Prospects in quarkonium studies at LHCb

Maddalena Frosini

INFN Firenze, Università degli Studi di Firenze

April 8, 2010

IFAE 2010, Roma

Maddalena Frosini

The LHCb experiment

Subdetectors: VErtex LOcator (VELO), Ring Imaging Cherenkov detectors (RICH1, RICH2), magnet, electromagnetic and hadron calorimeter (ECAL, HCAL), tracking system (TT, T1 to T3), muon system (M1 to M5).

Characteristics and performances

- Single-arm forward spectrometer
- Angular coverage: 10-300 mrad (bending plane), 10-250 mrad (non-bending plane)
- PV resolution: 40 μm (beam direction), 10 μm (perpendicular)
- MuonId: $\epsilon(\mu \rightarrow \mu) = 94\%$ $\epsilon(\pi \rightarrow \mu) = 3\%$
- Momentum resolution < 1%

Quarkonium physics program at LHCb

- 1 Understanding quarkonium hadro-production mechanism
 - measurement of production cross section and polarization for J/ψ and $\psi(2S)$.
 - similar measurements for excited charmonium states χ_c and bottomonium state $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S)$.
 - possibility for LHCb to explore a unique rapidity range $2 < \eta < 5$
- 2 Calibration of the apparatus, thanks to abundance of J/ψ also from the first collisions.
- 3 Studies of *B* physics: charmonium is present in the final states of many interesting *B* decay channels.
- 4 Exotic states: studies on $X(3872), Z(4430)^{\pm}$.

Maddalena Frosini

Charmonium hadro-production mechanism

Charmonium production is still not completly understood. Contributions at high energy are

- 1 Prompt production in *pp* collisions.
- 2 Feed down from excited prompt charmonium states.

3 Production from b-hadrons decays, also through heavier charmonium states.

Prompt component production

- 1 Colour Singlet Model (CSM)
 - production of $c\overline{c}$ on-shell pair.
 - binding the $c\overline{c}$ pair to form the meson, assuming colour and spin don't change. Since the physical state is colourless $c\overline{c}$ pair must be produced in colour singlet state.
- 2 Colour Octet Model (COM): NRQCD approach. Charmonium production is possible also through colour octet states.
- J/ψ production cross section: experimental data underestimated by an order of magnitude by CSM but in agreement with COM prediction.
- Similar conclusion for $\psi(2S)$ production cross section.

Charmonium polarization

Charmonium polarization from polar angle asymmetry α

Angular distribution: $\frac{dN}{\cos\theta} = 1 + \alpha \cos^2\theta$

- $\alpha = 0$ not polarized
- $\alpha > 0$ transverse polarization
- $\alpha < 0$ longitudinal polarization

Colour Octet Model fails to predict charmonium polarization.

J/ψ production at LHCb

 J/ψ production cross section expected at LHCb for $p_T < 7$ GeV, $3 < \eta(J/\psi) < 5$:

- 1 $\sigma_{prompt} \times \mathcal{B}(J/\psi \rightarrow \mu\mu) = (2597 \pm 12 \pm 24) \text{ nb}$
- 2 $\sigma_{from b} \times \mathcal{B}(J/\psi \rightarrow \mu\mu) = (161 \pm 4 \pm 2) \text{ nb}$
- 3 after L0 trigger $1.3 \cdot 10^9 J/\psi$ in 1 fb⁻¹ at 14 TeV or $0.65 \cdot 10^6$ in 1 pb⁻¹ at 7 TeV (L0 $p_T^{muon} > 120$ MeV).

Statistics allows to study cross section and polarization in p_T and η bins: statistical error < 20% in each bin for 1 pb⁻¹.

- Simulated, inclusive events at $\sqrt{s} = 14$ TeV
- *p_T* > 1 GeV, cut on vertex reconstruction quality, cut on muons track quality.
- Mass resolution 11 MeV/c^2

Disentangling prompt from delayed J/ψ

Pseudo proper time along beam direction: $t_z = \frac{(z_{J/\psi} - z_{PV})m_{J/\psi}}{p_z}$ (approximation of *b* proper time)

Data sample: simulated, inclusive events, $\sqrt{s} = 14 \text{ TeV}$

- Prompt component: gaussian shape (detector resolution) on 0 ps.
- Delayed component: exponential with

 $\tau_b = (1.495 \pm 0.008)$ ps (fit result), to be compared with *b*-hadron mixture decay time $\tau = (1.568 \pm 0.009)$ ps (PDG).

• Tail: wrong choice of primary vertex.

G. Sabatino, PhD thesis "Charmonium production at LHCb: measurement of the ψ' to J/ψ production ratio with the first data "

$\psi(2S)$ production at LHCb

 $\psi(2S)$ production expected at LHCb for $p_T < 7$ GeV, $3 < \eta(\psi(2S)) < 5$:

- 1 Expected $1.6 \cdot 10^4 \psi(2S)$ in 1 pb⁻¹ at 7 TeV.
- 2 Separating prompt and delayed component to measure $\sigma(\psi(2S))/\sigma(J/\psi)$ production ratio as a function of p_T . Statistical error on $\sigma(\psi(2S)) \sim 20\%$ in each bin for 1 pb⁻¹.

Heavier states detection

 χ_c

- ~ 30% of J/ψ come from χ_c .
- Reconstructed from $\chi_c \rightarrow \gamma + J/\psi$ with γ detected in ECAL.
- Mass resolution 27 MeV/ c^2 .
- Production cross section and polarization measurements.

$\Upsilon(1S), \Upsilon(2S), \Upsilon(3S)$

- Reconstructed from $\Upsilon \to \mu^+ \mu^-$.
- Expected ~ 10^{-3} fraction of J/ψ .
- Mass resolution 37 MeV/ c^2 .
- Similar measurements as for χ_c .

$X(3872), Z(4430)^{\pm}$

- Channels: <u>1800 events</u> in $B^{\pm} \to X(3872) K^{\pm}$ channel and <u>6200 events</u> in $B^0 \to Z(4430)^+ (\to \psi(2S) \pi^+) K^-$ channel expected in 2 fb⁻¹ at $\sqrt{s} = 14$ TeV
- try to disentangle $X(3872) J^{PC}$ quantum number: 1⁺⁺ from 2⁻⁺

Conclusion

- LHCb is able to explore a new rapidity range $2 < \eta < 5$ (LHCb acceptance) and high energy to measure J/ψ and $\psi(2S)$ production cross section and polarization.
- $\psi(2S)/J/\psi$ production ratio.
- Studies on other quarkonium states: χ_c, Υ(1S), Υ(2S), Υ(3S). Measurement of cross section and polarization.
- Exotic states: $X(3872), Z(4430)^{\pm}$

Back up slides

LHCb trigger: 2010 run

- L0+HLT1: 2 kHz
- HLT2: rate reduction 5-20

Effect of acceptance on polarization

Large LHCb acceptance dependance on polarization.

