

Incontri di Fisica delle Alte Energie (IFAE 2010) Roma, 8 Aprile 2010

Searches for Lepton Flavour Violation

Francesco Renga SAPIENZA – Università di Roma and INFN Roma

Outline

- Introduction to Lepton Flavour Violation (LFV);
- LFV in the muon sector: the MEG experiment;
- LFV at the B-Factories:
 - τ LFV;
 - LFV in Y(nS) decays;
- Conclusions and perspectives.

Lepton Flavour Violation

- Lepton Flavour conservation is an accidental symmetry in the Standard Model (SM):
 - Not related to gauge structure of the theory;
 - Naturally violated in SM extensions;
- Lepton Flavour Violation already observed in the neutrino sector (*neutrino oscillations*):
 - Can be explained with a heavy right-handed neutrino;
 - Very small SM contribution in the charged lepton sector, e.g. BR($\mu \to$ e $\gamma)$ ~ 10^{-54};

Observation of LFV for charged lepton would be an unambiguous evidence of New Physics

LFV beyond the SM

- Many SM extensions predict LFV effects at a measurable level;
- SUSY:
 - Off-diagonal terms in the slepton mass matrix

 In SUSY-GUT, LFV parameters can be related to the CKM matrix (quark *mixing*) or the PMNS matrix (*neutrino mixing*);

Calibbi et al., Phys.Rev.D74: 116002,2006 (SO(10) SUSY-GUT)

The MEG Experiment

Experimental Signature

- To get 10⁻¹³ sensitivity:
 - high statistics;
 - high resolutions (energy, time, angle) for low background;

Experimental Signature

The MEG Experiment

Positron Spectrometer

- 16 low mass drift chambers in a graded magnetic field;
- Goal σ(p) ~ 200 keV/c;

Timing Counter

- 2 detectors (upstream & downstream) for precise positron timing and trigger;
- 15 plastic scintillating bars per detector read by PMTs:
 - timing, goal $\sigma(t) \sim 45 \text{ ps}$
 - phi position
- 1 layer of scintillating fibers per detector, read by APDs:
 - z position
 - not yet fully operational

LXe Calorimeter

- The largest LXe calorimeter in the world (800 liters);
- Fast response: τ_{scint} = 45 ns for γ ;
- Good light yield:
 - ~ 75% of NaI(TI);
- Light collected by 846 PMTs;
- Not just a "calorimeter":
 - σ(E) ~ 800 keV;
 - $\sigma(\gamma \text{ conv. point}) \sim 2-4 \text{ mm};$
 - σ**(†) ~ 65 ps**

LXe Calibrations

Charge Exchange (CEX)

 π^{-} + p \rightarrow π^{0} + n $\pi^{0} \rightarrow \gamma \gamma$

high energy photons for XeC energy & relative time calibrations

Cockcroft-Walton accelerator

Protons on a Lithium Tetra-borate target

low-energy photons for XeC energy & relative time calibration

LED

Installed inside the XeC

PMT gain calibration

α sources

Installed in wires inside the XeC

Calibration of Q.E., attenuation length, position

The 2008 Run

- The first physics run, affected by instabilities (frequent DCH trips, LXe purification on going) solved now!
- Performances not yet at the goal level.

The First Limit

• Extended ML fit including SIGNAL, ACCIDENTAL and RADIATIVE DECAY.

 $\begin{array}{l} \mathsf{BR}(\mu^{*} \to e^{*} \ \gamma) < 2.8 \ \times \ 10^{-11} \ @ \ 90\% \ C.L. \\ (Feldman-Cousins) \end{array}$

arXiv:

0908.2594

MEG Perspectives

- New data from 2009 run currently analyzed:
 - improved efficiency (factor 3), improved spectrometer resolutions, higher and stable LXe light yield;
 - expected UL ~ 5×10^{-12} ;
- Continue running in 2010-2011 for the final 10⁻¹³ goal.

