Bose-Einstein correlations with first LHC data in CMS

2nd CMS Physics result with LHC data (approved yesterday!)

Luca Perrozzi

(University & INFN Padova)

on behalf of the CMS collaboration

IFAE2010 7-9 Apr 2010, Roma (Italy)

Introduction

- Bose-Einstein correlation (BEC) in the production of light hadrons of integer spin is expected
	- Due to constructive interference of the multi-particle wave function
	- Seen as an enhanced probability for identical bosons to be emitted with small relative momenta
- Measurement of BEC can give informations about the size, shape and space-time development of the primary particle emitting source
- First observation achieved in pion-production reactions with 1.05 GeV /c proton-antiproton annihilations
	- G.Goldhaber et al. Phys. Rev. 120 (1960), 300
- A large number of measurements have followed
	- Most from HEP experiments using charged pion pairs, neutral pairs, kaon pairs, multiplets…

Parametrizations

- In general two-particle interference correlation is studied using the ratio R between:
	- The joint probability of emission of pair of bosons $P(p_1, p_2)$

	The individual probabilities $P(p_1, p_2)$

	The individual probabilities $P(p_1, p_2)$
	- The individual probabilities $P(p_1)$, $P(p_2)$
- R may be expressed as a function of the pair Q-value, defined as

$$
Q=\sqrt{M_{\pi\pi}^2-4m_{\pi}^2}
$$

• Among the various parametrizations for R(Q) we choose a Lorentzinvariant form describing the emission from a spherical region:

$$
R(Q) = C \cdot [1 + \lambda \cdot \Omega(Qr)] \cdot (1 + \delta Q)
$$

• The Ω (Qr) function is the Fourier transform of the emission region form whose effective size is measured by r, λ is a strength parameter, δ allows for long-range correlations in the Q distribution of the reference sample.

Reference samples (I)

- Experimentally we use tracks
- R(Q) is measured by dividing:

$$
R = \left(\frac{dN/dQ_{sig}}{dN/dQ_{ref}}\right)
$$

- the Q-value distribution of pairs of same charge tracks
- by a similar distribution constructed with non-interfering track pairs (\rightarrow reference sample)
- Choice of the reference samples (details in backup slides)
	- Several possibilities, widely explored in the literature.
	- We consider 7 options by combining both same or opposite charge tracks to form pairs:
		- where one track has $(\bar{p} \rightarrow -\bar{p})$ or $(\bar{p}_t \rightarrow -\bar{p}_t)$
		- with tracks from mixed events (randomly, by similar multiplicity, by similar total invariant mass)

Reference samples (II)

- Ratio between signal and reference samples shows a clear evidende of BEC in data
	- No BEC in simulation
- Opposite charge reference sample is not straightforward to use (resonances)
	- e.g. $\rho\sqrt{n\pi}$ produces a dip in the region 0.6<Q<0.9 GeV
	- We exclude the ρ region from the fit
- All the reference samples show some longrange correlations (of various nature and shape) outside BEC region of interest
	- Very well reproduced by the simulation

Double ratios

• To remove long-range and other possible correlations not dealing with BEC, we decide to use double ratios **R** to measure the Bose-Einstein correlation parameters.

• Our default fits are performed with the exponential form for the Fourier transform, $\Omega(Qr) = exp(-Qr)$

Alternative parametrizations

- Exponential form is not the one most used in the literature
- We then show results with both exponential $\lceil \Omega(Qr) = \exp(-Qr) \rceil$ and Gaussian $\lceil \Omega(Qr) = \exp(-Q^2r^2) \rceil$

Are we measuring BEC?

Are we measuring BEC? Anti-panic plot

- As a check, we can construct two samples by using dE/dx to select:
	- $\pi\pi$ candidates (the BEC is expected and clearly visible)
	- π non- π candidates (the BEC is not present)

Which value? Systematics?

