Observation of $WW/WZ \rightarrow l\nu$ +jets at CDF

Viviana Cavaliere

University of Siena & INFN Pisa

IFAE 2010, 08/04/2010

1 / 11

V. Cavaliere (Univ. Siena & INFN Pisa)

 $WW/WZ \rightarrow l\nu$ +jets

IFAE 2010, 08/04/2010

Physics Motivation

- Why search for Diboson:
 - Tests the Standard Model predictions
 - Can be enhanced by new physics (Higgs, SUSY,...)
 - Has similar topology to SM Higgs production
- Observation and cross section measurement in leptonic modes
 - $0 WW \rightarrow l\nu l\nu, WZ \rightarrow l\nu ll$
 - 2 Consistent with SM so far
- Semi-leptonic modes suffer from large background

Signal: $\sigma(p\bar{p} \rightarrow WW/WZ) = 15.9 \pm 0.9 \text{ pb}$ Background: $\sigma(p\bar{p} \rightarrow W + \text{jets}) = 2066 \text{ pb}$ $\sigma(p\bar{p} \rightarrow Z + \text{jets}) = 187 \text{ pb}$

- \bullet Proton-antiproton collision at $\sqrt{s}=1.96$ TeV
- 36 bunches: crossing time = 396 ns
- Peak luminosity $3.76 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

• About 7 fb $^{-1}$ on tape

Leptonic W candidate:

- One tight lepton (electron or muon) with $E_T > 20$ GeV.
 - $\begin{array}{|c|c|c|} \bullet & \mathsf{CEM}: \mathsf{electromagnetic} \\ \mathsf{calorimeter that cover} \ |\eta| < 1 \end{array}$
- $E_T > 25$ GeV
- M_T (W) > 30 GeV/c² to get rid of large part of the QCD background

Hadronic W/Z candidate:

- At least 2 jets (cone based algorithm) with:
 - $\ \, {\sf E}_{\sf T}>20{\sf GeV} \ {\sf corrected} \ {\sf for} \\ {\sf detector} \ {\sf effects}.$

2
$$|\eta| < 2.4$$

3 $\Delta \eta_{j1,j2} < 2.5$

- Use the invariant mass of the two leading jets to search for a di-jet resonance in 4.3 fb⁻¹ of data.
- Cannot separate W from Z because of detector smearing
 - WW is dominant (WZ has lower cross section, branching ratio)
- Backgrounds:
 - **(**) $W \rightarrow l\nu + jets$ $(l = e, \mu, \tau)$: shape taken from Alpgen MC.
 - **2** $Z \rightarrow ll + jets (l = e, \mu, \tau)$: shape taken from Alpgen MC.
 - $t\bar{t} + single top$: shape taken from Pythia MC.
 - QCD Multijet : shape taken from data.

- We extract the non W background from data fitting the $\not \in_T$ distribution.
- For the non-W template
 - In CEM the E_T distribution of isolated "antielectrons" are used.
 - Estimated using the same trigger as central electron and looking for variables that reject fake electrons but do not greatly affect the kinematic properties of the event.

2 For CMUP and CMX we use \not{E}_T of non-isolated muons.

 Then knowing the theoretical cross section of the other processes we obtain the W+jets normalization.

V. Cavaliere (Univ. Siena & INFN Pisa)

 $WW/WZ \rightarrow l\gamma + jets$

IFAE 2010, 08/04/2010

- Binned fit to the mjj shape taking as templates the histograms:
 - $0 \quad W+jet \longrightarrow completely free in the fit$
 - IGNAL (WW and WZ)
 - ③ QCD → gaussian constraint to the value found in the \not{E}_T fit with 25% width.
 - Op+single top : constrained to the measured cross section
 - Ø Z+jet: constrained to the measured cross section
- $\bullet\,$ Fit to the whole shape with $M_{\rm jj}>28GeV\!/c^2$
- Fit electrons and muons separately

- Consider two classes of systematics:
 - systematics affecting signal extraction
 - Systematics affecting signal cross-section
- Dominant Systematic for signal extraction:
 - Shape of W+jets: evaluated changing the Q² of the MonteCarlo generator (6%).
 - 3 Jet energy scale: evaluated varying the Jet energy scale up and down of 1 σ (6%).
 - QCD Shape: (4%).
- Dominant Systematic for signal cross-section:
 - Uminosity 6%
 - ISR/FSR 2%

Fit to data and results

- In a data sample corresponding to 4.3 fb⁻¹ we estimate: 1582 ± 275 (stat.) ± 107 (syst) WW/WZ → lvjj events
- Finally, we measure:

• Compatible with SM cross section (15.9 \pm 0.9 pb)

- Generate one toy for each combination of the N_{syst} i.e. in each sample some of the systematic are varied.
- For each sample evaluate how many times the toy results exceeds the value observed in data and choose the worst
- The combined p-value is $8.56 * e^{-08}$
- 5.24 σ found where 5.09 σ was expected

- $\bullet\,$ Measured the cross section of WW/WZ $\to \iota\nu$ +jets
 - Opens the way to diboson studies with jets
- PRL published on march 2010: Phys. Rev. Lett. 104, 101801 (2010)
- By the end of 2011 more than double the statistic!
- Future:
 - Focus on trilinear gauge couplings
 - 3 Next step on the way to Higgs: WZ \rightarrow lv+ bjets ($\sigma=0.12 \text{pb}$)

Backup slides

- One way to estimate :Met vs lso based on the assumption that the electron isolation shoul be uncorrelated with the missing E_T in the event. Not true so it doesn't work!
- Estimated using the same trigger as central electron and looking for variables that reject fake electrons but do not greatly affect the kinematic properties of the event.
- Five "non-kinematic" cuts: $E_{had}/E_{em}\chi^2_{strip}$. Lshr, $Q \cdot \Delta x$, and $|\Delta Z|$.

- Consider two classes of systematics:
 - systematics affecting signal extraction
 - Systematics affecting signal cross-section
- Estimate the systematics on the signal extraction by generating pseudo-experiment using an alternative template model for each systematic source. The pseudo-experiments are then fitted using the templates used in the main fit on data.
- The difference between the central value of the fit on data and the mean of the estimator of the signal content on the alternative pseudo-experiment is taken as systematics on the corresponding source.

Systematic summary

	Source	e %	μ%
Signal Extraction	QCD shape	4.5%	3.9 %
	Q2 up (EWK shape)	+6.2%	+6.1%
	Q2 down (EWK shape)	-6.2%	-6.1%
	JES up	+6.3%	+5.1%
	JES down	-6.3%	-5.1%
	JER	2.9%	1.4 %
TOTAL		10.3 %	9.0 %
Cross section	Luminosity	6%	6%
	Lepton Acceptance	2%	2%
	ISR more	1.8%	1.4%
	ISR less	-1.8%	-1.4%
	FSR more	0.7%	2.6%
	FSR less	-0.7%	-2.6%
	PDF	2.0%	2.0 %
TOTAL		12.4 %	11.6%

V. Cavaliere (Univ. Siena & I<u>NFN Pisa)</u>

 $WW/WZ \rightarrow l\nu$ +jets

|FAE 2010, 08/04/2010