τ LFV at the *B*-Factories ...which are also τ factories $\sigma(\tau\tau) \sim \sigma(bb) \sim 1$ nb...

τ vs. μ LFV

- Different sectors of the NP mixing matrices are investigated → complementarity
- Larger BR expected for τ LFV \rightarrow *needed sensitivity* ~ 10⁻⁸ - 10⁻⁹
- Several possible channels:
- $\begin{array}{ll} \tau \rightarrow & \mid \gamma \\ \tau \rightarrow & \mid \mid \mid \\ \tau \rightarrow & \mid h \ (h = \pi^0, \, \omega, \, \rho, \, ...) \end{array}$

$\tau \rightarrow l \gamma$

- Require a lepton (muon or electron PID) and a photon;
- Consistency with a τ produced in $e^{t}e^{-} \rightarrow \tau^{t} \tau^{-}$, in terms of:

$$M_{EC} = \sqrt{E_{beam}^{*2} - \left|\mathbf{p}_{\tau}^{*}\right|^{2}}$$

$$\Delta E = E_{\tau}^* - E_{beam}^*$$

BaBar Collaboration, Phys. Rev. Lett. 104, 021802 (2010)

$\tau^+ \rightarrow l^+ l^- l^+$

- "1 3" topology:
 - 2 hemispheres;
 - 1 track in the tag side;
 - 3 tracks on the signal side;

BaBar vs. Belle

 $\begin{array}{l} \mathsf{BR}(\tau \rightarrow \mu \ \gamma) < 4.4 \ \times \ 10^{\text{-8}} \\ \mathsf{BR}(\tau \rightarrow e \ \gamma) < 3.3 \ \times \ 10^{\text{-8}} \end{array}$

BaBar, Phys. Rev. Lett. 104, 021802 (2010)

 $\begin{array}{l} \mathsf{BR}(\tau \rightarrow \mu \ \gamma) < 4.5 \ \times \ 10^{\text{-8}} \\ \mathsf{BR}(\tau \rightarrow e \ \gamma) < 12.0 \ \times \ 10^{\text{-8}} \end{array}$

BaBar, arxiv:1002.4550, UL in 10⁻⁸

Mode	Eff. [%]	$N_{ m bgd}$	$\mathrm{UL}_{90}^{\mathrm{exp}}$	$N_{ m obs}$	$\mathrm{UL}_{90}^{\mathrm{obs}}$
$e^-e^+e^-$	8.6 ± 0.2	0.12 ± 0.02	3.4	0	2.9
$\mu^-e^+\!e^-$	8.8 ± 0.5	0.64 ± 0.19	3.7	0	2.2
$\mu^+e^-e^-$	12.7 ± 0.7	0.34 ± 0.12	2.2	0	1.8
$e^+\!\mu^-\!\mu^-$	10.2 ± 0.6	0.03 ± 0.02	2.8	0	2.6
$e^-\!\mu^+\!\mu^-$	6.4 ± 0.4	0.54 ± 0.14	4.6	0	3.2
$\mu^-\mu^+\mu^-$	6.6 ± 0.6	0.44 ± 0.17	4.0	0	3.3

Belle, Phys.Lett.B 666:16-22,2008

Belle, Phys.Lett.B660:154-160,2008

Mode	ε (%)	N _{BG}	$\sigma_{\rm syst}$ (%)	Nobs	<u>s90</u>	$\mathcal{B}(\times 1)$	0 ⁻⁸)
$\overline{ au^- ightarrow e^- e^+ e^-}$	6.00	0.40 ± 0.30	9.8	0	2.10	3.6	
$\tau^- ightarrow \mu^- \mu^+ \mu^-$	7.64	0.07 ± 0.05	7.4	0	2.41	3.2	
$ au^- ightarrow e^- \mu^+ \mu^-$	6.08	0.05 ± 0.03	9.5	0	2.44	4.1	
$ au^- ightarrow \mu^- e^+ e^-$	9.29	0.04 ± 0.04	7.8	0	2.43	2.7	
$ au^- ightarrow e^+ \mu^- \mu^-$	10.8	0.02 ± 0.02	7.6	0	2.44	2.3	
$ au^- ightarrow \mu^+ e^- e^-$	12.5	0.01 ± 0.01	7.7	0	2.46	2.0	