Reference sample	P-value			r (fm)	δ (GeV ⁻¹)
Opposite charge	2.19×10^{-1}	0.988 ± 0.003	0.557 ± 0.025 1.46 ± 0.06		$(-3.5 \pm 2.4) \times 10^{-3}$
Opposite hem. same ch.	7.30×10^{-2}	0.978 ± 0.003	0.633 ± 0.027 1.50 ± 0.06		$(1.1 \pm 0.2) \times 10^{-2}$
Opposite hem. opp. ch.	1.19×10^{-1}	0.975 ± 0.003 (0.591 ± 0.025) (1.42 ± 0.06)			$(1.3 \pm 0.2) \times 10^{-2}$
Rotated	2.42×10^{-4}				$(5.8 \pm 0.2) \times 10^{-2}$
Mixed evts. (random)	1.90×10^{-2}	1.014 ± 0.002 \vert 0.621 \pm 0.038 \vert 1.85 \pm 0.09			$(-2.0 \pm 0.2) \times 10^{-2}$
Mixed evts. (same mult.)	1.22×10^{-1}	0.981 ± 0.002 0.664 ± 0.030 1.72 ± 0.06			$(1.1 \pm 0.2) \times 10^{-2}$
Mixed evts. (same mass)	1.70×10^{-2}	0.976 ± 0.002 0.600 ± 0.030 1.59 ± 0.06			$(1.4 \pm 0.2) \times 10^{-2}$

 $\delta \lambda = 0.042 = 7\%$ $\delta r = 0.19$ fm = 12%

- A sizable spread can still be observed in the measurements with different reference samples
	- r.m.s. spread of measurements quoted as systematic uncertainty
- No single reference sample appears *a priori* preferable to the others

The combined reference sample

• We then provide a single value by combining all the reference samples:

$$
\mathcal{R}^{comb}=\bigg(\frac{dN/dQ}{\sum_{i=1}^m dN/dQ^i}\bigg)\bigg/\bigg(\frac{dN/dQ_{MC}}{\sum_{i=1}^m dN/dQ_{MC}^i}\bigg)
$$

Dependence on kinematics

- We observe a significant increase of the size of the emission region r as the charged track multiplicity in the event increases
- This kind of trend does exist in the **literature**
	- still ambiguous

Conclusions

- We have isolated a signal of Bose-Einstein correlations in pp collisions at the center mass energy of 0.9 and 2.36 TeV for the first time
- The signal is statistically significant and stable when studied with different reference samples
- Our data seem to prefer an Exponential shape for the Fourier transform of the emission region $\Omega(Qr)$
- We propose the combination of seven different reference samples to produce a measurement of the size of the emission region r and the strength of the effect λ
- We estimate systematics with the r.m.s. spread of measurements obtained with different reference samples
- We observe a dependence of the r parameter on event multiplicity
- We measure: stat. syst. stat. syst.

 $-$ at 0.9 TeV: $r = (1.59 \pm 0.05 \pm 0.19)$ fm, $λ = 0.625 \pm 0.021 \pm 0.046$

– at 2.36 TeV: r = (1.99 ± 0.18 ± 0.24) fm , λ = 0.662 ± 0.073 ± 0.048

Comparison with previous measurement

• For an exponential

$$
\langle Q \rangle_{\exp} = \frac{1}{r}
$$

• For the half-Gaussian

$$
\langle Q \rangle_{gaussian} = \frac{1}{(r/\sqrt{\pi})}
$$

• When comparing the size of the emission region r extracted from Exponential fits to the Gaussian ones, a scale factor is involved,

> $\sqrt{\pi}$ = 1.77, to normalize the first momentum of the two distributions.

Backup slides

Previous measurements

- First observation of the phenomenon: pion production in 1.05 GeV/c protonantiproton annihilations – Goldhaber et al., Phys. Rev. 120 (1960) 300.
- Scores of measurements since then
	- Mark II: Phys. Rev. D39 (1989) 1 (electron-positron)
	- TASSO: Z. Phys. C30 (1986) 355 (electron-positron)
	- NA22: Z. Phys. C37 (1988) 347 (meson-proton)
	- UA1: Phys. Lett. B226 (1989) 410 (proton-antiproton)
	- NA27: Z. Phys. C54 (1992) 21 (proton-proton)
	- DELPHI: Phys. Lett. B286 (1992) 201 (electron-positron)
	- L3: Phys. Lett. B524 (2002) 55 (electron-positron)
	- ZEUS: Acta Phys. Polon. B33 (2002) 3281 (lepton-proton)
	- OPAL: Phys. Lett. B559 (2003) 131 (electron-positron)
	- ALEPH: Eur. Phys. J. C36 (2004) 147 (electron-positron)
	- NOMAD: Nucl. Phys. B686 (2004) 3 (neutrino-nucleon)
	- ZEUS: Acta Phys. Polon. B33 (2002) 3281
	- Breakstone et al. Z. Phys. C 33 (1987) 333-338
	- Apologies to the others not quoted here
- And a thick literature of theoretical studies

