics & Assembly				ow in			High			
STRAW												tensit			int
RICH				PMT Procureme				nt: 100 / month				y run:			ensi
LKR												(no C			ty ru
MUV												этк)			B
TDAQ	TEL	L1/T1		DC.											

KOTO (K⁰ at TOkai) @ J-PARC

Milestones of KOTO

d

KC

Project X at Fermilab

Conclusions

Recent kaon decay measurements greatly improve knowledge of gauge couplings

- CKM matrix unitarity tested at 0.06%
- effective coupling measured at 0.03% constrains many NP scenarios
- progress from lattice will constrain more severely CKM fits soon

New and interesting tests of NP from kaon 2-body decays

- R_K golden LFV observable (w.a. at 1%)

Kaons can push findamental principles at severe test

Even in the "something else" era, Kaon physics continue to shed light on physics on and beyond SM