LFV in Y(nS) decays

- BaBar collected a large statistics at the Y(2S) and Y(3S):
 - Sensitivity to LFV in $Y(nS) \rightarrow ||'$:

– 1 high energy primary lepton + 1 track from τ decay;

- Fit to
$$x = p^*/E^*_{beam}$$

	${\cal B}~(10^{-6})$	UL (10^{-6})
$\mathcal{B}(\Upsilon(2S) o e^{\pm} \tau^{\mp})$	$0.6\substack{+1.5+0.5\\-1.4-0.6}$	< 3.2
$\mathcal{B}(\Upsilon(2S) o \mu^{\pm} \tau^{\mp})$	$0.2^{+1.5+1.0}_{-1.3-1.2}$	< 3.3
$\mathcal{B}(\Upsilon(3S) o e^{\pm} \tau^{\mp})$	$1.8\substack{+1.7+0.8\\-1.4-0.7}$	< 4.2
$\mathcal{B}(\varUpsilon(3S)\to\mu^\pm\tau^\mp)$	$-0.8\substack{+1.5+1.4\\-1.5-1.3}$	< 3.1

Χ

Perspectives at SuperB

- Integrated luminosity (L) of 75 ab⁻¹ ~ 150 x BaBar;
- Background-dominated channels ($\tau \rightarrow \mu ~\gamma$):
 - the limit scale with 1/sqrt(L);
- If the background can be kept below ~ 1 event ($\tau \rightarrow | | |$):
 - the limit scale with 1/L;
- Moreover:
 - smaller beam size (stronger topological constraints);
 - lower boost (larger acceptance);
 - possible beam polarization;

Process	Expected	
	$90\%\mathrm{CL}$ upper limit	
$\mathcal{B}(au o \mu \gamma)$	$2.1 imes 10^{-9}$	
${\cal B}(au o e \gamma)$	$2.7 imes10^{-9}$	
$\mathcal{B}(\tau \to \ell \ell \ell)$	$2.3 - 8.3 imes 10^{-10}$	

Other Perspectives

• Best sensitivity to NP scenarios could be reached in the searches for $\mu \rightarrow e$ conversion in nuclei

Conclusions

- The search for LFV is one of the main challenges of particle physics;
- An observation of LFV for charged leptons would be an unambiguous evidence of New Physics;
- μ and τ sectors provide complementary information;
- LFV searches complementary to direct NP searches at LHC;
- Main programs:
 - $\mu \rightarrow e \gamma$ at MEG;
 - τ LFV at the (Super)B-Factories;
 - $\mu \rightarrow$ e conversion in nuclei;

Indirect sensitivity to the TeV scale

Backup

LFV in Y(nS) decays

- BaBar collected a large statistics at the Y(2S) and Y(3S):
 - Sensitivity to LFV in $Y(nS) \rightarrow | |'$:
- Search for $\Upsilon(nS) \rightarrow \tau$ e and $\Upsilon(nS) \rightarrow \tau \mu$:
 - 1 high energy primary lepton + 1 track from τ decay;

- Fit to
$$x = p_1 / E_{beam}$$

BaBar Collaboration, arXiv:1001.1883

e conversion vs. μ μ 2

INVERSE SEESAW MODEL

Deppisch et al., Nucl.Phys.B752:80-92,2006

Beam Polarization

- Beam polarization modifies the angular distributions of signal and background in τ decays;
- Angular distributions can become discriminating \rightarrow bkg. suppression.

helicity angle for muons emitted in the forward region