Dependence from multiplicity in literature

- Big Bubble Chamber Neutrino Collaboration (BBCNC) link
- ISR article (Breakstone et al.) link
- H1 Collaboration link
- OPAL Collaboration link
- E735 Collaboration link
- NA27 Z. Phys. C54 (1992) 21
- NOMAD Collaboration Nucl. Phys. B686 (2004) 3
- UA1 Collaboration Phys. Lett. B226 (1989) 410
- Apologies to the others not quoted here

Reference samples

- Measurement relies on dividing the Q-value distribution for same-sign pairs (containing BEC) by the Q-value of a reference sample of pairs which are not correlated
- There are several possibilities, widely explored also in the literature. We considered:
	- 1) Opposite charge pairs
	- 2) Same charge pairs where one track has its three-momentum inverted $(\bar{p} \rightarrow -\bar{p})$
	- 3) Opposite charge pairs where one track has its three-momentum inverted $(\bar{p} \rightarrow -\bar{p})$
	- 4) Same charge "rotated" pairs with one track inverted in the transverse plane $(\bar{p}_t \rightarrow -\bar{p}_t)$
	- 5) Pairs formed with tracks from randomly mixed events
	- 6) Multiplicity event mixing: as above, but mixed events have similar distribution of dN/ dη.
	- 7) Invariant mass event mixing: as above, but mixed events have similar total mass of charged tracks
- Although derived from the same experimental data and the same tracks, the Qvalues thus constructed do not significantly "talk" to each other in the fit region

Track Selection

- We apply a number of requirements on the charged tracks we use in our measurement, to increase their purity, remove pathologies, ensure high efficiency
	- $N_{\text{dof}} > 5$
	- $-p_1 > 200$ MeV/c
	- $-$ Fit χ^2 < 5.
	- $-$ |η| < 2.4
	- $|d_{xy}|^{BS} < 0.15cm$
	- $-$ R_{xy} < 20 cm (innermost hit)
- The selection retains 2,903,754 tracks in 0.9 TeV data, and 188,140 tracks in 2.36 TeV data. These are our basis for the construction of pion-pair candidates.

Fourier transforms and r scales

- An exponential form $\Omega(Qr) = \exp(-Qr)$ is the Fourier transform of a Cauchy distribution
- There is nothing bad in a Cauchy distribution as the shape of an interference region
	- In the form $1/(r^2+x^2)$, r has the meaning of the half FWHM, so it may still be seen as an effective radius
- While <Q> for an exponential is <Q>_{exp}=1/r, for the half-Gaussian is not $1/r$ but $<\!\!Q\!\!>_{G}=1$ / [r / $\pi^{0.5}$],
- Therefore, *when comparing the size of the emission region r extracted from exponential fits to the ones present in the literature, which are derived from Gaussian fits, a scale factor is involved,*

 $\pi^{0.5}$ =1.77, to normalize the first momentum of the two distributions.

Results by Aleph

- Aleph used two reference samples: opposite-charge tracks (right), and tracks from mixed events (left)
- They use the Gaussian parametrizations (red curves) to describe the effect
- Results are quite different with the two methods for both λ and r
- Aleph chose to publish them together
- Another thing to note: fits have a disturbingly bad χ^2
	- Typical value: 500/74
	- regardless of excluding resonance regions

The H1 case

H1 also finds results more in line with an exponential shape than with a Gaussian one.

From C.Adloff *et al*., Z.Phys. C75 (1997) 437:

"The quality of the fit for the exponential is slightly better than for the Gaussian parametrization (85/72 vs 96/72) and confirms previous observations that the BE correlation function is decreasing faster with T than a Gaussian."

